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Abstract 
Polypyrrole/porphyrin nanohybrid (PPy/Tpp(OH)4 nanohybrid) have been 
synthesized through a self-assembled approach, and the as-synthesized 
PPy/Tpp(OH)4 nanohybrid are characterized by Fourier-transform infrared, 
X-ray photoelectron spectroscopy, Raman spectroscopy, thermogravimetric 
analysis, Ultraviolet-visible absorption, scanning electron microscopy, and 
steady state fluorescence spectroscopic techniques. Formation of the 
PPy/Tpp(OH)4 nanohybrid dramatically improved the solubility and proces-
sability of the PPy-based nano-material. The nonlinear optical (NLO) proper-
ties of PPy/Tpp(OH)4 nanohybrid were measured by Z-scan at 532 nm with 
nanosecond laser pulse, the results indicating that PPy/Tpp(OH)4 nanohybrid 
exhibits a enhanced NLO property in comparison with the benchmark PPy 
and Tpp(OH)4 due to a combination of mechanisms. 
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1. Introduction 

Optical limiters are a kind of materials which could help to protect naked eyes 
and photoelectric optical systems against the hostile lasers and attenuate the in-
tensity of these lasers with their unique transient filtering actions (absorptive 
and refractive effects) [1]. Optical limiters could dramatically decrease intense 
incident laser beams and present weaker transmittance at high-intensity light 
while the irradiation pass through the optical limiters linearly under lower light 
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intensities [2]. The nonlinear optical (NLO) performances of conjugated poly-
mers (CPs) including polyaniline [3], polythiophene [4] and polypyrrole [5] 
have been reported extensively in the past three decades, due to their high con-
ductivity, extensive π electron delocalization and architectural flexibility. Poly-
pyrrole and its derivatives do trigger greater attention due to their excellent pro-
cessability, eco-friendly and eminent mechanical property [6]. However, the 
poor solubility and dispersion stability of polypyrrole materials occurred to be 
the first barrier for their application in nonlinear optical field [7]. Many efforts 
have been putted to solve this urgent issue, and one of the most effective me-
thods is the functionalization of polypyrrole materials with soluble molecules 
[8]. In the present case, we synthesized modified polypyrrole (PPy) with a mod-
ification of previously reported method [9]. 

Porphyrins have continued to be of considerable interest since they were dis-
covered, because they possess many appealing chemical and photochemical per-
formances, such as high thermostability, intense visible absorption bands, 
long-lived excited state, extensive π-electron delocalization, besides, they are 
ubiquitous in nature and they are non-toxic and harmless, commendably [10] 
[11]. Porphyrins have been promising materials for the applications in photo-
dynamic therapy, electrochemical sensors, data storage, optical switching and 
nonlinear optics [12] [13]. The particular π-conjugated structure endows por-
phyrins great NLO properties, and the optical limiting behaviors of porphyrins 
has been widely studied and they have exhibited attractive results, what’s more, 
porphyrins are often used in supramolecular self-assembly [14]. 

In this article, we firstly synthesized a novel PPy self-assembly with 
4,4’,4”,4”’-(porphyrin-5,10,15,20-tetrayl)tetraphenol (Tpp(OH)4) (PPy/Tpp(OH)4) 
nanohybrid in accordance with the previously reported method [15]. The resul-
tant PPy/Tpp(OH)4 nanohybrid was characterized by Fourier-transform infra-
red, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron 
microscopy to ensure the successful formation, while Ultraviolet-visible absorp-
tion and steady state fluorescence were carried out to demonstrate the efficient 
electron and energy transfer between Tpp(OH)4 moieties and PPy units, ther-
mogravimetric analysis was conducted to study the thermostability of resultant 
samples. The NLO absorption properties of PPy, Tpp(OH)4 and PPy/Tpp(OH)4 
nanohybrid were characterized by Z-scan measurements with a 4 ns (fwhm) 532 
nm pulses. It turned out that PPy/Tpp(OH)4 nanohybrid displayed an enhanced 
NLO property compared with the benchmark Tpp(OH)4 moieties and PPy units.  

2. Experimental Section 
2.1. Materials and Instruments 

Pyrrole and p-hydroxy benzaldehyde were purchased from Sinopharm Chemical 
Reagent Co. Ltd. China, ammonium persulfate (APS), trichloromethane, dich-
loromethane, tetrabutyl ammonium iodide (TBAI) as well as dimethyl sulfoxide 
(DMSO) were purchased from Sigma-Aldrich Chemical Co. All chemicals were 
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of analytical reagent grade and used without further purification, unless other-
wise stated. Ultrapure water was used throughout the study. Tpp(OH)4 was syn-
thesis by literature procedures [16]. 

Fourier-transform infrared (FT-IR) spectra were recorded on a Nicolet 5700 
FT-IR spectrometer with KBr pellets in the 400 - 4000 cm−1 region, and all the 
FT-IR samples were prepared as KBr discs using spectroscopic grade KBr at 
room temperature. Ultraviolet-visible (UV-Vis) spectra were recorded using a 
Shimadzu UV-2550 spectrophotometer in the range of 200 - 800 nm. Steady 
state fluorescence spectra were recorded on a Shimadzu RF-5300 PC fluores-
cence spectrophotometer using a Xe lamp as the light source, samples were dis-
solved in dry DMF, filtered, transferred to a long quartz cell, and then capped 
and deoxygenated by bubbling with N2 before measurement. The surface com-
position was determined by X-ray photoelectron spectroscopy (XPS) using a 
Thermo ESCALAB 250 spectrometer with a monochromatic Al Ka X-ray source 
and a charge neutralizer. The decomposition patterns of samples were taken on a 
Q600 SDTTGA/DSC thermogravimetric analyzer under an N2 flow rate of 100 
mL/min at a heating rate of 10˚C/min from room temperature to 800˚C. Scan-
ning electron microscopy (SEM) of sample was measured with FLA650F type of 
the FEI company. Raman spectra of resultant products were carried out with a 
Micro Raman System RM3000 spectrometer with excitation laser wavelength at 
532 nm, the laser light was focused onto samples by using a microscope 
equipped with a 100× objective. The NLO performances of the as-prepared sam-
ples were measured by performing Z-scan measurements using a Nd:YAG laser 
(Continuum, Surelite II) with 4 ns (fwhm) 532 nm pulses, operating at repetition 
rates of 2 Hz [17]. 

2.2. Synthesis of PPy 

PPy was prepared from pyrrole monomer and p-hydroxy benzaldehyde by 
chemical oxidative method at room temperature in the presence of APS (Scheme 
1). A typical procedures as follows: 1.26 mL of pyrrole monomer, 365.30 mg of 
p-hydroxy benzaldehyde and 100.00 mg of TBAI were distilled in 30.00 mL of 
icy trichloromethane ultrapure water solution (volume rate of trichlorome-
thane:ultrapure water = 1:1) in a beaker under magnetic stirring with ice-water 
bath, and then 2.00 g of APS dissolved in 10.00 mL of icy trichloromethane ul-
trapure water solution was added dropwise into the system, and then stirred at 
3˚C with ice-water bath for another 24 h. After the addition of APS solution, the 
initial colorless solution became darker and eventually precipitated as a dark se-
diment at the bottom of the beaker. The solution was filtered and washed with 
ultrapure water and CH2Cl2 several times until the filtrate was clear. The residual 
black solid was dried under vaccum for 48 h at room temperature to afford dry 
PPy powder. 

2.3. Synthesis of PPy/Tpp(OH)4 Nanohybrid 

PPy/Tpp(OH)4 nanohybrid was prepared with Tpp(OH)4, pyrrole monomer and 
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p-hydroxy benzaldehyde by a self-assemble method. A typical synthesis routes as 
follows: 30.00 mg of TBAI was dissolved in 60.00 mL of icy trichloromethane ul-
trapure water solution in a beaker under magnetic stirring with ice-water bath 
(solution A). Solution B was prepared by adding 0.10 mL of pyrrole monomer, 
30.34 mg of p-hydroxy benzaldehyde and 25.26 mg of Tpp(OH)4 dissolved into 
30.00 mL of icy solution A in a beaker under magnetic stirring with ice-water 
bath (solution B). 170.00 mg of APS was dissolved in 15.00 mL of icy solution A 
in a beaker under magnetic stirring with ice-water bath to procedure solution C. 
The B and C solutions were cooled to 3˚C and then mixed B and C quickly in a 
100.00 mL beaker with magnetic stirring at 3˚C with ice-water bath. After stir-
ring for 24 h, the solution was filtered and washed with ultrapure water (20.00 
mL × 4) and CH2Cl2 (10.00 mL × 6) and then dried under vaccum for 48 h at 
room temperature to afford dry PPy/Tpp(OH)4 nanohybrid powder. 

3. Results and Discussion 
3.1. Characterization 

Figure 1 represents the FT-IR spectra of as-synthesized PPy, Tpp(OH)4 and 
PPy/Tpp(OH)4 nanohybrid in the range of 4000 to 400 cm−1, which can corres-
pondingly characterize their chemical structures. In the FT-IR spectrum of PPy, 
all the characteristic peaks of polypyrrole and phenolic hydroxyl group were ob-
served which confirmed the successful formation of PPy, where the peak at 
797.73 cm−1 can be attributed to C-H wagging and the 925.08 cm−1 is assigned to 
out of plane ring deformation [18]. The peak around 1048.62 cm−1 is related to = 
C-H in plane vibrations, 1159.19 cm−1 for C-N bond and 1688.41 cm−1 for C=N 
bond, 1548.10 cm−1 for stretching vibrations of C=C bond, the peak at 3115.18 
cm−1 is ascribed to N-H stretching vibrations [19]. Where the peak at 1281.20 
cm−1 is due to the successful function of phenolic hydroxyl group [20]. Com-
pared to PPy, the FT-IR spectrum of PPy/Tpp(OH)4 nanohybrid displayed two  
 

 
Figure 1. FT-IR spectra of PPy, Tpp(OH)4, PPy/Tpp(OH)4 
nanohybrid. 
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new peaks at 1712.05 and 2358.71 cm−1 that are coincident with those displayed 
by the porphyrin unit [21], conforming the successful functionalization of PPy 
with porphyrin via self-assemble. 

To further characterize the structure features of pristine PPy and PPy/Tpp(OH)4 
nanocomposite, Raman spectrum was carried out with excitation laser wave-
length at 532 nm. In Figure 2, a typical intense tangential resonance absorption 
band (G band) at 1559 cm−1 and a defect band (D band) at 1375 cm−1 was found 
in the spectrum of pristine PPy, which is corresponding to the C=C backbone 
stretching and the ring stretching mode of PPy, respectively [22]. The Raman 
spectrum of PPy/Tpp(OH)4 nanocomposite gives rise to two principal spectral 
bands of interest, observed at Raman shift of 1578 cm−1 (G band) and 1356 cm−1 
(D band), respectively. A comparison between the observed D and G bands for 
PPy before and after modification with Tpp(OH)4 is given in Table 1, compared 
with PPy, the blue-shift of the D band and the red-shift of the G band for 
PPy/Tpp(OH)4 nanohybrid are similar to previous reported functionalization of 
RGO by porphyrins, may result from the electron transfer from Tpp(OH)4 to 
PPy [23]. In the present case, the intensity ratio of the D band to that of the G 
band (ID/IG) for PPy/Tpp(OH)4 nanohybrid of 0.69 is significantly decreased 
than that of PPy (0.79), which is corresponding to the previous work by Wang et 
al. [24]. 

The TGA spectrum was carried out to investigate the thermal stability of  
 

 
Figure 2. Raman spectra for the PPy before and after modifi-
cation with Tpp(OH)4. 

 
Table 1. Raman spectral data obtained for the pristine PPy and PPy/Tpp(OH)4 nanohy-
brid. 

Samples 
Frequency (cm−1) 

ID/IG 
D band G band 

PPy 1375 1559 0.79 

PPy/Tpp(OH)4 1356 1578 0.69 
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as-received PPy, Tpp(OH)4 and PPy/Tpp(OH)4 nanohybrid by temperature 
gravity analysis under an N2 atmosphere. The obtained thermograms have been 
shown in Figure 3. It was observed that PPy exhibits a typical three-step degra-
dation behaviour. In the first step, a soft mass loss (9.7%) was found at 30˚C - 
134˚C, which could be attributed to the evaporation of the moisture and organic 
molecules present in the PPy chains [25]. Secondly, there is no obvious mass loss 
at the temperature range of 134˚C - 230˚C. In the third step, another decompo-
sition (27.8%) was observed at 230˚C - 800˚C, which could be mainly ascribed to 
degradation of the polymer chains [26]. Tpp(OH)4 and PPy/Tpp(OH)4 nanohy-
brid display analogical traces with PPy, the stabilization time (from 180˚C - 
430˚C, 250 min) in the second step of Tpp(OH)4 is longer than PPy (96 min), 
which may attribute to the stable porphine macrocycle of Tpp(OH)4. After the 
self-assemble of Tpp(OH)4, the residue weight of PPy/Tpp(OH)4 nanohybrid is 
heavier than that of pristine PPy, which might ascribe to the function of 
Tpp(OH)4 [27]. 

As shown in Figure 4, the XPS spectrum was carried out to evaluate the ele-
mental composition and the functionality of the PPy, which provides essential 
and useful information for the successful self-assemble functionality of the 
Tpp(OH)4 moieties onto the surface of PPy. All these two samples (PPy and 
PPy/Tpp(OH)4) provide C 1s, N 1s and O 1s peaks in the XPS survey spectra. 
However, the intensity of N 1s peak is stronger than pristine PPy after the func-
tionality of Tpp(OH)4 while the C 1s is weaker than pure PPy, which provide a 
evidence of the successful formation of PPy/Tpp(OH)4 nanohybrid [28]. (The 
enhanced intensity of N 1s peak and the weaker intensity of C 1s of 
PPy/Tpp(OH)4 nanohybrid could be obviously observed in Appendix Figure 
S1). 

The high-resolution C 1s and N 1s XPS spectra of PPy and PPy/Tpp(OH)4  
 

 
Figure 3. TGA curves of PPy, Tpp(OH)4 and PPy/Tpp(OH)4 nanohybrid 
under N2 atmosphere. 
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Figure 4. XPS survey scans of PPy and PPy/Tpp(OH)4 nanohybrid. 

 
nanohybrid were characterized to investigate the bonding state. As is shown in 
Figure 5(A), the C 1s XPS spectrum of PPy displays five components located at 
286.33 eV, 285.30 eV, 284.68 eV, 284.26 eV and 283.77 eV respectively, which 
corresponding to C=N, C-N, C-OH, C=C and C-C/C-H bonds respectively [29]. 
What need to be pointed out that, after the introduction of porphyrin moiety, 
the C 1s XPS spectrum of PPy/Tpp(OH)4 demonstrates five different compo-
nents at 287.74 eV, 285.76 eV, 285.00 eV, 284.39 eV and 283.87 eV in Figure 
5(B), which are assigned to C=N, C-N, C-OH, C=C and C-C/C-H bonds respec-
tively [30], which should be emphasize that, the C=N, C-N bonds of 
PPy/Tpp(OH)4 nanohybrid shows the red-shift of 1.41 eV and 0.46 eV respec-
tively, when compared with PPy. In Figure 5(C), the high-resolution N 1s XPS 
spectra of PPy provide a further evidence about the presence of the porphyrin 
moieties on the surface of PPy [31]. PPy exhibits two peaks at 400.21 eV and 
399.63 eV ascribing to the N atoms of C=N and C-N bonds respectively [32]. In 
completely contrast to PPy, the corelevel N 1s XPS spectrum of PPy/Tpp(OH)4 
nanocomposite (in Figure 5(D)) shows two different peaks located at 400.08 eV 
(the N atoms of C=N bonds) and 399.45 eV (the N atoms of C-N bonds), and 
there is a significantly intensity decrease of the N 1s peak due to the different 
chemical environments [33]. The surface morphological structures for the PPy 
before and after functionality with porphyrin moieties were investigated by SEM 
analysis, the results was exhibited in Figure 6. As shown in Figure 6(A) and 
Figure 6(B), PPy nano-material displays a typical smooth nanosheet SEM image 
with an average diameter of 1 - 2 μm. On the contrary, after the self-assemble 
measures with porphyrin moieties, PPy/Tpp(OH)4 nanohybrid presents a dif-
ferent morphology in the Figure 6(C) and Figure 6(D), the SEM image of that 
PPy/Tpp(OH)4 is rough, which may be ascribed to the functionality of 
Tpp(OH)4 moieties, the dark plots occured in Figure 6(D) were regarded as 
porphyrin units [34]. Furthermore, the average diameter of PPy/Tpp(OH)4  
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Figure 5. The high-resolution C 1s XPS spectra of PPy (A) and PPy/Tpp(OH)4 (B) as well as N 1s XPS spectra of PPy (C) and 
PPy/Tpp(OH)4(D). 

 
nanohybrid aggrandized significantly. From what have been discussed above, the 
conclusion is the PPy/Tpp(OH)4 nanocomposite has been successfully synthe-
sized. 

3.2. Photophysical Properties 

At the aim to explore the interactions between PPy and Tpp(OH)4 units, UV-Vis 
absorption spectrum and fluorescence methods were carried out, as depicted in 
Figure 7 and Figure 8. The UV-Vis absorption spectrum of PPy, Tpp(OH)4, and 
PPy/Tpp(OH)4 nanohybrid in DMSO was depicted in Figure 7. PPy shows a 
strong absorption peak at around 281 nm and a weak absorption peak at 424 
nm. At the same time, a typical porphyrin spectrum of Tpp(OH)4 was displayed 
with a vigoroso Soret band at 420 nm together with four weaker Q bands be-
tween 500 and 630 nm, which are consist with porphyrin analogues [35], be-
cause the effect of PPy absorption at the porphyrin peak positions is relatively  
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Figure 6. SEM images of as-synthesized PPy ((A), (B)) and PPy/Tpp(OH)4 nanohybrids ((C), (D)). 

 

 
Figure 7. UV-Vis absorption spectra of PPy, Tpp(OH)4 and PPy/Tpp(OH)4 
nanohybrid, in DMSO. 

 
weak, the UV-Vis spectrum of PPy/Tpp(OH)4 nanohybrid in DMSO is generally 
semblable to that of Tpp(OH)4 [36], while the Soret band peak of PPy/Tpp(OH)4  

https://doi.org/10.4236/msce.2017.510003


Y. Wang et al. 
 

 

DOI: 10.4236/msce.2017.510003 35 Journal of Materials Science and Chemical Engineering 
 

 
Figure 8. Fluorescence spectroscopic changes observed for PPy, 
Tpp(OH)4 and PPy/Tpp(OH)4 nanohybrid in DMSO with the 
excitation wavelength of 423 nm. 

 
nanohybrid was found at 423 nm with a red-shift of 3 nm, in addition, the inten-
sity of PPy/Tpp(OH)4 nanohybrid is only about 83.2% of that of Tpp(OH)4, this 
provides unambiguous proof for the presence of the porphyrin units on the sur-
face of PPy [37]. 

For the sake of exploring the excited-state interactions of Tpp(OH)4 and PPy 
in the hybrid, fluorescence spectra of Tpp(OH)4, PPy, and PPy/Tpp(OH)4 na-
nohybrid were obtained with the excitation of the porphyrin moiety at 423 nm, 
as shown in Figure 8. The fluorescence of Tpp(OH)4 displays fluorescence fea-
tures with a maximum and shoulder at 662 and 726 nm [38]. Nevertheless, PPy 
exhibits a nearly straight line at the excitation wavelength, which means PPy 
does not show a fluorescence signal. On the basis of this, the fluorescence of 
PPy/Tpp(OH)4 nanohybrid must be from the porphyrin units merely, which 
provided a clear evidence for the occurrence of porphyrin moieties in the hybrid 
[39]. Besides, the steady-state fluorescence spectrum of PPy/Tpp(OH)4 nanohy-
brid shares the same outlines as that of Tpp(OH)4, and is observed to be reduced 
strongly with a 69.6% fluorescence quantum yield, and the quenching of the 
Tpp(OH)4 moieties by PPy may be ascribed to the π-π stacking interactions, 
moreover, the hydrogen bond interactions between PPy and porphyrin units 
might make some contributions to the quenching, demonstrates that the suc-
cessful functionality of PPy. 

3.3. Nonlinear Optical Properties 

1) It has been proved that such polymers with conjugated structures have sig-
nificant NLO performances [40], such as polythiophene and polyaniline, espe-
cially for polypyrrole. Because of its extensive π electron delocalization, poly-
pyrrole displays excellent NLO properties. However, the poor solubility of poly-
pyrrole and its derivatives occurred to be the most dominating obstacle, as we all 
known, porphyrins exhibit outstanding NLO activities due to their macrocyclic 
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conjugate structure [41], besides, as a well soluble organic compound, after the 
introduce of porphyrin moieties, the solubility of PPy/Tpp(OH)4 nanohybrid has 
been improved greatly, therefore, it was of great interests to assess the NLO ac-
tivity of PPy/Tpp(OH)4 nanohybrid. 

2) To get a better insight into the optimizations of the optical limiting effects 
of porphyrins assembled PPy, we measured open- and close-aperture Z-scan of 
PPy, Tpp(OH)4 and PPy/Tpp(OH)4 nanohybrid at 532 nm with 4 ns pulse laser 
irradiation [42], the results were shown in Figure 9 and Figure 10 respectively. 
From Figure 9, it can be seen that Tpp(OH)4 displays a valley-shaped NLO ab-
sorptive performance, it means that Tpp(OH)4 possesses a reverse saturation 
absorption (RSA) [43]. The NLO absorptive effects of PPy before and after mod-
ification of porphyrin exhibit a vividly contrary performance, PPy exhibits a  
 

 
Figure 9. Normalized open-aperture Z-scan dates of PPy, 
Tpp(OH)4 and PPy/Tpp(OH)4 nanohybrid in DMSO at a wave-
length of 532 nm with 4 ns pulse durations. 

 

 
Figure 10. Normalized close-aperture Z-scan curves of PPy, 
Tpp(OH)4 and PPy/Tpp(OH)4 nanohybrid in DMSO at a wave-
length of 532 nm with 4 ns pulse durations. 
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peak-shaped NLO absorptive behavior, it means that PPy possesses a saturation 
absorption (SA), while the open-aperture Z-scan result of PPy/Tpp(OH)4 nano-
hybrid appears a typical valley-shaped NLO absorptive performance (RSA), the 
change of opening direction may be ascribed to the successful formation of 
PPy/Tpp(OH)4 nanohybrid [44]. It is well-known that the depth/altitude of the 
valley/peak in the Z-scan curves was consisted to the extent of NLO activity [45], 
from Figure 9, it is no doubt that the depth of PPy/Tpp(OH)4 nanohybrid was 
longer than the depth of Tpp(OH)4 and the altitude of PPy, which proves that 
the nonlinearity of PPy was tremendously improved by the intervenation of 
Tpp(OH)4. 

Figure 10 exhibits the NLO refractive data for PPy, Tpp(OH)4 and PPy/ 
Tpp(OH)4 nanohybrid at 532 nm with 4 ns pulse laser irradiation under 
close-aperture configuration [46]. All materials displays a pre-focal transmit-
tance maximun (peak) followed by a post-focal transmittance minimum (valley) 
signal, this peak-valley signature demonstrates a negative nonlinearity and cor-
responding to the self-defocusing behavior [47]. Clearly, the differences between 
the normalized transmittance values and valley positions for PPy/Tpp(OH)4 na-
nocomposite are larger than PPy and porphyrin unit. In a word, the as-prepared 
PPy/Tpp(OH)4 nanocomposite exhibits the most optimum nonlinear refraction 
respond in the close-aperture Z-scan measurement, as well. 

In the present case, the Z-scan of PPy, Tpp(OH)4 and PPy/Tpp(OH)4 nano-
composite were measured under nanosecond pulse conditions at 532 nm, in the 
nanosecond regime, PPy showed a typical SA effect, which mainly resulted from 
the superior electric conductivity [5] and excited-state absorption [9], while the 
porphyrin moiety Tpp(OH)4 exhibited a RSA performance, which might arise 
from the excited-state absorption [48], the result was interestingly semblable 
with other chromophore such as phthalocyanine and other porphyrin [49]. After 
the self-assembled synthesis of PPy/Tpp(OH)4 nanocomposite, all of these com-
bination mechanisms will play an indispensable role at strengthening the nonli-
nearity effect of as-synthesized PPy/Tpp(OH)4 nanohybrid. What’s more, in the 
PPy/Tpp(OH)4 nanohybrid system, the donor-acceptor coactions between the 
porphyrin moieties and PPy triggered an intermolecular electron and/or energy 
transfer from the excited-state porphyrin to the ground-state PPy [50], this inte-
raction gave rise to obvious fluorescence quenching and energy release, could 
contribute to the improved nonlinear optical performances of PPy/Tpp(OH)4 
nanohybrid. In addition, these different NLO mechanisms and the characteristic 
structure of PPy/Tpp(OH)4 hybrid material were exhibited in Figure 11. The 
molecular structure and intermolecular coactions could be clearly observed in 
this picture. 

4. Conclusion 

In conclusion, PPy/Tpp(OH)4 nanohybrid has been prepared through a 
self-assembled approach with pyrrole monomer and the porphyrin unit  
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Figure 11. The schematic representation for structure and NLO mechanisms of PPy/Tpp(OH)4 nanohybrid. 

 
Tpp(OH)4, the nonlinearities of PPy/Tpp(OH)4 nanohybrid as well as PPy and 
Tpp(OH)4 are characterized. The self-assembly formation of PPy/Tpp(OH)4 na-
nohybrid was measured by FTIR, UV-Vis absorption, steady-state fluorescence, 
Raman, SEM, TGA and XPS spectroscopic techniques, and all results clearly 
manifest that the successful formation of PPy/Tpp(OH)4 nanohybrid. The for-
mation of PPy/Tpp(OH)4 nanohybrid significantly improves the solubility and 
dispersion stability of the PPy-based materials in organic solvents. The steady- 
state fluorescence study demonstrate that there are tremendous hydrogen bond 
interactions, considerable π-π stack interactions and numerous electron and/or 
energy transfer between porphyrin moieties and PPy units of PPy/Tpp(OH)4 
nanohybrid. The dramatically enhanced NLO property of PPy/Tpp(OH)4 nano-
hybrid has been observed comparing with the benchmark PPy and Tpp(OH)4, 
which can be attributed to a combination mechanisms of PPy and porphyrin 
units, the electron and/or energy transfer also do some contributions. The present 
results should be useful for the development of organic-polymer nanocompo-
sites with desired NLO properties. 
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Appendix 

 
Figure S1. XPS survey scans of PPy and PPy/Tpp(OH)4 nanohybrid. 
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