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ABSTRACT 

In this paper, downscaling models are developed using various linear regression approaches namely direct, forward, 
backward and stepwise regression for downscaling of GCM output to predict mean monthly precipitation under IPCC 
SRES scenarios to watershed-basin scale in an arid region in India. The effectiveness of these regression approaches is 
evaluated through application to downscale the predictand for the Pichola lake region in Rajasthan state in India, 
which is considered to be a climatically sensitive region. The predictor variables are extracted from (1) the National 
Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1948–2000, and (2) the simulations 
from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and 
COMMIT for the period 2001–2100. The selection of important predictor variables becomes a crucial issue for devel-
oping downscaling models since reanalysis data are based on wide range of meteorological measurements and obser-
vations. Direct regression was found to yield better performance among all other regression techniques explored in the 
present study. The results of downscaling models using both approaches show that precipitation is likely to increase in 
future for A1B, A2 and B1 scenarios, whereas no trend is discerned with the COMMIT. 
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1. Introduction 

Global circulation models (GCMs) are important tool in 
assessment of climate change. These are numerical mod-
els that have been designed to simulate the past, present, 
and future climate [1]. These models remain relatively 
coarse in resolution and are unable to resolve significant 
subgrid scale features. In most climate change impact 
studies, such as hydrological impacts of climate change, 
impact models are usually required to simulate sub-grid 
scale phenomenon and therefore require input data at 
similar sub-grid scale. The methods used to convert 
GCM outputs into local meteorological variables re-
quired for reliable hydrological modeling are usually 
referred to as “downscaling” techniques [2,3]. Precipita-
tion is an important parameter for climate change impact 
studies. A proper assessment of probable future precipi-
tation and its variability is to be made for various water 
resources planning and hydro-climatology scenarios. 

A number of papers have previously reviewed down-

scaling concepts, including 1) low-frequency rainfall 
events [4] 2) daily precipitation [5] 3)seasonal precipita-
tion [6] 4) daily and monthly precipitation [7] 5) monthly 
precipitation [8] 6) monthly precipitation [9] 7) monthly 
precipitation [10] 8) monthly precipitation [11] 9) annual 
precipitation [3].  

In this paper, we explore four linear regression ap-
proaches; namely, (a) direct regression, (b) forward re-
gression, (c) backward regression and (d) stepwise re-
gression as a downscaling methodology to study climate 
change impact over Pichola lake basin in an arid region. 
Apparently, in the literature, there appears no evidence of 
any study dealing with simultaneous evaluation of vari-
ous regression approaches. In the light of this, the objec-
tive of this study is to 1) to rank various regression ap-
proaches 2) to downscale mean monthly precipitation 
using best available regression approach from simula-
tions of CGCM3 for latest IPCC scenarios. The scenarios 
which are studied in this paper are relevant to Intergov-
ernmental Panel on Climate Change’s (IPCC’s) fourth 
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assessment report (AR4) which was released in 2007. 

2. Study Region 

The area of the this study is the Pichola lake catchment in 
Rajasthan in India that is situated from 72.5°E to 77.5°E 
and 22.5°N to 27.5°N. It receives an average annual pre-
cipitation of 597 mm. It has a tropical monsoon climate 
where most of the precipitation is confined to a few 
months of the monsoon season. The south–west (summer) 
monsoon has warm winds blowing from the Indian 
Ocean causing copious amount of precipitation during 
June–September months.   

The Pichola watershed, located in Udaipur district, 
Rajasthan is one of the major sources for water supply 
for this arid region. During the past several decades, the 
streamflow regime in the catchment has changed consid-
erably, which resulted in water scarcity, low agriculture 
yield and degradation of the ecosystem in the study area 
[12]. Regions with arid and semi-arid climates could be 
sensitive even to insignificant changes in climatic char-
acteristics [13]. Temperature affects the evapotranspira-
tion [14], evaporation and desertification processes and is 
also considered as an indicator of environmental degra-
dation and climate change. Understanding the relation-
ships among the hydrologic regime, climate factors, and 
anthropogenic effects is important for the sustainable 
management of water resources in the entire catchment 
hence this study area was chosen because of aforemen-
tioned reasons. The location map of the study region is 

shown in Figure 1. 

3. Data Extraction 

The monthly mean atmospheric variables were derived 
from the National Center for Environmental Prediction 
(NCEP/NCAR) (hereafter called NCEP) reanalysis data 
set [15] for a period of January 1948 to December 2000. 
The data have a horizontal resolution of 2.5° latitude X 
longitude and seventeen constant pressure levels in ver-
tical. The atmospheric variables are extracted for nine 
grid points whose latitude ranges from 22.5 to 27.5 °N, 
and longitude ranges from 72.5 to 77.5 °E at a spatial 
resolution of 2.5°. The precipitation are used at monthly 
time scale from records available for Pichola Lake which 
is located in Udaipur at 24° 34’N latitude and 73°40’E 
longitude. The data is available for the period January 
1990 to December 2000 [12].The Canadian Center for 
Climate Modeling and Analysis (CCCma) provides 
GCM data for a number of surface and atmospheric 
variables for the CGCM3 T47 version which has a hori-
zontal resolution of roughly 3.75° latitude by 3.75° lon-
gitude and a vertical resolution of 31 levels. The data 
comprise of present-day (20C3M) and future simulations 
forced by four emission scenarios, namely A1B, A2, B1 
and COMMIT. The nine grid points surrounding the 
study region are selected as the spatial domain of the 
predictors to adequately cover the various circulation 
domains of the predictors considered in this study. The 
GCM data is re-gridded to a common 2.5° using inverse  

 

 

Pichola lake

 

Figure 1. Location map of the study region in Rajasthan State of India with NCEP grid.  
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square interpolation technique [16].The utility of this 
interpolation algorithm was examined in previous down-
scaling studies [17,18]. 

4. Regression Approaches  

In statistical methods, the order in which the predictor 
variables are entered into (or taken out of) the model is 
determined according to the strength of their correlation 
with the criterion variable.  

In direct regression, all available predictor variables 
are put into the equation at once and they are assessed on 
the basis of proportion of variances in the criterion vari-
able (Y) they uniquely account for.  

In Forward selection, the variables are entered into the 
model one at a time in an order determined by the 
strength of their correlation with the criterion variable. 
The effect of adding each is assessed as it is entered, and 
variables that do not significantly add to the success of 
the model are excluded [19]. 

In Backward selection, all the predictor variables are 
entered into the model. The weakest predictor variable is 
then removed and the regression re-calculated. If this 
significantly weakens the model then the predictor vari-
able is re-entered–otherwise it is deleted. This procedure 
is then repeated until only useful predictor variables re-
main in the model [20,21]. 

Stepwise is the most sophisticated of these statistical 
methods. Each variable is entered in sequence and its 
value assessed. If adding the variable contributes to the 
model then it is retained, but all other variables in the 
model are then re-tested to see if they are still contribut-
ing to the success of the model. If they no longer con-
tribute significantly they are removed. Thus, this method 
should ensure that one end up with the smallest possible 
set of predictor variables included in one’s model [22]. 

5. Selections of Predictors 

For downscaling predictand, the selection of appropriate 
predictors is one of the most important steps in a down-
scaling exercise. Various authors have used large-scale 
atmospheric variables, namely air temperature (at 925, 
500 and 200mb pressure levels), geopotential height (at 
500 and 200mb pressure levels), zonal (u) and meridional 

(v) wind velocities (at 925 and 200mb pressure levels), 
as the predictors for downscaling GCM output to mean 
monthly precipitation over a catchment [8,10,23]. 

Predictors have to be selected based both on their rele-
vance to the downscaled predictands and their ability to 
be accurately represented by the GCMs. Cross-correlations 
are in use to select predictors to understand the presence 
of nonlinearity/linearity trend in dependence structure 
[23,24]. These cross-correlations between each of the 
predictor variables in NCEP and GCM datasets are use-
ful to verify if the predictor variables are realistically 
simulated by the GCM. Cross-correlations are computed 
between the predictor variables in NCEP and GCM 
datasets (Table 1). The cross correlations are estimated 
using three measures of dependence namely, product 
moment correlation, Spearman’s rank correlation and 
Kendall’s tau Scatter plots and cross-correlations be-
tween each of the predictor variables in NCEP and GCM 
datasets are useful to verify if the predictor variables are 
realistically simulated by the GCM. Cross-correlations 
between each of the predictor variables in NCEP and 
GCM datasets are useful to verify if the predictor vari-
ables are realistically simulated by the GCM. 

6. Development of Downscaling Models 

For downscaling precipitation, the probable predictor 
variables that have been selected to develop the models 
are considered at each of the nine grid points surrounding 
and within the study region. In this study, various linear 
regression approaches are used to downscale mean 
monthly precipitation in this study. The data of potential 
predictors is first standardized. Standardization is widely 
used prior to statistical downscaling to reduce bias (if any) 
in the mean and the variance of GCM predictors with 
respect to that of NCEP-reanalysis data [24]. Standardi-
zation is done for a baseline period of 1948 to 2000 be-
cause it is of sufficient duration to establish a reliable 
climatology, yet not too long, nor too contemporary to 
include a strong global change signal [24].  

A feature vector (standardized predictor) is formed for 
each month of the record using the data of standardized 
NCEP predictor variables. The feature vector is the input 
to the linear regression models, and the contemporaneous  

 
Table 1. Cross-correlation computed between probable predictors in NCEP and GCM datasets. 

 Ta925 Ua925 Va925 Va200 Ta20 Zg200 Ua200 Ta500 Zg500 

P 0.83 0.79 0.67 -0.18 0.66 0.81 0.23 0.81 0.60 

S 0.68 0.56 0.43 -0.14 0.46 0.64 0.57 0.64 0.39 

K 0.87 0.76 0.61 -0.20 0.68 0.85 0.73 0.85 0.59 

H ere P, S and K represent product moment correlation, Spearman’s rank correlation and Kendall’s tau respectively. 
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value of predictand is the output. To develop down-
scaling models, the feature vectors which are prepared 
from NCEP record are partitioned into a training set and 
a validation set. Feature vectors in the training set are 
used for calibrating the model, and those in the validation 
set are used for validation. The 11-year mean monthly 
observed precipitation data series were broken up into a 
calibration period and a validation period. Four models 
M1, M2, M3 and M4 were developed corresponding to 
regression approaches namely stepwise, forward, back-
ward and direct respectively for predictand (Precipita-
tion). The models were calibrated on the calibration pe-
riod 1990 to 1995 and validation involved period 1996 to 
2000. The various error criteria are used as an index to 
assess the performance of the model. Based on the latest 
IPCC scenario, models for mean monthly precipitation 
were evaluated based on the accuracy of the predictions 
for validation data set. 

7. Results and Discussions 

Downscaling models were developed following the 
methodology as discussed in preceding section. The re-
sults and discussion are presented in this section. 

7.1. Potential Predictor Selection 

The most relevant probable predictor variables necessary 
for developing the downscaling models are identified by 
using the three measures of dependence following the 
procedure. The cross-correlations enable verifying the 
reliability of the simulations of the predictor variables by 
the GCM, are shown in Table 1. In general, the most of 

predictor variables are realistically simulated by the 
GCM. It is noted that air temperature at 925mb (Ta 925) 
is the most realistically simulated variable with a CC 
greater than 0.8, while meridional wind at 200mb (Va200) 
is the least correlated variable between NCEP and GCM 
datasets (CC = -0.17). It is clear from Table 1 that air 
temperature at 925mb (Ta 925), air temperature at 500 
mb (Ta500), air temperature at 200 mb (Ta200), merid-
ional wind at 925mb (Va 925), zonal wind at 925mb 
(Ua925), zeo-potential height at 200mb (Zg200) and 
zeo-potential height at 500mb (Zg500) are better corre-
lated than meridional wind at 200mb (Va200) and zonal 
wind at 200mb (Ua200). 

7.2. Downscaling and performance of GCM 
Models 

Seven predictor variables namely air temperature at 925 
mb, 500 mb and 200 mb, zonal wind (925 mb); merido-
inal wind (925 mb); zeo-potential height 500 mb and 200 
mb at 9 NCEP grid points with a dimensionality of 63, 
are used as the standardized data of potential predictors. 
These feature vectors are provided as input to the various 
regressions downscaling model. Results of the different 
regression models (viz. M1 to M4) as discussed in previ-
ous section are tabulated in Table 2. Some of the pre-
cipitation values using this technique resulted in negative 
precipitation. However, this is physically not possible to 
have negative precipitation on a basin. Hence, these 
negative values are considered zero to compute various 
errors. 

For predictand precipitation, coefficient of correlation  
 

Table 2. Various performance statistics of model using various regression approaches. 

CC SSE MSE RMSE 
Model 

Training Validation Training Validation Training Validation Training Validation 

M1 0.90 0.79 111573.52 125884.77 1549.63 2098.08 39.37 45.80 

M2 0.91 0.79 111304.52 125884.77 1545.90 2098.08 39.32 45.80 

M3 0.94 0.65 73875.77 182400.92 1026.05 3040.02 32.03 55.14 

M4 0.95 0.60 55529.22 204162.48 771.24 3402.71 27.77 58.33 

NMSE N-S Index MAE   
 

Training Validation Training Validation Training Validation   

 0.19 0.46 0.81 0.53 0.63 0.37   

 0.19 0.46 0.81 0.53 0.63 0.37   

 0.13 0.67 0.87 0.32 0.70 0.25   

 0.09 0.75 0.90 0.24 0.72 0.23   

Here CC, SSE, SSE, MSE, RMSE, NMSE, N-S Index, MAE indicate Coefficient of Correlation, Standard Error of Estimate, Mean Square Error, Root Mean 
Square Error, Normalized Mean square Error, Nash–Sutcliffe Efficiency Index and Mean Absolute Error respectively. 
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(CC) was in the range of 0.65-0.95, RMSE was in the 
range of 27.77-58.33, N-S Index was in the range of 
0.24-0.90 and MAE was in the range of 0.23-0.72 for 
regression based models (viz. M1 to M4) for training and 
validation set. It can be observed from Table 2 that the 
performance of direct regression models for mean 
monthly precipitation are clearly superior to that of for-
ward, backward and stepwise regression based models in 
training data set while the performance of stepwise and 
forward regression models for predictand are clearly su-
perior to that of backward and direct regression based 
models in validation data set. Results of forward and 
stepwise regression are quite similar. It can be inferred 
that model M4 using direct regression performed best for 
predictand precipitation. 

A comparison of mean monthly observed precipitation 
with precipitation simulated using forward regression 
models M4 has been shown from Figure 2 for calibration 
and validation period. Calibration period is from 1990 to 
1995, and the rest is validation period. 

Once the downscaling models have been calibrated 
and validated, the next step is to use these models to 
downscale the control scenario simulated by the GCM. 
The GCM simulations are run through the calibrated and 
validated direct regression model M4 to obtain future 
simulations of predictand. The predictand patterns are 
analyzed with box plots for 20 year time slices. Typical 
results of downscaled predictand obtained from the pre-
dictors are presented in Figure 3. In part (i) of Figure 3, 
the precipitation downscaled using NCEP and GCM 

datasets are compared with the observed precipitation for 
the study region using box plots. The projected precipita-
tion for 2001–2020, 2021–2040, 2041–2060, 2061–2080 
and 2081–2100, for the four scenarios A1B, A2, B1 and 
COMMIT are shown in (ii), (iii), (iv) and (v) respec-
tively. 

From the box plots of downscaled predictand (Figure 
3), it can be observed that precipitation are projected to 
increase in future for A1B, A2 and B1 scenarios. The 
projected increase of precipitation is high for A1B and 
A2 scenarios whereas it is least for B1 scenario. This is 
because among the scenarios considered, the scenario 
A1B and A2 have the highest concentration of atmos-
pheric carbon dioxide (CO2) equal to 720 ppm and 850 
ppm, while the same for B1 and COMMIT scenarios are 
550 ppm and ≈ 370 ppm respectively. Rise in concentra-
tion of CO2 in the atmosphere causes the earth’s average 
temperature to increase, which in turn causes increase in 
evaporation especially at lower latitudes. The evaporated 
water would eventually precipitate [10,25]. In the 
COMMIT scenario, where the emissions are held the 
same as in the year 2000, no significant trend in the pat-
tern of projected future precipitation could be discerned. 
The overall results show that the projections obtained for 
precipitation are indeed robust. 

8. Conclusions 

This paper investigates the applicability of the various 
linear regression approaches such as direct, forward, 
backward and stepwise to downscale precipitation from  

 

 

Figure 2. Typical results for comparison of the monthly observed Precipitation with Precipitation simulated using direct re-
gression downscaling model M4 for NCEP data. In the Figure calibration period is from 1990 to 1995, and the rest is valida-
tion period. 

Copyright © 2010 SciRes.                                                                                   NR 



Evaluation of Various Linear Regression Methods for Downscaling of  16 
Mean Monthly Precipitation in Arid Pichola Watershed 

   
(a)                                                    (b) 

 

   
(c)                                                    (d) 

 

 
(e) 

Figure 3. Box plots results from the direct regression-based downscaling model M4 for the predictand Precipitation.  
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GCM output to local scale. The effectiveness of this 
model is demonstrated through the application of lake 
catchment in arid region in India. The predictand is 
downscaled from simulations of CGCM3 for four IPCC 
scenarios namely SRES A1B, A2, B1 and COMMIT. 
Four regression models are developed and the perform-
ance of the models is evaluated using the statistical 
measures CC, SSE, MSE, RMSE, NMSE, η and MAE. 
The overall conclusions of this evaluation study are as 
follows: 

1) Overall direct regression performed best followed 
by backward regression method. Backward regression 
was followed by forward regression and stepwise regres-
sion which yielded the similar results.  

2) Direct regression yielded better results for training 
data set while forward regression performed better for 
validation data set.  

3) The results of downscaling models show that pre-
cipitation is projected to increase in future for A2 and 
A1B scenarios, whereas it is least for B1 and COMMIT 
scenarios using predictors. 
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