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Abstract 
Pure and Antimony (Sb, x = 0.01%, 0.02% and 0.03%) doped Bi0.5Na0.5TiO3 electro ceramics were 
successfully synthesized by a conventional solid state reaction route. X-ray diffraction analysis 
showed that a distinct 002/200 peak splitting appears when doping percentage changes from 0.02 
to 0.03, referring to a hexagonal symmetry. The data show the Lorentzian deconvolution of the 
002 and 200 peaks of the tetragonal phase and the 202 peak of the rhombohedral phase. There is 
no significant change in the Raman spectra for the prepared compositions while some additional 
peaks around 151, 281, 585 and 853 cm−1 compared to the peaks observed in BNT. It may be 
possible that a morphotrophic phase boundary (MPB) exists around x = 0.03. Analysis of peak po-
sitions, widths and intensities of Raman spectroscopy study also confirmed the existence of struc-
tural change around x = 0.03 composition.  
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1. Introduction 
The ferroelectric perovskite-type ceramic materials having general formula ABO3 with different cationic distri-
butions at A/B-sites are being investigated due to their important device applications such as in capacitors, pie-
zoelectric ultrasonic transducers, electrostrictive actuators, SAW substrates, etc. [1]-[3]. The doping or composi-
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tional changes in these ceramics can control the high electromechanical characteristics. Bismuth sodium titanate, 
Bi0.5Na0.5TiO3 (BNT) [4] is one of the important ferroelectrics among the lead-free piezoelectric materials with 
large remnant polarization (Pr = 38 μC/cm2), high Curie temperature (Tc = 320˚C), and shows diffuse phase 
transition (DPT) with perovskite structure. In addition to the DPT, two more phase transitions were reported at 
230˚C and at 500˚C - 600˚C. It is observed that the coexistence of the cubic and the tetragonal phases in the 
temperature ranges from 500˚C to 540˚C, and the tetragonal and the rhombohedral phases from 255˚C to 400˚C 
[5]. Several of its crystal structures, including cubic, tetragonal and rhombohedral, have been studied [6] [7] 
over different temperature ranges. 

Relaxor behaviour of BNT depends on substitution in both A-site and B-site [8] and also it has been observed 
that the dopants control the phase transitions, electromechanical properties, relaxor behaviour and the piezoelec-
tric coefficients. Many studies have been performed on BNT to understand the effect of dopants on structural 
and electrical properties of the material. Some studies focus on dielectric properties, while others focus on pie-
zoelectric properties. BNT is a good material for both applications because it can be modified to enhance a spe-
cific desirable behaviour. Both A-site and B-site dopants have been studied to determine how they affect the 
properties of BNT [9]-[14].  

Recently, some investigations have been done on the search for the modifications in the BNT-based systems 
[15]. To improve the piezoelectric properties, a number of BNT-based solid solutions, such as BNT-Bi0.5K0.5TiO3 
[16], (1 − x − y) Bi0.5Na0.5TiO3-xBi0.5K0.5TiO3-yBi0.5Li0.5TiO3 [17], BNT-NaNbO3 [18], BNT-Ba-TiO3-Bi0.5Li0.5TiO3 
[19], Bi0.5Na0.5TiO3-SrTiO3-Bi0.5Li0.5TiO3 [20] and BNT-Bi0.5K0.5TiO3-BaTiO3 [21], Bi0.5Na0.5TiO3-Bi0.5Li0.5TiO3 [22] 
have been developed and studied intensively [23]. The Bi0.5Na0.5TiO3-based piezoelectric substituted by Ba2+ [24] 
[25] and the effect of Ba2+ in BNT ceramics on dielectric and conductivity properties have been studied [26]. 

In this report, Raman spectroscopic studies were done on lead-free antimony doped BNT in order to under-
stand the effect of antimony in their local structure and symmetry. 

2. Experimental Procedure 
Antimony (Sb, x = 0.01%, 0.02% and 0.03%) doped Bi0.5Na0.5TiO3 compositions were prepared using solid state 
reaction route. The stoichiometric amount of Bi2O3, Na2CO3, TiO2 and SbO2 (> 99%) were mixed in wet me-
dium (acetone) for 4 h. The mixed powders were calcined at 900˚C for 4 h by using muffle furnace. Calcined 
powder were structurally analyzed using X-ray diffraction data which were carried out using X-ray diffractome-
ter with Cu Kα (λ = 1.54056Å). Fine calcined powder were pressed into cylindrical pellets of 10 mm diameter 
and 1 - 2 mm thickness under an iso-static pressure of 100 MPa. Polyvinyl alcohol (PVA) was used as a binder. 
The pellet were sintered at 950˚C for 4 hours and cooled down to room temperature. Air dried silver past was 
used for electroding the pellets.  

3. Results and Discussion 
3.1. Structural Study 
Figure 1(a) shows the XRD patterns of Sb (0.0, 0.01, 0.02 and 0.03) doped Bi0.5Na0.5TiO3 ceramics sintered at 
950˚C for 4 h. All the compositions exhibit a pure perovskite structure and no second phases are observed, 
which implies that Sb ceramic has diffused into the Bi0.5Na0.5TiO3 lattices completely. All the reflection peaks of 
the X-ray profile were indexed and lattice parameters were determined using a least-squares method with the 
help of a standard computer programme (POWD) [27]. The values of observed (dobs) and calculated (dcal) inter-
planar spacing, (hkl) indexing and intensity are shown in Table 1. Good agreement between the observed and  

 
Table 1. Lattice parameters of pure BNT and Sb doped BNT samples.                                              

 BNT (Pure) BNT (Sb = 0.01) BNT (Sb = 0.02) BNT (Sb = 0.03) 

Lattice Parameter a = 5.258 
c = 6.502 

a = 5.278 
c = 6.438 

a = 5.256 
c = 6.538 

a = 5.256 
c = 6.578 

Perovskite Cell Volume 157.04 155.023 156.41 158.69 

Relative Density (%) 91 94 95 94.8 
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(a) 

 
(b) 

Figure 1. (a) X-ray diffraction patterns of Sb doped BNT ceramics of different 
compositions; (b) X-ray diffraction patterns of Sb doped BNT ceramics of dif-
ferent compositions in the 2θ range 42 - 50 degree.                          

 
calculated inter-planar spacing (d-values), suggests that the compositions are stabilized in rhombohedral phase. 
The unit cell is selected for which ΣΔd = Δ(dobs − dcal) is minimum. It can be seen from Figure 1 that the pre-
pared compositions have pure phase without any detectable impurity phases. The lattice constants obtained for 
different compositions are shown in table 1 for rhombohedral and hexagonal unit cells. The estimated lattice pa-
rameters are very close to those obtained in earlier reports [28] [29] (JCPDF No-36-0340). Also Figure 1(b) 
shows the XRD patterns of the ceramics in the 2θ range of 44 - 50 degree. A distinct 002/200 peak splitting ap-
pears when doping percentage changes from 0.02 to 0.03, referring to a hexagonal symmetry. To characterize 
the phase compositions in a more quantitative way, the XRD patterns of the MPB compositions in the 2θ ranges 
of 46˚ - 48˚ were fitted as shown in Figure 2. The data shows the Lorentzian deconvolution of the 002 and 200 
peaks of the tetragonal phase and the 202 peak of the rhombohedral phase. These results suggest that the rhom- 
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(a)                                             (b) 

Figure 2. XRD fitting patterns of Sb doped BNT ceramics (a) 0% and (b) 0.03%.                         
 

bohedral-hexagonal morphotrophic phase boundary (MPB) appears in ceramic near to doping level at 0.03% Sb 
content. 

3.2. Raman Spectroscopic Analysis 
Figure 3 represents the Raman spectra of pure BNT and Sb doped BNT with different percentage. There are 
only five Raman-active modes observed in the range from 100 to 1000 cm−1 in agreement with earlier report [30] 
[31]. BNT ceramics with rhombohedral structure presents 13 Raman-active modes (ΓRaman = 4A1 + 9E) due to 
the disorder in A-site related to distorted octahedral [BiO6] and [NaO6] clusters [32]. The first Raman active A1 
(TO1) mode at around (144 cm−1) is related to distorted octahedral [BiO6] and [NaO6] clusters. The second Ra-
man active E (TO2) mode was observed in the regions of 276 cm−1 which is assigned to stretching arising from 
the bonds due to presence of octahedral [TiO6] clusters at short-range. 

The third Raman-active (LO2) mode is related to short-range electrostatic forces associated with the lattice 
iconicity [33]. The (TO3) mode situated at around 541 cm−1 may be due to the (O-Ti-O) stretching symmetric 
vibrations of the octahedral [TiO6] clusters [34]. The (LO3) mode found at 813 cm−1 is due to the presence of the 
sites within the rhombohedral lattice pre containing octahedral distorted [TiO6] clusters [35]. There is no signif-
icant change in the spectra for the prepared compositions. For better observation of the Raman spectra of BNT 
pure and Sb doped BNT (Sb = 0.03%) along with the curves fitted to individual peaks are shown in Figure 4. 
The spectra of BNT (Sb = 0.03%) shows additional peaks around 151, 281, 585 and 853 cm−1 compared to the 
peaks observed in BNT. The occurrence of these bands splitting may be due to structural change at doping level 
0.03% of Sb, which are well in line with the studies of XRD phase analysis. However, from Figure 3 it is possi-
ble to detect that all the Raman peaks are very broad in BNT and Sb doped BNT ceramics. It is believed that this 
behaviour is due to the presence of the disorder structural or distorted octahedral [TiO6] clusters at short-range 
and the overlapping of Raman modes due to the lattice anharmonicity. 

For closer investigation, the variation of full width of half maximum (FWHM) and intensity of individual 
peaks are plotted in Figure 5(a) and Figure 5(b). The mode intensity and FWHM undergo slope change at Sb = 
0.03. The variation of intensity and FWHM of all peaks shows a similar type of anomaly at Sb = 0.03. On the 
basis of these considerations, it is possible to conclude that the rhombohedral-tetragonal phase co-exists at x = 
0.03 which is also observed in the XRD results. 

4. Conclusion 
Pure and antimony doped BNT electro ceramics were successfully synthesized by a conventional solid state 
reaction route. X-ray diffraction analysis showed that a probable structural change at the 0.03% Sb doped with 
the BNT. It may be possible that a morphotropic phase boundary (MPB) exists around x = 0.03. Analysis of  
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Figure 3. Raman spectra of Sb doped BNT ceramic with different compositions.                                      

 

 
(a)                                                   (b) 

Figure 4. Raman spectra of BNT Black line is the experimental data and green lines are the fitting curve versus Sb concen-
tration. (a) For pure BNT while (b) for BNT with 0.03% Sb.                                                      

 

 
(a)                                                         (b) 

Figure 5. Variation of the FWHM and intensity of different modes in the Raman spectra versus Sb-concentration is shown in 
figure (a) and (b) respectively.                                                                             
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peak positions, widths and intensities of Raman spectroscopy study also confirmed the existence of structural 
change around x = 0.03 composition. 
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