
Journal of Materials Science and Chemical Engineering, 2019, 7, 87-97 
http://www.scirp.org/journal/msce 

ISSN Online: 2327-6053 
ISSN Print: 2327-6045 

 

DOI: 10.4236/msce.2019.78010  Aug. 30, 2019 87 Journal of Materials Science and Chemical Engineering 
 

 
 
 

An Artificial Neural Network (ANN) Model for 
Predicting Water Absorption of 
Nanoclay-Epoxy Composites 

Guillermina Capiel1*, Arrosio Florencia1, Vera A. Alvarez2, Pablo E. Montemartini1, Juan Morán1 

1Structural Composites (CET), INTEMA, National University of Mar del Plata, Mar del Plata, Argentina 
2Composite Materials (COMP), INTEMA, National University of Mar del Plata, Mar del Plata, Argentina 

 
 
 

Abstract 
Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer 
from water absorption due to their heterogeneous structure. The main proc-
ess governing water absorption is diffusion of water molecules through the 
epoxy matrix. However, hydrolytic degradation may also take place during 
components service life specially due high temperatures. In order to mitigate 
the effects of the water diffusive processes in the deterioration of in-service 
behavior of epoxy matrix composites, the use of chemically modified nano-
clays as an additive has been proposed and studied in previous works [1]. In 
this work, an Artificial Neural Network (ANN) model was developed for bet-
ter understanding and predicting the influence of modified and unmodified 
bentonite addition on the water absorption behavior of epoxy-anhydride sys-
tems. An excellent correlation between model and experimental data was 
found. The ANN model allowed the identification of critical points like the 
precise temperature at which a particular system’s water uptake goes beyond 
a predefined threshold, or which system will resist an immersion longer than 
a particular time. 
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1. Introduction 

Glass fiber reinforced epoxy (GFRE) composite materials are prone to suffer 
from water absorption due to their heterogeneous structure. The main process 
governing water absorption is diffusion of water molecules through the epoxy 
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matrix. However, depending on the polymer matrix and the operation tempera-
ture, other mechanisms could be involved and water absorption process may 
lead to material degradation. This process could modify the chemical structure 
[2] [3] as well as the thermal and mechanical behavior of the matrix [4] [5] and 
the interface [6] [7]. Thus, water absorption in polymer matrix composite mate-
rials is a phenomenon that has a high industrial interest because environmental 
conditions influence the integrity of facilities during operation reducing its ser-
vice life. The oil industry regularly uses composite pipes made of glass fiber 
reinforced (anhydride) epoxy (GFRE). GFRE has many advantages specially in 
injection lines in mature fields where transported fluids are aqueous based and 
contain a high percentage of salts, which restricts the use of metallic materials 
due to the impact of corrosion processes. However, the operating temperature 
may reach values that activate polymeric matrix chemical degradation processes 
with fatal consequences over relatively short time periods (1 to 5 years) [7]. 

When composite materials based in polymer matrices of low hydrophilicity 
but containing hydrolysable groups are exposed to humid and high temperature 
conditions, failure is a consequence of matrix hydrolysis. Water absorption be-
havior is then the result of simultaneous mechanisms: diffusion and chemical 
reaction. 

The water diffusion process in thermoset polymers rarely presents the classic 
behavior predicted by Fick’s Law. The description of this process from gravime-
tric monitoring data allows observing different stages. An early linear behavior is 
observed in the mass uptake as a function of the square root of elapsed time, 
which conforms to the classic model. A second stage with a decreasing slope or a 
pseudo-equilibrium behavior can be observed afterwards. This second step is 
followed by a further increase in water content that may either reach a second 
equilibrium or increase indefinitely during the studied time span [8]. 

In the literature, different models that attempt to explain this phenomenon 
are presented. One of the most commonly used models is the Langmuir model 
proposed by Carter and Kibler [9], in which the water molecules absorbed by the 
material may be distinguished into two classes: linked and non-linked molecules. 
Linked water molecules refer to water linked to highly hydrophilic sites in the 
epoxy matrix by low-energy hydrogen bonds. Non-linked water molecules refer 
to water molecules that may be freely transported within the epoxy matrix. For 
each case, there is a probability that water molecules transform from one state to 
another as explained by Carter and Kibler [9]. 

For epoxy-anhydride matrices, the hydrolytic degradation reaction plays an 
important role since the material contains hydrolysable groups [10]. With in-
creasing temperature, hydrolysis is enhanced and consequently is the degrada-
tion of the composite. The hydrolysis changes the polymer structure decreasing 
its cross-linking density and forming new polar groups (alcohols and carboxyl 
acids). These changes also affect the water diffusion behavior. Both mechanisms 
are coupled. In addition, there are other consequences associated with the hy-
drolytic degradation. When the chemical reaction advances, small molecular 
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weight species resulting from the hydrolytic process may lead to osmotic crack-
ing. This extremely complex behavior makes it more difficult to theoretically 
model the coupled phenomena for predicting service life. 

In order to mitigate the effects of the water diffusive processes in the deteri-
oration of in-service behavior of epoxy matrix composites, the use of chemically 
modified nanoclays as an additive has been proposed. Many authors have found 
a considerably improvement in barrier properties of epoxy systems containing 
small amounts of clay as reinforcement [11]-[18]. The effect on water absorption 
behavior of adding bentonite and chemically modified bentonite to an epoxy- 
anhydride system was studied in a previous work [1]. It was found that epoxy- 
anhydride systems containing small amounts of chemically modified bentonite 
show higher water resistance than bentonite-epoxy composites and neat matrix. 
Moreover, the addition of 3 wt. % modified bentonite slows down the degrada-
tion process allowing the extension of the service life up to twenty years. 

The aim of this work is to create an Artificial Neural Network (ANN) model 
to understand and to predict the influence of modified and unmodified bento-
nite addition on the water absorption behavior of epoxy-anhydride systems for 
its use in fiber-reinforced composites. 

For this purpose, ANN based modelling is proposed as a different and very 
accurate approach for reproducing the physical behavior of epoxy resins when 
immersed in water. ANNs are an interesting class of computing programs that 
mimic the intelligence of biological cognitive systems. The individual computing 
units of these programs are called neurons and consist on a processing compo-
nent that receive different inputs and deliver an output value by means of a 
weighted integration and a sigmoid-shaped transfer function. Training consists 
on calculating the proper interconnection weights and biases so that the network 
can associate the inputs with their corresponding outputs with minimum global 
error. 

The ANN modeling approach is very suitable for modelling nonlinear multi-
variate interrelationships on noisy systems [19] [20] and has been used in the 
recent years by many researchers to model and predict properties of several ma-
terials [21]-[26]. This modeling approach can take advantage of the learning 
ability of ANNs, as they can build a model directly from experimental results 
without exactly knowing the underlying physics. Another important feature of 
ANNs is their good response from incomplete or noisy data, thus allowing a fair 
understanding of new systems or novel cases [21] [27] [28]. 

2. Experimental 
2.1. Materials and Methods 

The materials studied in this work were prepared using an epoxy resin based 
on diglycidyl ether of bisphenol A (DGEBA, DER 383, Dow Chemical Co.) and 
a methyltetrahydroftalic anhydride (LINDRIDE 36K, Lindau Chemicals, Inc.) 
as a curing agent. In order to obtain the epoxy clay composites, a commercially 
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available bentonite clay was used (provided by Minarmco S.A., Argentina). In 
addition, a tributylhexadecylphosphonium bromide (Sigma Aldrich) based 
modification was performed in our labs. Details about bentonite chemical 
modification can be found in reference [29]. Samples of epoxy-anhydride, epoxy- 
anhydride containing 1 and 3 wt% bentonite and epoxy-anhydride containing 1 
and 3 wt.% modified bentonite were prepared. Hereinafter, these systems are de-
noted as B0, B1, B3, BM1 and BM3 respectively. The epoxy-anhydride system 
was prepared using stoichiometric ratios of the epoxy resin and the hardener; 
details about samples preparation are reported in reference [1]. 

2.2. Water Absorption 

In order to study water uptake, rectangular samples of B0, B1, B3, BM1 and BM3 
(55 × 12 × 1 mm3) were immersed in distilled water at three different tempera-
tures: 22˚C, 80˚C and 93˚C. The samples were removed from water, dried with a 
tissue paper, weighed in an analytical balance, and the returned into water at 
regular intervals of times. The water uptake was determined using the following 
expression 

( )Mass change % 100t i

i

m m
m
−

= ×                    (1) 

where tm  is the sample mass at time t, and im  is the initial sample mass. 
Epoxy clay composites were studied for long exposure times (900 days or 7.8 107 
s). 

2.3. Model Description 

In this study two different ANNs were implemented, one for the commercial 
bentonite system and another for the chemically modified bentonite, both hav-
ing the same identical architecture. The ANNs trained in this study were fully 
connected feed-forward networks with two layers of hidden neurons. A two 
hidden-layers architecture was selected to better represent the nonlinear nature 
of the problem. The input layer consisted of three input nodes representing the 
clay content, temperature and immersion time and the output layer consisted of 
one output node representing the water uptake. Therefore, the model represents 
a mapping associating these three factors with the water absorption of the rein-
forced epoxy resin. The optimal number of neurons in each hidden layer was 
selected by sequentially adding new neurons and minimizing the overall fitting 
error and correlation coefficient. As a result, five hidden neurons in each hid-
den-layer were used. A Levenberg-Marquardt Back-Propagation (LMBP) su-
pervised training algorithm was used, as it is one of the fastest existing back- 
propagation algorithms and is highly recommended as a first-choice supervised 
algorithm, although it needs more memory than other available algorithms. 

A total of 60 data sets containing more than 4600 points were used in this 
study (around 2300 for each type of clay). Each data point consisted of the fol-
lowing parameters: a) clay content (%); b) immersion time (s); c) temperature 
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(C); d) water absorption (%). The first three parameters were mapped to the in-
put neurons and the remaining parameter was mapped to the output neuron. 
Available experimental data was randomly distributed into training, validation 
and testing sets. Following literature recommendations, 70% of the data was 
used in the network training process, 20% in network validation and the re-
maining 10% in testing. As result, a correlation coefficient greater than 0.96 was 
obtained. The trained neural network architectures were applicable within the 
experimental range. 

In order to prevent distortion of the significance of each factor, input data was 
normalized into [−1, 1] dimensionless interval. Finally, the ANN results (output 
layer) were mapped by the inverse linear operation to the output (water absorp-
tion) layers (denormalization operation). 

In order to avoid overfitting and improve generalization ability of the trained 
ANNs, two strategies were simultaneously applied. The first simple method con-
sisted in averaging the results of multiple ANNs trained with the same experi-
mental data sets, but with different random data partitioning (training, validat-
ing and testing). The second method is called regularization and consisted in 
continuously modifying the performance function during network training and 
thus modernizing calculated weights and biases. 

3. Results and Discussion 

The experimental data obtained from gravimetric tests for the five systems stu-
died at different temperatures are shown in Figures 1(a)-(e). Absorption tests 
results are presented as a function of the square root of immersion time and 
sample depth (t0.5/e[=] min0.5/mm). The trained ANNs were used to fit experi-
mental values and to predict interpolated values. The corresponding modeled 
results are also presented in Figures 1(a)-(e). As expected, ANNs have an ex-
ceptional ability to fit multivariate nonlinear systems. A very accurate fitting was 
obtained. 

The completely trained ANN can be further used to build full Tempera-
ture-Time-%Absorption maps for the five systems analyzed (Figures 2(a)-(e)). 
This allows comparing the global behavior of the systems under novel and un-
studied circumstances. 

The epoxy-anhydride water uptake behavior has been studied previously in li-
terature and its hygrothermal aging is described as the result of coupled me-
chanisms: diffusion and hydrolysis [10] [30]. Water enters into the polymer by 
diffusion and then it may react with the ester groups that are present in the 
epoxy-anhydride network. Each hydrolysis event is a chain-scission process and 
consequently, as the reaction goes on, species of lower molecular weight appear 
within the network. These species are alcohols and carboxyl acids resulting from 
the hydrolysis. However, when the low molecular weight species concentration 
exceeds its solubility in the epoxy network they demix forming domains (or 
vacuoles) with a high concentration of small species. It induces a steep increase 
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Figure 1. Gravimetric data (dots) and model (line) for water absorption behavior of 
epoxy-anhydride composites immersed in water at 22˚C, 80˚C and 93˚C: (a) B0; (b) B1; 
(c) B3; (d) BM1; (e) BM3. 

 

in water intake originated by osmotic pressure until these domains collapses 
and the subsequent leaching of low molecular weight species takes place. The 
last step is observed in gravimetric data as a drastic decrease in material 
mass. 

The ANN model allows identifying critical points like the precise temperature 
at which a particular system’s water uptake goes beyond a predefined threshold, 
or which system will resist an immersion longer than a particular time. In order 
to explain water absorption behavior, the whole time-temperature-absorption 
maps were analyzed and the point of maximum absorption was indentified. The 
main critical point (P1) is the absorption maximum, which occurs before mass  
drops down ( d d 0abs t = ). Figure 3 shows P1 mass uptake vs. time in the whole 
temperature range. 
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Figure 2. Temperature-time-%absorption maps for the five systems analyzed: (a) B0; (b) 
B1; (c) B3; (d) BM1; (e) BM3. 

 
Considering time-temperature-absorption maps for modified and unmodified 

bentonite samples a first observation can be highlighted. Although ANN model 
was trained using 25, 80 y 93˚C experimental data, within the time frame ana-
lyzed (900 days - 1 mm thickness) a sudden weight reduction can be observed 
above 55˚C - 65˚C. This model prediction agrees with the limit operation tem-
perature recommended for glass fiber epoxy-anhydride pipes. 

Figure 3 show time and mass increase of the critical point (P1) which deter-
mine the catastrophic degradation generated by the sudden crack growth pro-
duced by osmotic pressure ( d d 0abs t = ). As it was pointed earlier, in the 
time-frame studied the critical point P1 exists above 55˚C - 65˚C, below this 
temperature hydrolysis is slow enough to be neglected. Figure 3 clearly shows 
the way in which time-to-catastrophic-failure changes with temperature. The 
transition points predicted by ANN for different systems can be adequately fit-
ted by a linear first order equation. A linear relationship between time-to-failure 
and temperature is common to modified and unmodified bentonite samples as 
well as neat epoxy samples. Moreover, the slope is virtually constant (13.55 ± 
0.21) even though BM samples show extended times. The fact that the B, BM 
and neat samples present the same slope is consistent with interaction energy 
(Hs) reported previously [1]. Since water-network interaction is not modified by 
adding neither bentonite nor modified bentonite, the time needed to reach the 
pressure required for instable crack propagation does not change either. The ex-
tension in time shown by TBHP-bentonite samples was explained in a previous 
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Figure 3. Time required to reach the maximum mass change (%) and maxi-
mum mass change (%) as a function of immersion temperature. 

 
work [1], the nano-scale morphology obtained in TBHP-bentonite composites 
decreases the concentration of water molecules in contact with network back-
bone, which was confirmed by a smoother Tg versus mass uptake decrease re-
ported in previous publications [1]. The decrease in water-reactive site concen-
tration, produces a reduction on the hydrolysis rate, and extends the service life. 

Figure 3 shows stronger differences in mass uptake at the critical point (P1). 
While BM samples mass uptake remains practically constant between 60˚C and 
95˚C, neat samples (B0) mass uptake grow considerably. ANN prediction allows 
explaining how modified bentonite extends service life according the epoxy- 
anhydride failure model previously described. Organic modifier would locally 
increase the miscibility of low molecular weight species. Then, a lower number 
of vacuoles are formed decreasing the amount of water intake due to osmotic 
pressure. However, each vacuole will become a propagating crack once the in-
ternal pressure reaches the critical value. A lower vacuoles number is not only 
responsible for the decrease in mass uptake but also explain the milder falls 
down after maximum. Figure 4 shows the mass uptake rate after failure, BM3 
present a 50 to 70 times lower rate than B0. 

4. Conclusions 

The present study reaffirms that ANN methodology can be used to simulate the 
problems that are not easily quantifiable via linear operations and when there is 
a lack of subjacent theoretical model to explain the behavior of the system. 

Full time-temperature-absorption maps were built based on model results 
which allowed an excellent prediction of the system’s behavior over non-tested 
conditions. The model also allowed identifying critical operation points like the 
temperature at which the water uptake goes beyond a predefined threshold, or 
which system will resist an immersion longer than a particular time. 
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Figure 4. Mass uptake rate after failure (103) as a function of immersion temper-
ature for materials B0 and BM3. 

 
Predictions allow understanding how the modification of bentonite could de-

lay hydrolisys-related failure of composites. 
The information extracted from the use of the developed model will be of 

critical importance to better application of glass fiber reinforced epoxy compo-
site materials in industrial applications. 
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