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Abstract 
Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1−x glasses occurs 
when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 
glass. At this composition, the number of constraints experienced by an atom equals the number of 
degrees of freedom in three dimensions. Hence, at this composition, the network changes from a 
floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte 
Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental 
total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A 
three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial 
atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations 
that are hard to extract experimentally from total scattering methods. Bond angle distributions, 
coordination numbers, mean coordination numbers and the number of floppy modes were also 
extracted and discussed. More structural insights about network topology at this composition 
were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link 
the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetra-
hedra). These tetrahedra form the basic building block and are connected via shared Se atoms or 
short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from 
the width of the first sharp diffraction peak) was found to be around 19.6 Å. The bonding schemes 
in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chem-
ically ordered network model. 
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1. Introduction 
Amorphous materials in general and amorphous chalcogenide glasses in particular play an essential rule in 
technological applications. Examples include infrared detectors, lenses and infrared optical fibers [1] [2]. Chal-
cogenide glasses, especially when doped with rare earth ions, have high refractive index, low phonon energy and 
high nonlinearity [3]. These physical properties make them superior in lasers, photonic integrated circuits and 
photon-induced refraction [4]. Amorphous chalcogenide semiconductors have also found emerging applications 
in electrical switches, based on their phase changes through an intense voltage or heat pulses [5]. 

Deep understanding of the local structure of amorphous chalcogenides helps understand their remarkable 
physical and chemical properties and gives more insights about possible combinations to produce and design 
new useful materials. 

In this paper, we focus on rigidity transition in binary chalcogenide glasses. Rigidity theory [6]-[8] predicts 
the mechanical properties of network glasses based on their chemical composition. In network glasses, intera-
tomic distances and bond angles are fixed around their average values due to radial 2-body bond-stretching and 
angular 3-body bond-bending constraints, respectively. In this theory, J. C. Phillips [6] [7] introduced counting 
the average constraints experienced by each atom in the network. In three dimensions, a network is considered 
as floppy, when the average number of constraints per atom (nc) is less than 3 (the number of degrees of freedom 
per atom in 3 dimensions), and is considered as stressed-rigid if nc is greater than 3. The network is considered 
as isostatic when 3cn = . 

Simple enumeration of the average number of constraints experienced by an atom in a glassy network can 
predict its mechanical property, as well as the optimal isostatic composition, in which the network is rigid but 
stress-free. Rigidity theory has been applied to tetrahedral network glasses with changing composition and it 
was found that glass formation is optimal if the network is isostatic [9]. 

The mean coordination number, r  (which should be distinguished from nc), plays an important role in de-
termining connectivity and rigidity of a network. In the case of a covalently bonded binary alloy with general 
formula AxB1−x, the value of r  is given by:  

( ) ( ) ( )A 1 Bc cr xn x n= + −                                (1) 

In the mean-field approach, one considers a network of N atoms composed of rn  atoms that are r-fold coor-
dinated. The enumeration of mechanical constraints in this system gives r/2 bond-stretching constraints and 
( )2 3r −  bond-bending constraints [6] [7]. 

The number of floppy modes, f, in a network of N atoms equals the difference between the total number of 
degrees of freedom (3N) and the total number of constraints present in the network, as given by [8]:  

( )3 2 3 3
2r

r

rf N n r N  = − + −  
  

∑                            (2) 

where nr is the number of r-fold coordinated atoms. This reduces to:  

52
6

f r= −                                      (3) 

This number of floppy modes, f, vanishes when 2.4r = . At 2.4r = , the glassy network is stable and has a 
mechanical threshold or critical composition at which the network changes from an elastically floppy type to a 
rigid type. Many experimental results confirm the mean-filed predictions and show responses to the rigidity 
percolation threshold [10]-[12]. 

Among all chalcogenide glasses, the covalently bonded GexSe1−x system is of special interest. This system can 
be made as glasses over a wide composition range ( 0.0x =  to 0.42 atm.% germanium) [1] [2] [13]. This allows 
one to systematically tune its mechanical properties and network connectivity by altering the Ge:Se ratio. Rigid-
ity percolation in GexSe1−x glasses occurs at Ge0.20Se0.80 where at this composition the value of 2.4r = . Despite 
the fact that many dramatic experimental findings were reported to occur at this composition [14]-[17], very lit-
tle information is known about the local structure of this important particular composition, as many experimen-
tal [18]-[23] and theoretical [23]-[28] studies focused on the stoicheometric composition GeSe2 glass. Hence, a 
detailed determination of the local structure of Ge0.20Se0.80 glass is essential for understanding the onset of rigid-
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ity. Crucial questions whether Ge0.20Se0.80 glass forms a chemically ordered or a covalently random network and 
the possibility of broken chemical order remain subjects of concern. 

The purpose of this paper is to build a structural model of the rigidity percolation threshold (Ge0.20Se0.80) glass 
from which we can extract different structural parameters that may resolve some controversial structural aspects. 
So, in this work, we study the short- and intermediate-range orders of Ge0.20Se0.80 glass using Reverse Monte 
Carlo (RMC) modeling by simulating its experimental total atomic pair distribution function (PDF). To the best 
of our knowledge, this is the first RMC modeling done on melt-quenched Ge0.20Se0.80 glass through directly si-
mulating its high resolution real-space PDF data, obtained via high energy synchrotron radiation. In the follow-
ing we give a brief theoretical account about PDF technique and RMC modeling. 

2. Theory 
2.1. The PDF Method 
The atomic pair distribution function (PDF) technique is a total scattering technique that gives the local structur-
al environment at the atomic scale. PDF technique allows for both the Bragg and diffuse scattering to be ana-
lyzed together on equal terms, revealing the short and intermediate range orders of the material [29]. 

The atomic PDF, ( )G r , is defined as:  

( ) ( )4π oG r r rρ ρ= −                                    (4) 

where oρ  is the average atomic number density, ( )rρ  is the atomic pair-density, and r is the radial distance. 
The function ( )G r  is experimentally accessible and gives information about the number of atoms in a 

spherical shell of unit thickness at a distance r from a reference atom. It peaks at characteristic distances sepa-
rating pairs of atoms, as shown schematically in Figure 1. 

The PDF ( )G r  is related to the measured X-ray or neutron diffraction pattern through a Fourier transform:  

( ) ( ) ( ) ( )max

0
2 π 1 sin d

Q

Q
G r Q S Q Qr Q

=
= −  ∫                          (5) 

where Q is the magnitude of the scattering vector, and ( )S Q  is the total scattering structure function which 
contains the measured diffracted intensities of the material. The quantity ( ) 1Q S Q −    is denoted by ( )F Q  
and is called the reduced structure function. 

The structure function is related to the coherent part of the total scattering intensity of the material, and is 
given by [29] [30]:  
 

 
Figure 1. Illustration of the structural origin of peaks in the atomic pair 
distribution function, G(r), for an amorphous material.                       
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( )
( ) ( )

( )
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2 1
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c f Q

−
= +

∑
∑

                             (6) 

where ( )cohI Q  is the measured scattering intensity from a sample that has been properly corrected for back-
ground and other experimental effects and normalized by the flux and the amount of the sample in the beam. 
Here, ic  and ( )if Q  are the atomic concentration and X-ray atomic form factor, respectively, for the atomic 
species of type i. 

As can be seen from Equations (4)-(6), ( )G r  is simply another representation of the diffraction data. How-
ever, exploring the diffraction data in real space has advantages especially in the case of materials with signifi-
cant structural disorder [29]. 

Modeling of the PDF data does not presume periodicity. Therefore, PDF technique is particularly useful for 
characterizing aperiodic distortions in crystals, analysis of nano structures and glasses. 

Improper corrections in PDF data reduction result in distortions to ( )S Q  but these distortions vary much 
more slowly than the signal and are manifested as sharp peaks at very low-r in the PDF in a region (typically < 
1.0 Å) where no structural information exists [29]. 

Coordination numbers and partial coordination numbers are extracted through integrating the corresponding 
peaks in the so-called radial distribution function (RDF), which is related to ( )G r  by:  

( ) ( )2RDF 4π or r rG rρ= +                                  (7) 

2.2. The RMC Method 
Reverse Monte Carlo (RMC) is an important structural modeling method based on experimental data. It began 
as a method for creating three-dimensional models of liquid structures. It has been developed considerably since 
then, and its applications have been applied to include crystalline, amorphous structures and magnetic materials 
[31]. A comprehensive review on the subject has been performed by Robert McGreevy [32]. 

The general theme of this method is based on building a three dimensional structural configuration of atoms 
that have their calculated correlation functions consistent to some extent with the experimental ones. In RMC 
modeling, a set of points (atoms) are placed in a cubical box of edge-length L, with periodic boundary condi-
tions. The types of the atoms in the box, their relative concentrations as well as their number densities are de-
termined to be consistent with the material being modeled. 

A set of experimental data, either in Q-space or in real space can be simulated. Starting from a completely 
random configuration of atoms, an atom is chosen randomly and moved a specific distance. Every time an atom 
is moved, the correlation functions are calculated from the new configuration and compared with the corres-
ponding experimental correlation functions. If the move increases the agreement between the calculated and ex-
perimental data, the move is accepted, otherwise, it is accepted with some probability. 

A set of physical structural constraints are inserted in the simulation process so as to improve the fit. These 
include the distance of closest approach, where no two atoms can come closer to each other by this distance. 
Coordination number constraints that are consistent with the chemistry of the material may also be inserted in 
the modeling process. These constraints aim towards improving the fit and making the resulting configuration 
more and more reasonable. 

In RMC modeling, the RMC-calculated total PDF ( )( )RMCG r  is given by:  

( ) ( )
24π

RMC
RMC

o

n r
G r

r rρ
=

∆
                                 (8) 

where ( )RMCn r  is the number of atoms between r and r r+ ∆  from the central atom, averaged over all atoms, 
and oρ  is the average atomic number density. 

Similarly, for a model of two atom types i and j, the RMC-calculated partial PDF ( )( )RMC
ijg r  is given by:  

( ) ( )
24π

RMC
ijRMC

ij
o

n r
g r

r rρ
=

∆
                                 (9) 

Here, the ( )RMC
ijn r  is the number of atoms of type j, between r and r r+ ∆ , that are exist around the central 
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atom of type i averaged over all atoms of type i. 
The function to be minimized during each atom move is:  

( ) ( )
22

1

1 m
Expt RMC

i i
i

G r G rχ
η =

 = − ∑                          (10) 

Here the sum is over m experimental points and η  is related to the experimental error in the PDF data. Any 
move that decreases 2χ  is always accepted, if the move increases 2χ  it is accepted with a probability given 
by ( )2exp 2χ−∆ . The process of moving atoms around continues until 2χ  has reached an equilibrium value. 
The resulting RMC-generated configuration should be consistent with the experimental data within experimental 
errors. 

Once the model is obtained, many structural parameters can be directly calculated, such as the partial coordi-
nation numbers, average coordination number, partial atomic pair distribution functions ( )( )RMC

ijg r , partial 
structure functions ( )( )RMC

ijS Q , and the bond angle distributions ( )ijkθ . 
It should be noted that the RMC-generated structural models are never unique. This should not be considered 

as a weakness of the method. RMC modeling is not supposed to give the structure of a given material, it just 
solves some questions about the structure of the material, and gives more insights about interpretation of the si-
mulated experimental data. What we should look at it in RMC modeling is weather the generated model is use-
ful or not. Does it give more insights into the structure or properties of the material that would not have been 
obtained without the model? 

3. Experimental 
3.1. The PDF Experiment 

The Ge0.20Se0.80 glass was prepared using conventional melt quenching process. The details of the preparation 
and characterization process of the glass as well as the X-ray diffraction experiment performed on it are all men-
tioned in a previous publication [33]. 

It should be noted that the use of high-energy X-ray synchrotron radiation (87.005 keV ( 0.14250λ =  Å)) at 
the MUCAT 6-ID-D beam line at the Advanced Photon Source (APS) allowed us to access a high value of wave 
vector Q of 26 Å−1, where Q is the magnitude of the scattering vector, and is given by: ( )4πsinQ θ λ= . This 
allowed us to reduce several unwanted experimental effects such as absorption and multiple scattering, which in 
turn had a great impact on the real space resolution of the obtained PDF. 

The measured reduced structure function, ( ) ( ) 1F Q Q S Q= −   , and the corresponding atomic pair distribu-
tion function, ( )G r , for the Ge0.20Se0.80 glass are plotted in Figure 2.  
The curves in Figure 2 have not been smoothed and the low level of noise in ( )F Q , even at high-Q values, is 
apparent, which indicates that the experimental data are adequate and the raw data reduction was effective.  
 

 
(a)                                         (b) 

Figure 2. (a) The experimental reduced structure function, F(Q) and (b) the experimental atomic pair 
distribution function, G(r), for the Ge0.20Se0.80 glass.                                                   
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The high real space resolution of the current data set makes the analysis and the interpretations of the different 
peaks unambiguous. 

3.2. The RMC Modeling 
In the current RMC modeling process, we followed the following simulation protocol. A set of 2836 atoms were 
generated randomly inside a box of edge-length of 43.44 Å. This results in an average number density of 0.0346 
atoms/Å3, which is comparable with the experimental value of Ge0.20Se0.80 glass. From the 2836 atoms, 567 
atoms were assigned to represent Ge and the remaining 2269 atoms were assigned to represent Se. These as-
signments mimics the concentrations of Ge and Se in Ge0.20Se0.80. RMCA program [34] was used in the model-
ing process. Initially, the program ran for 48 hours without any constraints to ensure the non existence of any 
memory effects. After that, the cut off distance (distance of closest approach) constraint as well as the coordina-
tion constraints were inserted in the simulation process. The coordination constraints we used are consistent with 
the Mott’s “8-N” rule [35], where N is the number of valence electrons in the corresponding atom. Thus, two 
coordination constraints were assigned such that each Ge atom is 4-fold coordinated and each Se atom is 2-fold 
coordinated. In this protocol, the experimental total atomic pair distribution function (PDF ( )G r ) was directly 
simulated. The program ran for a week after which the value of 2χ  began to saturate and reached a stable limit 
of around 1.0. 

4. Results and Discussion 
The quality of RMC simulation to the experimental total atomic pair distribution function ( ( )G r ) is shown in 
Figure 3, from which we see excellent agreement between the experimental and calculated data. This is obvious 
from the difference curve that is plotted offset below the two curves. The RMC-generated structural model is 
able to reproduce the positions, shapes and intensities of all the peaks in the experimental ( )G r  that extend till 
about 10 Å. It should be noted that the peaks in ( )G r  below 2.13 Å (the lower side of the first real peak) are 
unphysical, and they are due to terminating the Fourier transform at maxQ . These peaks are considered as ter-
mination ripples and they were ignored in the simulation process. 

The obtained three-dimensional RMC configuration was tested for homogeneity, and structural defects, such 
as dangling bonds and it was found to be homogenous and reasonable. Figure 4 shows a snap shot representa-
tion of the RMC-generated structural model of Ge0.20Se0.80 as well as the Ge and Se sub-networks. The calcu-
lated PDF from the RMC-generated model ( )( )RMCG r  was then Fourier transformed to obtain the calculated 
reduced structure function ( )( )RMCF Q . Figure 5 shows a comparison between the experimental and calculated 
reduced structure functions. It is evident from Figure 5 that the calculated ( )F Q  has a very good agreement 
with the experimental data regarding peak positions, especially for the first sharp diffraction peak, which is de-
noted by FSDP and indicated by an arrow in the inset of Figure 5. The FSDP has been a subject of debate in net-
work glasses for its anomalies behavior [36]-[38], and so its origin remains controversial, despite the qualitative  
 

 
Figure 3. Experimental (open circles) and calculated (solid line) total atomic pair distribution 
functions (G(r)) for Ge0.20Se0.80 glass. The difference curve is plotted offset below the two curves. 
Unphysical peaks below 2.13 Å were ignored in the simulation.                               
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(a)                              (b)                                 (c) 

Figure 4. (a) The RMC-generated structural model of Ge0.20Se0.80 glass. (b) and (c) are the Ge and Se sub- 
networks in the RMC-generated structural model, respectively.                                                

 

 
Figure 5. Experimental (open circles) and calculated (solid line) reduced structure functions (F(Q)) for 
Ge0.20Se0.80 glass.                                                                             

 
agreement that it is a signature of intermediate range order (IRO) in network glasses [39]. The small hump in the 
calculated ( )F Q  at the location of the FSDP indicates that the generated model preserves correlations in the 
IRO that are responsible for the appearance of the FSDP. The excellent reproducibility of peak positions in the 
( )F Q  data, especially at high Q range, indicates that the short range order is very well reproduced, and the 

nearest neighbour bond lengths are accurate. However, the calculated ( )F Q  data have their peaks lower in 
amplitudes than the corresponding experimental ones, which is due to the finite size of the generated model. So 
larger models (~100,000 atoms) can improve the simulation process. 

The resulting RMC configuration was then used to calculate the full set of partial atomic pair distribution 
functions: ( )Ge-Ge

RMCg r , ( )Ge-Se
RMCg r  and ( )Se-Se

RMCg r . These partials were calculated using Equation 9, and are 
shown in Figure 6. From these partials, it is evident that the first PDF peak at 2.36 Å is mainly due to Ge-Se he-
tropolar bonds, and partially due to Se-Se homopolar bonds. The little hump in ( )Ge-Ge

RMCg r  at 2.36 Å indicates 
the existence of very few Ge-Ge homopolar bonds. Structural correlations beyond the short range order can be 
clearly identified in the different partial PDFs and they extend till about 8 Å. 

These partial PDFs, when summed up with proper averaging, gives the total atomic pair distribution function 
(G(r)). The advantage of the obtained RMC model, is that it enabled us to decompose G(r) into three sets of 
known origin. Structural correlations responsible for each peak in each partial PDF are now very well known 
and can be easily interpreted. 

Many experimental findings [20] [27] indicated that GeSe4 tetrahedra form the basic building blocks in Ge-Se 
networks. To test the validity of this assumption, we have extracted the relevant distances from the correspond-
ing partial PDFs shown in Figure 6. Ge-Se nearest neighbour distance occurs at ( )1 2.36 2r =  Å as extracted 
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from the position of the first PDF peak in ( )Ge-Se
RMCg r . Also, the Se-Se second neighbour distance occurs at 

( )2 3.85 3r =  Å as extracted from the position of the second peak in ( )Se-Se
RMCg r . The ratio 2 1 1.63r r =  is con-

sistent with the ideal tetrahedral ratio of 8 3 . This indicates that GeSe4 tetrahedra form the basic building 
blocks in Ge0.20Se0.80 glass. Another proof of this fact is extracted from the bond angle distributions, discussed 
later in this paper. 

Two competing structural models were proposed for these glasses. The first model is the chemically ordered 
network (CON) model [40] where all atoms are coordinated according to the “8-N” rule, and the number of he-
tropolar bonds is maximized. The second model is the random covalent network (RCN) [41] [42] at which there 
is no preference for either homopolar or hetropolar bonds, and the distribution of bond types is purely statistical. 
Both the CON and the RCN models give the same mean coordination number of 2 2r x= +  (a condition that 
must be satisfied if, in accordance with the “8-N” rule, Ge is fourfold coordinated and Se is twofold coordinated 
in GexSe1−x glasses). 

In order to extract the partial coordination numbers j
in  (this notation denotes the coordination of an atom of 

specie i by atoms of specie j), partial radial distribution functions ( )( )ijRDF r  were calculated through:  

( ) ( )24πij o j ijRDF r c r rg rρ= +                            (11) 

and the corresponding peaks in these partials were then integrated. Figure 7 shows the calculated partial coor-
dination numbers as obtained by the current RMC modeling together with the expected values via the CON and 
the RCN models. 

It is very clear, as can be seen from Figure 7 that the RMC-generated model is very close and consistent with 
the CON model, where the Ge atoms are four-fold coordinated to Se atoms to form GeSe4 tetrahedra, with some 
amount of Se atoms are necessarily forced to form homopolar Se bonds. Having said that the structure of 
Ge0.20Se0.80 glass is consistent with the CON model does not fully characterize the short range order in this glass, 
as there are many different bonding configurations at which the GeSe4 tetrahedra can link together, as we will 
see shortly. 

Integration of the first peaks in partial RDFs yields that ( )Ge
Ge 0.13 4n = , ( )Se

Ge 3.96 4n = , ( )Ge
Se 0.99 2n =  and 

( )Se
Se 1.10 2n = . Based on these values, ( )total

Ge 4.09 4n =  and ( )total
Se 2.09 2n = , and this results in a mean coordi-

nation number of ( )2.49 3r = . Here r  is calculated through:  

( )Ge Se Se Ge
Ge Ge Se Se1r x n n x n n   = + + − +                             (12) 

Hence, the number of floppy modes, as given by Equation (3), vanishes for the Ge0.20Se0.80 glass, which indi-
cates that its network is rigid. The above results are also consistent with the “8-N” rule, where we found that Ge  
 

 

Figure 6. Partial atomic pair distribution functions ( )( )RMC
ijg r  for Ge0.20Se0.80 glass 

calculated from the RMC-generated model. The curves are shifted up for clarity.      
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is 4-fold coordinated and Se is 2-fold coordinated. 
The structure of amorphous Se consists mainly of Se chains with some few rings [43]. Each Se atom is bound 

to two other Se, in accordance with the “8-N” rule, at a distance of 2.34(2) Å. When 20 atm.% Ge is added to Se 
to form amorphous Ge0.20Se0.80 glass, Ge atoms break-up and cross link the Se chain structure, and form struc-
tural units that are four-fold coordinated (i.e. the GeSe4 tetrahedral units). Existence of Se-Se homopolar bonds 

( )Se
Se( 1.10 2 )n = , and as indicated by Figure 7, indicates the existence of short Se chains. This shows the differ-

ent linkage schemes of the GeSe4 tetrahedra, where linkage through a single Se atom (corner-sharing configura-
tion), two Se atoms (edge-sharing configuration), and through short Se chains are all present in this glass. 

In Figure 8 we show the calculated six possibilities of bond angle distributions from the RMC-generated 
structural model for Ge0.20Se0.80 glass. Here, we calculated the angular distributions of bonds between first 
neighbour atoms at a maximum radial distance of 3 Å, which was determined from the position of the first 
minimum after the first PDF peak.  

These bond angle distributions have been smoothed for clarity. The smoothing process did not alter their gen-
eral behavior, and the associated peaks can be seen clearly in the smoothed data. Following is a description of 
each of these bond angle distribution functions: 
 

 
Figure 7. Partial coordination numbers for the different bond types 
in Ge0.20Se0.80 glass as obtained from the current RMC simulation 
compared with those calculated from the CON and RCN models.                         

 

 
Figure 8. Bond angle distribution functions (θijk) for Ge0.20Se0.80 
glass. Here j is the atom at the corner.                                  
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• Ge-Ge-Geθ : 
This distribution spreads over the entire range with no well defined peaks (except a little hump at around 60˚). 

The general theme of this distribution is flat, which is due to the very little fraction of Ge-Ge homopolar bonds 
in the first PDF shell. 
• Ge-Se-Geθ : 

The main peak in this distribution is broad and extends from 85˚ - 125˚ and centered at 105˚. A little hump 
also occurs at around 60˚. This distribution describes the connectivity between neighbouring tetrahedra. In the 
high-temperature phase of GeSe2 glass (HT-GeSe2), edge-sharing tetrahedra (EST) show angles close to 80˚ and 
corner-sharing tetrahedra (CST) show angles between 96˚ - 100˚ [44] [45]. Thus, the disappearance of the peak 
at 80˚ in the RMC-generated model indicates that EST are very few in Ge0.20Se0.80 glass, while the peak at 105˚ 
is due to CST. Its extension from 85˚ - 125˚ is consistent with the different linkage schemes available for this 
bond angle as can be seen in the right panel of Figure 9. 
• Se-Ge-Geθ : 

This distribution has a peak at around 60˚ which is associated with three-fold rings. The little hump seen 
around 106˚ is related to tetrahedral angles and n-fold rings present in the glass. 
• Se-Ge-Seθ : 

This distribution has two peaks, the first one occurs at around 60˚ and a second broad peak centered at around 
109˚ which is consistent with the ideal value in a perfect tetrahedron (109.5˚), as shown in the right panel of 
Figure 9. 
• Se-Se-Geθ : 

This distribution is relatively similar to that of Se-Ge-Geθ . Here, a peak is observed at around 60˚ which is due 
to the occasional presence of three-fold rings, while the peak centered at around 102˚ characterizes the angle at 
which Se chains connect to GeSe4 tetrahedra. 
• Se-Se-Seθ : 

This distribution has two main peaks, the first one is sharp and centered at around 60˚, while the second peak 
is broad and extends from 95˚ - 120˚, with a maximum at 110˚. As indicated in Figure 9, the Se-Se-Se angles in 
perfect tetrahedra are 60˚. This indicates that the GeSe4 tetrahedra in Ge0.20Se0.80 glass are ideal. This finding is 
consistent with the ratio of SeSe GeSe 1.63r r =  mentioned previously. In trigonal selenium [46], the Se-Se-Se an-
gle is 103˚ and the angles in small Se chains and rings range from 90˚ - 116˚. The second broad peak in this dis-
tribution indicates that Se chains and rings are formed in this glass. 

Structural information about intermediate range order (IRO) is contained in the peaks beyond the nearest 
neighbor distances. As can be seen from Figure 6, the three partial atomic pair distribution functions have 
structural correlations that extend till about 8 Å. Of particular interest is the Ge-Ge partial distribution function 

( )Ge-Ge( )RMCg r . Peaks beyond the first shell in this function are associated with Ge-Ge correlations among the  
 

 
Figure 9. Illustration of EST (upper left panel) and CST (lower left 
panel). Right panel shows some angles within the GeSe4 tetrahedra.     
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GeSe4 tetrahedra. Careful analysis of this distribution function shows a small peak at about 3.1 Å, which is the 
distance of Ge-Ge correlation when the GeSe4 tetrahedra share edges. The peak at around 3.6 Å is due to Ge-Ge 
correlations in corner-sharing configuration. 

The first sharp diffraction peak (FSDP) in the reduced structure function is considered as a signature of inter-
mediate range order present in this glass [39]. It indicates that the bonding takes a significant directional charac-
ter. It occurs at around 1.12(3) Å−1, and so, the periodicity of the associated intermediate ranged oscillations 
(given by: FSDP2π Q ) is about 5.61 Å. On the other hand, the full width at half maximum ( )FSDPQ∆  of the 
FSDP was extracted through reflecting its lower part around its center, and it was found to be 0.32(2) Å−1. This 
width determines the so-called coherence length (given by: FSDP2π Q∆ ), which controls the extent of the in-
termediate ranged oscillations in real space. This extent was found to be around 19.6 Å. 

5. Summary and Conclusion 
In conclusion, we have used constrained RMC modeling to build a three-dimensional structural model of the 
Ge0.20Se0.80 glass through simulating its experimental X-ray total atomic pair distribution function (PDF ( )G r ). 
The calculated correlation functions have excellent agreement with the experimental data. The obtained model 
indicates that the Ge0.20Se0.80 network is best described by a chemically ordered network, where all atoms are 
coordinated according to the “8-N” rule, and the number of hetropolar bonds is maximized. The Ge atoms are 
four-fold coordinated to Se atoms to form GeSe4 tetrahedra, and with some Se atoms are necessarily forced to 
form homopolar Se bonds. The GeSe4 tetrahedra are linked together with different configuration schemes, in-
cluding CST, EST and linkage through short Se chains. The present investigation on Ge0.20Se0.80 glass provides 
structural insights on the network topology at both short and intermediate atomic length scales. Finally, this 
work shows the power of RMC simulation of experimental data to build a structural model of an amorphous 
material. Without such a model, much important structural information cannot be obtained. 
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