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Abstract 
Button cell batteries are used in clocks, thermometers, remote controls, toys and other devices, 
and they are usually discarded in the trash once its useful life is over. Some models of these batte-
ries contain silver oxide. In this paper we propose liquid-liquid extraction as separation process to 
recover the metal. First, silver determination is performed in different models of these batteries 
and leaching with nitric acid is carried out. Affinity study is done between several commercial ex-
tractants for silver. The best performing extractant is the bis(2-ethylhexyl) dithiophosphoric acid 
(D2EHDTPA). Furthermore, a study of the extraction yields as a function of extractant concentra-
tion and time is performed. The distribution isotherm is determined; complex extracted in organic 
phase and stripping conditions have been identified. With the aim of obtaining industrial applica-
tion, a number of steps for a countercurrent process were defined by the McCabe-Thiele method. 
Finally, a study was done in micropilot scale. The results show that it is possible to recover silver 
from this type of waste. 
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1. Introduction 
The batteries and cells are storing devices of electrochemical energy which as released like electricity when 
supplies an external circuit. Depending on how long the charge lasts the cells are classified in primary and sec-
ondary, the primary are based on an irreversible chemical reaction, therefore cannot be recharged and have only 
one life cycle. The secondary cells perform a reversible chemical reaction, therefore can be recharged, and their 
active components are regenerated supplying electrical current in the opposite way to discharge. The battery has 
one single cell and in some cases have several cells interconnected. The used batteries can be seen like side 
product of many electronic and portable devices. The batteries can be classified according to the technology they 
use, their presentation and applications. Such classification is listed on Table 1 [1]. 
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Table 1. Classification and types of primary and secondary batteries. 

Technology 
Primary batteries (disposable) 

Type Uses 

Zinc-carbon (Zn/MnO2) 
Alkaline (MnO2) 

AA, AAA, C, D, 9V, 6V, button  
(several sizes) More table copya Radios, toys, lamps, watches 

Mercury oxide (Zn/HgO) 
Zinc-Air (Zn/O2) 

Silver oxide (Zn/Ag2O) 
Button (several sizes) Video devices and cameras, hearing devices, alarm systems, 

watches 

Lithium (Li/FeS2, Li/MnO2) AA, AAA, C, D, 9V, button (several sizes) Watches, calculators, measuring devices 

 Secondary batteries (rechargeable) 

Nickel-cadmium (NiCd) 
Nickel-metal hydride AA, AAA, C, D. Portable tooling, mobile phones, cameras 

Lithium-ion (Li-ion) Several Mobile phones, computers, video cameras 

Lead Lead-acid (automotive batteries) Automotive batteries, mowers, wheel chairs, bicycles, 
toy cars, tooling, tele-communication systems 

 
From Table 1, it is noticed that many of these batteries contain heavy metals and that the presence of these in 

the environment can cause severe pollution problems [2]. On the other hand, in the last years their content has 
been modified with the purpose to replace or remove them. For example, since 1990 the commercialization of 
mercury oxide button batteries is forbidden in the USA and Canada. However, in Mexico there is no regulation 
for the maximum mercury and cadmium contents in these batteries, on the other hand there are no studies about 
the impact of these contaminants in the environment [3]. Research studies have been focused on leaching [4] [5], 
several have focused on silver and mercury recovering by precipitation [6] [7]. However, few studies have fo-
cused on silver recovery by liquid-liquid extraction. 

2. Methodology 
2.1. Materials and Extractants 
In order to obtain the aqueous phase button type batteries were leached: Sony SR626SW with nitric acid (1 
mol/L) at ambient temperature (22˚C ± 1˚C). The selected extractants are: triisobutylphosphine sulfide 
(CYANEX 471X) [8] [9] and the bis (2-ethylhexyl) dithiophosphoric acid (D2EHDTPA) [10]. Table 2 shows 
the formulas and properties of these extractants. The organic phase is prepared diluting the extractant in kero-
sene. 

2.2. Experimental Procedure and Extraction Yield 
For the extraction equal volumes (10 mL) of each phase are in contact during 30 minutes at ambient temperature 
with constant magnetic stirring, varying concentration of the different selected extractants. At the end of the stir-
ring the phases are divided, the aqueous phase is analyzed by atomic adsorption spectroscopy (AAnalyst 200, 
Perkin Elmer) and the organic phase by matter balance. The extraction yield is defined as follows: 

% Extraction = ([Ag]org/([Ag]aq + [Ag]org) * 100                            (1) 
where [Ag]org is the total concentration of silver in organic phase and [Ag]aq the total concentration of silver in 
aqueous phase, with a rate of aqueous phase (A) with regards organic phase (O) of 1 (A/O = 1). 

2.3. Extraction Time 
In order to define the minimum contact time between phases, an extraction with phases ratio (A/O = 1) is per-
formed at obtained conditions, and in a given time a sample is collected to analyze and obtain the extraction 
yield with regards time. 

2.4. Isotherms of Extraction and Continuous Process 
To obtain the isotherms, the parameters found by experimental procedures are used at different rates of aqueous  
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Table 2. Structures of the extractants to this study and their abbreviations. 

Property 
Extractant 

Cyanex 471Xa D2HDTPAb 

Formula 

  
Molecular weight (g/mol) 234.0 354.6 

Purity (%) 99.0 95.0 
aThe extractant CYANEX 471X was supplied by CYTEC Canada Inc. bThe D2EHDTPA has been obtained either by stripping from a commercial 
zinc salt (Rhein Chemie). 
 
phase in relation to organic phase (A/O), the concentration of silver in organic phase is calculate as follows: 

[Ag]org = A/O ([Ag]aq initial − [Ag]aq)                           (2) 
where [Ag]aq initial is the initial silver concentration before extraction, [Ag]aq the final silver concentration after 
extraction, while A and O are the volumes of aqueous and organic phases respectively. Aiming for industrial 
application, the number of stages required for continuous process is computed by using the McCabe-Thiele me-
thod [11]. Figure 1 shows the system of mixers-settlers with size of 3.8 × 23.3 × 6.5 cm, stirring section of 3.8 × 
3.8 × 6.5 cm. Stirring is made with magnetic stirring and to control flows, pumps and valves are used. 

3. Results and Discussion 
3.1. Effect of Type of the Extractant 
In the leaching process of battery cells using nitric acid (1 mol/L), the concentration of silver is in average 1800 
mg/L, this value is reference to perform the extraction studies. Table 3 lists the extraction yields of each extrac-
tant. 

3.2. Effect of Extractant Concentration 
This study allows to select D2HDTPA and an extraction study is performed taking into account the extract con-
centration with an initial Ag concentration of 1992 mg/L, ratio A/O = 1, ambient temperature (22˚ ± 1˚C) and 20 
minutes of contact, these results are shown in Figure 2. The concentration of 0.02 mol/L of D2EHDTPA is se-
lected, which allows obtaining yield of 80%, in a single extraction stage. 

3.3. Extraction Kinetics 
The kinetic study of extraction is made with an aqueous solution of 60 mL of silver concentration: 1803 mg/L in 
nitric medium (1 mol/L) with 60 mL of an organic solution of extractant 0.02 mol/L. 1 mL of each phase is re-
moved at different times and the concentration is measured by atomic adsorption. Figure 3 shows this study. 

From these results it can be considered that balance is achieved at 15 minutes of contact. With these studies 
the best extraction conditions are found at a concentration of 0.02 mol/L of D2EHDTPA and contact time of 15 
minutes. 

3.4. Equilibrium of Ag Extraction 
Figure 4 shows the experimental isotherm plotted by the dotted line and the continuous line plots the modeled 
isotherm. 

For an initial concentration of 1743 mg/L of silver in nitric medium (1 mol/L) in the aqueous phase, there are 
obtained two theoretical extraction stages, with a rate of A/O = 0.65 and a final concentration of silver of 4.7 
mg/L, the calculation of these steps is shown in Figure 5. 

In the extraction study in the continuous mixer-settler a flow of 5.7 mL/min is used for organic phase and of 
3.7 mL/min for the aqueous phase (A/O ≈ 0.65), after 40 minutes, the residual silver concentration in aqueous 

P
C8H17O SH

C8H17O S
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Figure 1. Laboratory mixer-settler (2 stages). 

 

 
Figure 2. Effect of the extractant concentration on the Ag extraction. Phase 
ratio A/O = 1, 22˚C ± 1˚C. 

 

 
Figure 3. Effect of the extraction time on the Ag extraction. Phase ratio A/O 
= 1, 22˚C ± 1˚C. 

 
Table 3. Extraction of silver with Cyanex 471X and D2EHDTPA. Phase ratio A/O = 1, 22˚ ± 1˚C. 

Extractant Concentration of extractant (mol/L) Extraction of Ag % 

D2EHDTPA 0.1 21.1 

Cyanex 471X 0.1 100.0 

 
phase is of 17.5 mg/L, a value consistent with the expected value of 4.7 mg/L, obtaining yield of global extrac-
tion of 99%, allowing to validate results obtained by McCabe-Thiele method. For desextraction it is proposed to 
use thiourea in sulfuric medium at a concentration rate ranging from 0.2 to 0.5, and contact time of 5 minutes. 
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Figure 4. Isoterm of silver extraction. Aqueous phase: Ag initial 1803 mg/L. 
Organic phase: D2EHDTPA 0.02 mol/L time 15 minutes and 22˚C ± 1˚C. 

 

 
Figure 5. MacCabe-Thiele diagram for the extraction of silver, Ag initial 1743 
mg/L. Organic phase: D2EHDTPA 0.02 mol/L time 15 minutes and 22˚C ± 1˚C 
A/O = 0.65. 

4. Conclusion 
The D2EHDTPA extractant efficiently recovers silver from nitric acid solutions. The best extraction conditions 
are at 0.02 mol/L concentration, ambient temperature (22˚C), with an extraction time of 15 minutes and A/O = 
0.65. The experiments in the continuous mixer-settler, show results that are very similar to those obtained by 
McCabe-Thiele method. For stripping is found that thiourea at a concentration of 0.5 mol/L and duration of 15 
minutes. It is necessary to perform studies about stability and number of cycles for which the extractant can be 
used. 
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