

Estimation of Natural Gas Production, Import and Consumption in Brazil Based on Three Mathematical Models

Antonio Carlos Gracias^{1,2*}, Sérgio Ricardo Lourenço¹, Marat Rafikov¹

¹Engineering, Modeling and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André, Brazil; ²Department of Mathematics, University Center of FEI, São Bernardo do Campo, Brazil. Email: ^{*}antonio.gracias@ufabc.edu.br

Received January 6th, 2012; revised March 2nd, 2012; accepted March 10th, 2012

ABSTRACT

A mathematical model capable of providing a forecast of future consumption and import of natural gas is essential for the planning of the Brazilian energy matrix. The aim of this study is to compare three mathematical models, logistic model or model of Verhulst, exponential model or the model of Malthus and the model of von Bertalanffy to analyze the possibilities of these models to describe the evolution of production, import and consumption of natural gas in Brazil, from data provided by the energy balance of the Ministry of Mines and Energy (MME) from 1970 to 2009. A projection of the production and the import of natural gas up to 2017 is made with the models studied in this article and compared with the Brazilian Ten-Year Plan for Expansion of Energy (PDE). At the end of this paper a comparison with the Hubbert model for Brazilian natural gas production is made. These data were adjusted to use the differential equations which describe the models of population growth. All the computer work used in this article: graphics, resolution of differential equations, calculations of linearization and the least squares fitting was prepared in the software MatLab. The results obtained by means of graphs show that the population dynamics models (logistic, exponential and von Bertalanffy) can be applied in modeling the production, import and consumption of natural gas in Brazil.

Keywords: Natural Gas; Mathematical Modeling; Logistic Model; Exponential Model; Model of Von Bertalanffy

1. Introduction

The federal government, through a policy of development, aims to extend the participation of natural gas in the energy matrix from 2% to 12% in the next ten years [1]. A mathematical model capable of providing a forecast of future consumption and import of natural gas is essential for the planning of the Brazilian energy matrix.

The increase in supply of electric energy in Brazil will only occur with the generation of heat by natural gas. However, the Brazilian reserves of natural gas have two main characteristics: 80% is associated gas and 55% is located in deep water. In consequence, the supply of natural gas is influenced and very dependent on oil production.

World consumption of natural gas will increase at a rate of 2.3% per year until 2025 [2]. This increase in global consumption will be felt also in Brazil, with the increasing participation of natural gas in the energy matrix, especially after the crisis in the electrical sector in 2001. The supply of natural gas has been dependent on Bolivia, since the end of the construction of the pipeline

in 1999. This dependence has reached 50% in 2006 [3], which led to supply problems due to the political crisis faced by Bolivia in 2006. These problems caused a crisis in supply of gas in Brazil, which led Petróleo Brasileiro (PETROBRAS) to review the dependencies on Bolivian gas aiming to reduce the dependence to the maximum of 22% until 2016 [3].

Around the world, the use of natural gas is growing both in industry and in transport and the generation of electricity with the use of thermoelectric power plants for a number of reasons, including price, environmental concerns, fuel diversification, issues security, deregulation and economic growth worldwide marketing. Studies show the relationship between natural gas consumption and economic growth [4].

2. Description of the Models

The dynamics of populations [5] deals with changes in time and space the densities and sizes of populations. The study of population dynamics is not restricted only to the understanding of the variation in the number of

^{*}Corresponding author.

individuals of a given population, but also in the study of biological control of pests [6], the growth strategies of animals [7] strategies and growth of cities. The models dealing with population growth are the models logistic, exponential and *von Bertalanffy*. The application of these models in the study of production and import of natural gas is possible because the data presented in **Tables 1** and **2** show characteristics of population growth.

2.1. Exponential Models

The exponential model is the simplest model that describes the population growth of some species. It is represented by a differential equation of first order establishing the rate of change of population in relation to time. The differential equation for this model is:

$$\frac{\mathrm{dN}}{\mathrm{dt}} = \mathrm{rN} \tag{1}$$

where dN/dt is the rate of the populational change and r is the rate of population growth $r = (1 + \alpha)$ and α is the rate population growth average $\alpha = (N_t/N_0)^{1/2} - 1$. N_t is the population after a period of t years in relation to initial population N₀.

The solution of the Equation (1) is:

$$N(t) = N_0 e^{rt}$$
 (2)

where N_0 is the initial population.

Fable	1.	Prod	luction	of natural	gas.
					—

Year	Production (10^6 m^3)	Year	Production (10^6 m^3)
1970	1264	1990	6279
1971	1178	1991	6597
1972	1241	1992	6976
1973	1180	1993	7355
1974	1488	1994	7756
1975	1625	1995	7955
1976	1642	1996	9156
1977	1808	1997	9825
1978	1933	1998	10788
1979	1899	1999	11898
1980	2205	2000	13283
1981	2475	2001	13998
1982	3030	2002	15568
1983	4013	2003	15792
1984	4902	2004	16971
1985	5467	2005	17699
1986	5686	2006	17706
1987	5781	2007	18152
1988	6076	2008	21593
1989	6105	2009	21142

Source: MME, 2010.

2.2. Logistic Model

The logistic model assumes that a population will grow to a maximum limit, *i.e.*, the population tends to stabilize. This stability of the population in the logistic model is related to the ability to support the way that people live. The differential equation for this model is:

$$\frac{\mathrm{dN}}{\mathrm{dt}} = \mathrm{rN}\left(1 - \frac{\mathrm{N}}{\mathrm{K}}\right) \tag{3}$$

43

where r is the rate of population growth and K is the level of the population saturation.

The solution of the Equation (3) is obtained by the method of separable variables [8]:

$$N(t) = \frac{KN_0}{N_0 + (K - N_0)e^{-rt}}$$
(4)

where N_0 is the initial population.

The logistic model [9] was used to model annual and seasonal natural gas consumption for residential and commercial sectors in Iran. The logistics parameters were estimated using optimization techniques as NLP (nonlinear programming) and GA (genetic algorithm).

2.3. Von Bertalanffy Model

The *von Bertalanffy* model is the logistic model modified to model fish weight growth [10]. The differential equation for this model is:

$$\frac{\mathrm{dN}}{\mathrm{dt}} = \mathrm{rN}^{2/3} \left[1 - \left(\frac{\mathrm{N}}{\mathrm{K}}\right)^{1/3} \right]$$
(5)

where r is the rate of population growth and K is the level of the population saturation.

The solution of the Equation (5) is obtained solving *Bernoulli* equation [8]:

$$N(t) = K \left[1 - \left[1 - \left(\frac{N_0}{K} \right)^{1/3} \right] e^{-\left(\frac{rt}{3K^{1/3}} \right)} \right]^3$$
(6)

where N_0 is the initial population.

2.4. Hubbert Model

The Hubbert model was developed by *M. K. Hubbert* in 1956 to project the discoveries and production in US-48 in the USA [11]. The equation for the *Hubbert* model [12] for the annual production P is simple when related to the annual peak production Pm occurring at year tm:

$$P(t) = \frac{2Pm}{1 + \cosh\left(-b\left(t - tm\right)\right)}$$
(7)

where b is 5/c, P is production in t, Pm is production at peak, tm is the peak period and c is the duration of the half life from a cut-off at 0.027 Pm.

3. Methodology

Table 3. Consumption of natural gas.

The study was conducted from data on production, import and consumption of natural gas from the energy balance of the Ministry of Mines and Energy [13] described in **Tables 1-3**. **Table 1** presents data from the production, **Table 2** presents data from the import and **Table 3** presents data from the consumption of natural gas in Brazil.

To use the models applied to population dynamics in the production, import and consumption of natural gas the data were adjusted to use the differential equations which describe the models. Some parameters of the differential equations were linearized and others obtained by the least squares fitting.

4. Results and Discussions

The results for production, import and consumption of natural gas will be presented separately. In each set of data, production, import and consumption of natural gas, we applied the best model to describe the data. In the final section a comparison with the model used in the Ten Year Energy Plan (PDE) 2008-2019 [14] was made.

4.1. Production of Natural Gas

The results for the exponential model with the data of **Table 1** are presented in **Figure 1**. For the exponential model to average growth rate of production α is given by:

$$\alpha = (21142/1500)^{39} - 1 \tag{8}$$

where: $N_0 = 1500 \times 10^6 \text{ m}^3$ of gas.

4.2. Import of Natural Gas

Brazil began to import natural gas in 1999, therefore, there were few points to apply the *von Bertalanffy* model, as **Table 2**. The same procedure done for the production of natural gas was applied to the import of natural gas. For the *von Bertalanffy* model shown in **Figure 2**, the value of K used was $11,330 \times 10^6$ m³ of gas.

Table 2. Import of natural gas.

Year	Import (10^6 m^3)	
1999	400	
2000	2.211	
2001	4608	
2002	5269	
2003	5055	
2004	8086	
2005	8998	
2006	9789	
2007	10334	
2008	11314	
2009	8543	

Source: MME, 2010.

I					
Year	Energy (10^6 m^3)	Industry (10^6 m^3)	Home (10^6 m^3)	Other (10^6 m^3)	Total (10^6 m^3)
1970	74	3	0	3	80
1971	93	12	0	21	126
1972	100	22	0	51	173
1973	98	23	0	77	198
1974	137	163	0	81	381
1975	149	173	0	92	414
1976	146	183	0	148	477
1977	160	312	0	123	595
1978	156	294	0	333	783
1979	161	311	0	386	858
1980	188	363	0	452	1003
1981	197	381	0	322	900
1982	391	413	0	482	1286
1983	489	449	0	801	1739
1984	628	519	0	877	2024
1985	911	680	0	948	2539
1986	1050	871	0	1037	2958
1987	1062	1131	1	1108	3302
1988	935	1198	0	1191	3324
1989	894	1246	0	1268	3408
1990	859	1535	2	1018	3414
1991	768	1617	5	1068	3458
1992	840	1806	6	1043	3695
1993	974	1947	6	1089	4016
1994	1025	2025	20	1193	4263
1995	989	2353	30	1063	4435
1996	1199	2860	52	983	5094
1997	1226	3194	72	916	5408
1998	1471	3133	81	1054	5739
1999	1696	3517	87	1015	6315
2000	2278	4343	79	1265	7965
2001	2419	5141	114	1576	9250
2002	2722	6343	140	2067	11272
2003	2938	6658	154	2438	12188
2004	3168	7572	196	2729	13665
2005	3500	8209	206	3129	15044
2006	3712	8595	217	3556	16080
2007	4013	9149	236	3841	17239
2008	5227	9605	251	3469	18552
2009	5414	8137	260	3118	16929

Source: MME, 2010.

The **Figure 2**, shows that the import of gas tends to stabilize according to what was described by Santana *et al.* [3], especially with the reduction of dependence on Bolivian gas.

4.3. Consumption of Natural Gas

The natural gas consumption in Brazil is primarily Industrial as **Figure 3**. In 2007, industrial use accounted for 54% of the Brazilian natural gas demand [15]. The participation of home consumption in Brazil's energy matrix is very small when compared with countries such as Poland [16], Iran [9] and Turkey [17]. Aydinalp *et al.* [18] used neural network (NN) to model residential energy consumption in Canada.

For the logistic model shown in **Figure 4**, the terms K and r of Equation (4) were obtained by least squares fitting of the Equation (3). The value of K used was 50,000 $\times 10^6$ m³ of gas.

4.4. Projection of Production and Import of Natural Gas by 2017 with the Use of Population Dynamics Models

Table 4 represents the forecasted daily production and importation of natural gas in the PDE from 2008 to 2017. Total production (TP) is expected to increase year-on-year until 2010, reaching a level of 95 MMm³/day. It will

then stay at around that level until 2013, when it will begin a further period of increase until 2016. The importation of natural gas from Bolivia and Argentina is expected to stabilize at a level of 30 MMm³/day.

The **Figure 5** shows the forecast of natural gas production until 2017 from exponential model. Comparing the results in **Table 4** with the results of the exponential model, we found out that between 2009 and 2017 the points are near the projection.

The **Figure 6** shows the forecast of natural gas import until 2017 from *von Bertalanffy* model. Comparing the results in **Table 4** with the results of the *von Bertalanffy* model, it's possible to see that results are close to the projection. The results from the logistic model showed 30.9 MMm³/day in 2015 and the value of **Table 4** for the same period was 30.1 MMm³/day.

Figure 1. Production of natural gas as function of time with the exponential model.

Figure 2. Import of natural gas as function of time with the *von Bertalanffy* model.

Figure 3. Consumption of natural gas in Brazil.

The **Figure 7** shows the *Hubbert* curve for Brazilian gas production together with the exponential model. Brazil's peak production was forecasted by the *Hubbert* curve to occur in 2022 at 32,380 MMm³.

Figure 4. Total consumption of natural gas as function of time with the logistic model.

Figure 5. Forecast of the natural gas production in the period 2007 to 2017.

Figure 6. Forecast of the natural gas import for the period from 2007 to 2017.

Year	Production (MM m ³ /day)	Import (MM m ³ /day)
2007	49.766	29.1
2008	60.971	30.1
2009	77.475	30.1
2010	95.354	30.1
2011	95.015	30.1
2012	97.164	30.1
2013	101.509	30.1
2014	113.696	30.1
2015	129.240	30.1
2016	139.501	30.1
2017	140.144	30.1

Table 4. Projection of production and import of natural gas.

Source: PDE, 2009.

Figure 7. Hubbert curve for Brazilian gas production.

5. Conclusion

This study examined the possibility of using biomathematical models in the construction of developments in production, import and consumption of natural gas in Brazil. It was concluded that it isn't appropriate to use only one model to describe the three sets of data involved in this article. In fact each set of data is better described by a certain model. For instance the exponential model is the best one to describe the data of natural gas production, the *von Bertalanffy* model is the indicated one to describe one data on import of natural gas and finally the logistic model is the best one for describing the data on consumption of natural gas. Therefore, the initial results presented here show that the models used in the study of population dynamics can be used to study the production, consumption and import of natural gas in Brazil.

REFERENCES

 E. B. Tambourgi and S. R. Lourenço, "Gás Natural: Perspectivas e Utilização," *Exacta*, Vol. 3, No. 1, 2005, pp. 63-70.

- [2] Energy Information Administration (EIA), "Annual Energy Outlook," 2008. http://www.eia.gov
- P. H. de M. Santana, G. de M. Jannuzzi and S. V. Bajay, "Developing Competition while Building up the Infructure of Brazilian Gas Industry," *Energy Policy*, Vol. 37, No. 1, 2009, pp. 308-317. doi:10.1016/j.enpol.2008.09.044
- [4] N. Apergis and J. E. Payne, "Natural Gas Consumption and Economic Growth: A Panel Investigation of 67 Countries," *Applied Energy*, Vol. 87, No. 8, 2010, pp. 2759-2763. doi:10.1016/j.apenergy.2010.01.002
- [5] R. C. Bassanezi, "Teaching and Learning with Mathematical Model," Contexto, São Paulo City, 2006.
- [6] M. Rafikov, J. M. Balthazar and H. F. von Bremen, "Mathematical Modeling and Control of Population Systems: Applications in Biological Pest Control," *Applied Mathematics and Computation*, Vol. 200, No. 2, 2008, pp. 557-573. doi:10.1016/j.amc.2007.11.036
- [7] J. Scarpim, "Modelo de von Bertalanffy Generalizado Aplicado à Curvas de Crescimento Animal," Master's Thesis, Unicamp, Campinas, 2008.
- [8] D. G. Zill, "Differential Equations," Contexto, São Paulo City, 2003.
- [9] M. Forouzanfar, A. Doustmohammadi, M. B. Menhaj and S. Hasanzadeh, "Modeling and Estimation of the Natural Gas Consumption for Residential and Commercial Sectors in Iran," *Applied Energy*, Vol. 87, No. 1, 2010, pp. 268-274. doi:10.1016/j.apenergy.2009.07.008
- [10] A. Tsoularis and J. Wallace, "Analysis of Logistic Growth Models," *Mathematical Biosciences*, Vol. 179, No. 1, 2002, pp. 21-55.

doi:10.1016/S0025-5564(02)00096-2

- [11] M. K. Hubbert, "Nuclear Energy and the Fossil Fuels," *Drilling and Production Practice*, Vol. 95, 1956, pp. 1-57.
- [12] J. H. Laherrère, "World Oil Supply-What Goes Up Must Come down, but When Will It Peak?" *Oil & Gas Journal*, Vol. 97, No. 5, 1999, pp. 57-65.
- [13] Ministry of Mines and Energy (MME), "National Energy Balance," Energy Research Company, Brasília, 2010.
- [14] Energy Research Company, "Ten-Year Plan for Expansion of Energy," Energy Research Company, Brasília, 2009.
- [15] M. R. V. Schwob, M. Henriques Jr. and A. Szklo, "Technical Potential for Developing Natural Gas Use in the Brazilian Red Ceramic Industry," *Applied Energy*, Vol. 86, No. 9, 2009, pp. 1524-1531. doi:10.1016/j.apenergy.2008.10.013
- [16] J. Siemek, S. Nagy and S. Rychlicki, "Estimation of Natural-Gas Consumption in Poland Based on the Logistic-Curve Interpretation," *Applied Energy*, Vol. 75, No. 1-2, 2003, pp. 1-7. doi:10.1016/S0306-2619(03)00013-8
- [17] H. Sarak and A. Satman, "The Degree-Day Method to Estimate the Residential Heating Natural Gas Consumption in Turkey: A Case Study," *Energy*, Vol. 28, No. 9, 2003, pp. 929-939. <u>doi:10.1016/S0360-5442(03)00035-5</u>
- [18] M. Aydinalp, V. I. Ugursal and A. S. Fung, "Modelling of Residential Energy Consumption at the National Level," *International Journal of Energy Research*, Vol. 27, No. 4, 2003, pp. 441-453.