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Abstract 
Thermostamping of thermoplastic matrix composites is a process where a 
preheated blank is rapidly shaped in a cold matching mould. Predictive mod-
elling of the main physical phenomena occurring in this process requires an 
accurate prediction of the temperature field. In this paper, a numerical me-
thod is proposed to simulate this heat transfer. The initial three-dimensional 
heat equation is handled using an additive decomposition, a thin shell as-
sumption, and an operator splitting strategy. An adapted resolution algorithm 
is then presented. It results in an alternate direction implicit decomposition: 
the problem is solved successively as a 2D surface problem and several one- 
dimensional through thickness problems. The strategy was fully validated 
versus a 3D calculation on a simple test case and the proposed strategy is 
shown to enable a tremendous calculation speed up. The limits of applicability 
of this method are investigated with two parametric studies, one on the thick-
ness to width ratio and the other one on the effect of curvature. These condi-
tions are usually fulfilled in industrial cases. Finally, even though the method 
was developed under linear assumption (constant material properties), the 
strategy validity is extended to multiply, temperature dependant (nonlinear) 
case using an industrial test case. Because of the standard methods involved, 
the proposed ADI method can readily be implemented in existing software. 
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1. Introduction 
1.1. Context  

Thermoplastic composites offer new possibilities for the industry. Large struc- 
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tures can be processed rapidly and more cost-effectively than when thermoset 
composites are used, since the latter need to undergo lengthy curing reactions. 
The ability to fuse thermoplastic resins gives new perspectives for forming 
processes. 

The thermostamping process is derived from the metallic materials industry. 
Forming occurs in two steps. In a first step, a semi-finished thermoplastic flat 
laminate, called the blank, is heated above the processing temperature of the 
matrix, usually using infra-red lamps. In the second step, this hot blank is 
quickly transferred to a cooled mould where it is stamped and given its final 
shape [1] [2]. The heating and cooling steps are therefore separated. This results 
in an high production rate that makes this process very attractive for the 
industry. 

Even though metal stamping has been the subject of extensive research work 
in the past decades (see for instance the review by Karbasian and Tekkaya [3]), 
thermostamping of composite materials adds a new level of complexity for two 
resons. Indeed, the mechanical deformation and heat transfer occurring in the 
blanks may result in a complex and unexpected behaviour, especially when 
dealing with textile composite laminates. Nonetheless, accurate modelling and 
prediction of the main physical phenomena involved are prerequisite for an 
efficient process optimization. 

1.2. Heat Transfer in Composite Stamping 

It is well established that the temperature evolution is of major importance in 
this forming process. Keeping this in mind, de Luca et al. [4] or Cao et al. [5] 
proposed to take the blank temperature into account in the mechanical predic- 
tions of thermostamping process. Cao et al. [5] considered only two possible 
state: a high temperature state before the blank comes in contact with the mould, 
and a low temperature state after contact occurs. Based on previous work by 
Pickett et al. [6], de Luca et al. [4] propose a modelling of the through thickness 
heat transfer using finite volume but are only able to predict the average tem- 
perature per ply in the case of a composite laminate. In thermostamping process 
thought, and especially during the stamping step, because of the thermal shock 
between the cold mould and the hot blank, high through-thickness temperature 
gradients may arise. The models by these authors, based on rough approxima- 
tions of the through thickness temperature profiles, cannot accurately describe 
these high through-thickness variations. 

A finer through thickness temperature distribution description was proposed 
by Thomann et al. [7] using a finite difference method. Nonetheless they ne- 
glected the in-plane effects and thus considered only unidirectional through- 
thickness heat transfer. On the contrary, in real industrial processes, in-plane 
diffusion and 3D effects cannot be neglected, especially when boundary con- 
dition sharply evolve (in the vicinity of cavity edges) or in case of curved geome- 
tries. In the present paper, a fine description of the through thickness tempera- 
ture profile, in conjunction with the in-plane transfer is proposed. 



A. Levy et al. 
 

39 

Furthermore, the proposed model is designed to be easily implemented in any 
existing industrial code (such as Plasfib [8], Aniform [9] or PAM-Form [4]). The 
heat transfer problem should then be solved within acceptable computational 
times. With this aim, the full three-dimensional heat transfer problem cannot be 
solved using standard methods. Instead, a model reduction is necessary. 

Considering the composite blank as a thin shell, it is natural to decompose the 
3D temperature solution into a shape function and an in-plane temperature. As 
suggested by Saetta and Rega [10], it writes  

{ } { } { }temperature3 shape temperature .D = ×              (1) 

With this decomposition, the accuracy of through thickness description de- 
pends on the type of shape functions chosen. Within this framework, some 
authors suggested to construct new 3D shell finite elements that integrate this 
through thickness heat transfer effects [11] [12] [13] [14]. Nonetheless, using 
one single shell element in the thickness highly restricts the possible through- 
thickness temperature profile description. Even with the parabolic shape pre- 
supposed by Alves Do Carmo and Rocha De Faria [15] or the higher order 
interpolation proposed by Surana and Abusaleh [13], sharp profiles that arise in 
case of the thermal shocks that occur in thermostamping, will not be accurately 
described. 

Adopting a fine through-thickness discretization therefore seems a more 
flexible approach, though potentially time-consuming. In this idea, Bognet et al. 
[16] wrote the above decomposition as a sum of separated modes  

{ } { } { }( )temperature3 shape temperaturei i
i

D = ×∑  

where the shape functions, themselves, are described with a fine discretization 
involving hundreds of degrees of freedom. In this framework, Bognet et al. 
considered a series of multiplicative shape functions, where each mode i  is the 
product of an out-of-plane function by an in-plane function. The out-of-plane 
function is therefore identical for all the points of the shell. Using this in-plane/ 
out-of-plane separation, a solving strategy using the proper generalized decom- 
position (PGD) was proposed for the elastic problem on a shell like domain. 
More recently, the [17] the method has been extended to nonlinear thermal 
problems. Though possibly efficient in some cases, such a resolution strategy in 
the environments of existing codes might be challenging. In particular, dealing 
with space varying boundary conditions and material non-linearity requires 
complicated developments and a probably a high number of modes. 

1.3. Alternate Direction Implicit (ADI) Decomposition 

In this paper, starting from a very general approximation framework as given by 
Equation (1), we propose a reduced numerical scheme, adapted to thin compo- 
site shells, that preserves the three-dimensional nature of the heat transfer 
problem but takes advantage of the good physical separation between in-plane 
and out-of-plane phenomena, even in case of anisotropic thermal properties. 
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The present method is based on an operator splitting technique that enables to 
simplify a time evolution problem implying several spatial dimensions. The 
general framework of operator splitting techniques always considers an incre- 
mental iterative time integration strategy. Over 50 years ago, Douglas [18] and 
Douglas and Rachford [19] suggested to treat separately, within one time step, 
the different spatial directions. This led to the so called locally one-dimensional 
methods [20] or alternate direction implicit (ADI) methods. Then, numerous 
extension were proposed to reduce the error of the splitting strategy, and to 
validate the convergence and stability of the schemes, in linear and nonlinear 
cases [21] [22] [23] [24]. 

Following these ideas, the present paper proposes an operator splitting 
strategy adapted to the composite shell problems to solve the reduced heat trans- 
fer model. In fine, this results in two separated problems. A solving algorithm 
and numerical implementation is then proposed. The approach is validated 
on a flat plate test case, and its limits are determined with parametric studies. 
The method validity is extended to nonlinear cases with an industrial appli- 
cation. 

2. Methods 
2.1. Initial Heat Transfer Problem 
2.1.1. Domain 
The heat transfer problem is solved in the domain Ω  representing a composite 
laminate blank. It is considered to be an arbitrary curved thin shell, where the 
local positions are located via a curvilinear parallel coordinate system ( ), ,p q z . 
A local frame ( ), ,p q ze e e  can be attached to each point. Coordinate z  enables 
the location of points along the thickness direction, that is to say along ze , the 
normal vector to the shell mid-plane (see Figure 1). In this domain the compo- 
site material is considered to be a continuous medium with effective homogene- 
ous properties. 

2.1.2. Heat Equation  
In the considered heat transfer problem, the conduction is assumed to be 
governed by an anisotropic Fourier law where the local heat flux q  is written 
as:  

T= − ∇q K                            (2) 

where K  is the thermal conductivity tensor, T  the temperature field and ∇⋅  
the spatial derivative operator. In the present work, it is assumed that the 
through thickness direction z  is a principal direction of the thermal conduc- 
tivity. This is a classical assumption in the case of standard composite laminates 
[10] [25]. Thus, in the ( ), ,p q ze e e  basis, it writes  

( )

[ ] [ ]
[ ] ( )( ), ,

, ,

0
0

0 ,
0

0 0

pp pq

qp qq
z p q z

z p q z

K K
K K

K
K

 
  = =   
   

sK
K             (3) 
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Figure 1. Shell like domain Ω  on which the heat transfer problem is solved. ze  de- 
notes the out of plane direction and h  the thickness of the laminate. A typical in-plane 
dimension is 1 mL  . 
 

sK  being the in-plane thermal conductivity tensor and zK  the through 
thickness thermal conductivity. Note that this hypothesis fails in the case of 
complex 3D architectured composites. Defining the in-plane surface gradient 

s∇ ⋅ , Equation (2) can be separated into a through thickness and an in-plane 
fluxes:  

.s s z z
TT K
z

∂
= − ∇ −

∂
q K e                       (4) 

In the case of a flat shell Ω , the coordinate system ( ), ,p q z  is the natural 
cartesian coordinate system ( ), ,X Y Z , and ( )T,s X Y∇ • = ∂ • ∂ ∂ • ∂ . In the 
more complex case of an arbitrary curved shell Ω , the reader should refer to 
Appendix for a proper definition of the surface gradient s∇ ⋅ . This demons- 
tration shows that in the case of a thin shell with small curvature, the operator 

s∇ ⋅  does not depend on the through thickness position z . 
Using this separation, without internal heat source in the domain Ω , the 

energy balance typically writes 

( )p s s s z
T Tc T K
t z z

ρ ∂ ∂ ∂ = ∇ ⋅ ∇ +  ∂ ∂ ∂ 
K                (5) 

ρ  being the density of the composite material and pc  its specific heat. Once 
again, for a flat shell, the surface divergence s X Y∇ ⋅• = ∂ • ∂ + ∂ • ∂ , but for 
curved shell, it is defined in Appendix and it is constant through thickness. 

2.1.3. Boundary and Initial Conditions 
The domain Ω  is bounded by the boundaries latΓ , supΓ  and infΓ , as defined 
in Figure 1. For the sake of simplicity, the lateral boundaries are considered 
insulated:  

lat0 on  T∇ ⋅ = Γn                       (6) 

n  being the outward normal to each surface. Conversely, in order to accura- 
tely model temperature history imposed on the upper and lower boundaries 

supΓ  and infΓ , a mixed boundary condition is assumed: 
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( )

( )

sup
sup imp sup

inf
inf imp inf

on    
.

  on      

z

z

TK h T T
z

TK h T T
z

∂ ⋅ = − = − Γ ∂
 ∂ ⋅ = = − Γ
 ∂

q n

q n
             (7) 

where sup
impT  (respectively inf

impT ) is the temperature imposed on the upper (re- 
spectively lower) boundary and suph  (respectively infh ) is the heat exchange 
coefficient. This mixed boundary condition modelling can account for non ideal 
contact with the mould [11] [12]. In its limit form, it is also suited to model both 
Dirichlet or Neumann boundary conditions. Note that the development pro- 
posed hereunder could seemlessly be conducted with any type of boundary 
conditions (temperature imposed, heat flux, radiating surface...). 

The initial temperature field, assumed given, is defined as: 

( ) ( )init0 , , .T t T p q z= =                       (8) 

2.2. Alternate Direction Implicit (ADI) Model 

This section presents a reduction of the heat transfer problem defined above. 
The reduced boundary value problem is obtained thanks to an intuitive decom- 
position of the temperature field and a thin shell assumption. An implementa- 
tion strategy is then proposed to numerically solve this problem. Here, for the 
sake of clarity, the heat transfer problem is assumed linear (the material pro- 
perties ρ , pc  and K  do not depend on the temperature T ). The extension 
to nonlinear case will be discussed with a test case in Section 3.3. 

2.2.1. Additive Decomposition 
The first step in the proposed model reduction is to seek the solution T  of the 
system of Equations (5) to (8) as a sum of a through thickness averaged field and 
of a fluctuation field:  

( ) ( ) ( ), , , , , , , ,zT x y z t T x y t T x y z t= +                 (9) 

where the operator  
2

2

1• • d
h

z h
z

h −
= ∫                        (10) 

is the through thickness average, h  being the local shell thickness. It is obvious 
that using this additive decomposition, the average field zT  does not depend 
on the z -coordinate whereas the fluctuation field T  has a zero thickness 
average. This decomposition is intuitive and does not necessitate any assump- 
tion. Substituting this decomposition (9) in the heat Equation (5), considering 
constant material properties, and noting that zT  and the operator s∇  do 
not depend on the z -coordinate gives:  

( ) ( ) .z
p p s s s s s s zz

T T Tc c T T K
t t z z

ρ ρ
∂  ∂ ∂ ∂

+ = ∇ ⋅ ∇ +∇ ⋅ ∇ +  ∂ ∂ ∂ ∂ 

 

K K   (11) 

Applying the average operator z⋅  on both hands of this equation leads to 

( )
2

2

1 .
h

z
p s s s zz

h

T Tc T K
t h z

ρ
−

∂  ∂
= ∇ ⋅ ∇ +  ∂ ∂ 



K            (12) 
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By defining the upper and lower inward boundary fluxes  

( ) ( )sup inf2 2 ,z z
T TK z h K z h
z z

∂ ∂
Φ = = Φ = − = −

∂ ∂

 

         (13) 

Equation (12) writes:  

( ) sup infz
p s s s z

T
c T

t h
ρ

∂ Φ +Φ
= ∇ ⋅ ∇ +

∂
K             (14) 

which is the average field heat equation. It rules the in-plane mean field tem- 
perature evolution. Subtracting this mean heat equation from Equation (11) 
results in the fluctuating heat equation:  

( ) sup inf
p s s s z

T Tc T K
t z z h

ρ
Φ +Φ ∂ ∂ ∂

= ∇ ⋅ ∇ + − ∂ ∂ ∂ 

 

K           (15) 

which rules the through thickness temperature fluctuation. 
Assuming a thin plate for which h L , the so called aspect ratio for conduc- 

tion:  
2

1s

z

K hA
K L

 =  
 

                      (16) 

and the dimensional analysis safely leads to  

( ) .s s s z
TT K

z z
 ∂ ∂

∇ ⋅ ∇  ∂ ∂ 





K                    (17) 

Equation (15) then reduces to the fluctuating field heat equation:  

sup inf .p z
T Tc K
t z z h

ρ
Φ +Φ ∂ ∂ ∂

= − ∂ ∂ ∂ 

 

              (18) 

Equations (14) and (18) achieve a decomposition of the initial heat Equation 
(5) in the average and fluctuating contributions. Nonetheless, without further 
assumptions, these two equations are strongly coupled through the source terms 

( )sup inf hΦ +Φ . 
Reduced model. Summing Equations (14) and (18), and adding the term 

0z
z

T
K

z z
 ∂ ∂

=  ∂ ∂ 
, gives  

( ) .p s s s zz

T Tc T K
t z z

ρ ∂ ∂ ∂ = ∇ ⋅ ∇ +  ∂ ∂ ∂ 
K            (19) 

This equation, along with boundary and initial conditions (6), (7) and (8) 
defines the reduced boundary value problem ( P ). In the bulk Equation (19), the 
first spatial differential operator of the right hand side acts on the average parts 
of the temperature field zT  only. The solving of this reduced boundary value 
problem is therefore not straightforward. In the next section, a numerical method 
is proposed to solve this original model. It will also confirm its well-posedness. 

2.2.2. Operator Splitting 
Time discretization. The time evolution problem given by Equation (19) is 
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solved in the framework of a standard incremental iterative time integration 
scheme. At a given time nt , the solution ( ), ,nT x y z  is supposed to be known. 
Then, the solution ( )1 , ,nT x y z+  of the reduced boundary value problem defined 
above is searched at next time step 1 dn nt t t+ = + . 

Any conventional time integration scheme, such as for example explicit or 
implicit schemes, can be used to determined ( )1 , ,nT x y z+  in terms of ( ), ,nT x y z , 
so that the developments detailed hereunder will easily be implemented in such 
software environment. 

Operator splitting. To solve Equation (19), an operator splitting method is 
used. This numerical method enables to solve evolution equations that involve a 
sum of differential operators (see for example [20]). Adopting the splitting ini- 
tially suggested by Douglas [18] and later called locally one-dimensional (LOD) 
method (see for instance [26] and references therein), the two differential opera- 
tors in the right hand side of Equation (19) are considered separately. Note that 
in this linear case, the proposed splitting does not introduce additional nu- 
merical error beside the time integration error [20]. As illustrated in Figure 2, a 
so-called fractional time step method is adopted, where two problems are solved 
successively, each one containing one of the operators:   

• Step 1: solve the following 1D boundary value problem called ( zP ) over one 
full time step dt   

( )

( )

sup
sup imp sup

inf
inf imp inf

  on   

    on   

     at     

p z

z

z

n n

T Tc K
t z z
TK h T T
z

TK h T T
z

T T t t

ρ ∂ ∂ ∂ =   ∂ ∂ ∂ 
 ∂
− = − Γ
 ∂
 ∂ = − Γ

∂
 = =

                (20) 

 

 
Figure 2. Operator splitting strategy. Instead of solving the full evolution equation on one 
time step, each differential operator is addressed successively. The initial condition of the 
second step is the field obtained at the end of the first step. 
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gives the intermediate result ( )1 2 , ,nT x y z+  at the end of the time step 

1 dn nt t t+ = + . 
• Step 2: solve the 2D boundary value problem over one full time step dt   

( )
lat

1 2

0        on    
   at        

p s s s z

s

n n

Tc T
t

T
T T t t

ρ

+

∂ = ∇ ⋅ ∇ ∂
∇ ⋅ = Γ
 = =


K

n                    (21) 

where the initial condition 1 2nT +  is the value of the field computed in step 1. 
The solution of this second step at the end of the time step ( 1 dn nt t t+ = + ) is 
identified to 1nT + . 

Whereas the system ( zP ) defined in step 1 is a well posed unidimensional 
partial differential equation, it is somewhat disturbing that both T  and zT  
appear in the problem (21) defined in step 2. 

ADI model. To ensure the well-posedness of this step 2, the additive decom- 
position (9) is again substituted in system (21). Applying the average operator 

z⋅  gives the in-plane boundary value problem ( mP )  

( )
lat

1 2

. 0 on     

  at     .

z
p s s s z

s z

n nz z

T
c T

t
T

T T t t

ρ

+

 ∂
= ∇ ⋅ ∇

∂∇ = Γ
 = =


K

n                  (22) 

Finally, subtracting (22) from (21) results in  

( ) 1 2 1 2

0p

n n n z

Tc
t

T t t T T

ρ

+ +

 ∂
= ∂

 = = −





                   (23) 

which admits the trivial constant solution:  

1 2 1 2 .n n z
T T T+ += −                        (24) 

Therefore, the fluctuating part T  of this second step is simply the fluctuating 
part of 1 2nT +  computed in the first step. In other terms, this second step does 
not introduce any additional out-of-plane fluctuation to the solution. 

2.3. Numerical Algorithm 

To ensure spatial numerical integration of this problems, a spatial discretization 
has to be adopted. Within the defined shell like domain Ω  a natural extruded 
discretization is assumed. Thus, and without loss of generality, for each in-plane 
discrete position ( ),i ip q  amongst sN  nodes, there is zN  out of plane nodes. 
The dimension of the 3D discretized field is then s zN N× . 

Resolution scheme. 
Following the above additive decomposition and operator splitting strategy,  

( ) ( ) ( ) ( )
( )

1 1 1 2 1 2

, ,1

, , , , , , .n n n nz z
T p q zn

T p q z T p q T p q z T p q+ + + +

+

= + −




       (25) 
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In this sum, 
• 1 2nT +  is obtained by solving the fluctuation 1D boundary value problem 

( zP ) (Equation (20)). This problem is parametrized by the in-plane position 
( ),p q  through the dependency of the thickness h  and boundary conditions 

suph , infh , sup
impT  and inf

impT . Thus, the problem ( zP ) has to be solved sN  times. 
Nonetheless each resolution has the complexity of a 1D boundary value pro- 
blem. Furthermore, each resolution is independent, and can be solved in a 
parallel manner as illustrated in Figure 3. 

• 1 2n z
T +  is obtained as a post-processing by averaging the above 1 2nT +  

field through thickness.  
• 1n zT +  is obtained by solving one single in plane 2D boundary value 

problem ( mP ) (Equation (22)) using the 2D field 1 2n z
T +  as an initial condi- 

tion. At the end of time step dt , it gives the field 1n zT + .  
Expected computational speed up. A conventional in plane discretization of 

an industrial geometry would typically result in 200 200 40000sN ∼ × =  nodes.  
 

 
Figure 3. Resolution strategy. At each time step, the solution is obtained with two 
successive steps: solving a set of sN  fluctuation problems ( zP ) and solving one single 
in-plane problem ( mP ). 
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Additionally, because of the high through thickness temperature gradients 
associated with thermal shocks that occur in thermo-stamping, a fine through 
thickness discretization is required, for instance 50zN ∼ . In this case, the 
number of degree of freedom reaches 62 10s zN N× ∼ × . 

Solving the initial 3D heat transfer problem defined in Section 2.1 using 
standard methods would result in solving a transient problem with 62 10∼ ×  
degrees of freedom and a three-dimensional complexity. It would quickly result 
in unrealistic computational costs. Moreover, in the case of a thin shell domain, 
the proposed mesh, involving sN  in plane nodes and zN  through thickness 
nodes, would result in anisotropic mesh that may lead to numerical errors. 

On the contrary, in the proposed resolution strategy, at each time step, sN  
independent 1D boundary value problem ( zP ) with zN  degrees of freedom 
can be solved in parallel, followed by one single 2D boundary value problem ( mP ) 
with sN  degrees of freedom. This strategy should result in a greatly reduced 
computational cost with a preserved accuracy, which opens the way for integrat- 
ing such approach as sub-routine in industrial simulation tools. Moreover, the 
in-plane and out-of-plane mesh sizes appear in two different problems and thus 
saves from complicated anisotropic meshing techniques. 

Asynchronous time integration. Because of the thin plate assumption where 
h L , the ratio between characteristic in-plane diffusion time pt  and charac- 
teristic through thickness diffusion time zt  writes  

2

.sz

p z

t hA
t K L

 = =  
 

K
 

A  being a dimensionless parameter characteristic of the so-called conduction 
aspect ratio. In a typical industrial case, where 5 mmh  , 0.5 mL  , and 

10s zK K , this ratio drops below 310− . Therefore, the characteristic 
through thickness diffusion time is way shorter than its in-plane counterpart. 
This context justifies the use of an asynchronous time integration scheme, where 
two different time steps are used respectively for the through thickness fluc- 
tuating problem ( zP ) and the in-plane problem ( mP ). 

In practice, the global resolution algorithm presented in Figure 3 is kept, and 
the global time stepping is based on the in-plane requirements ( ( )d pt t= ). 
During each time step dt , the through-thickness problems are calculated by a 
sub-integration with smaller time steps dt′  of the order ( )d zt t′ = . 

3. Results and Discussion 

In this section, first, the proposed separated model and resolution strategy is 
validated on a test case that largely fulfills the thin shell assumption. Then the 
speed up is discussed and the limits of the presented model are investigated with 
rougher cases (thick and curved shell). 

3.1. Validation 

In order to validate the proposed resolution strategy, the temperature fields 
obtained using the presented model are compared with the temperature fields 
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obtained by solving the initial three-dimensional problem, using a commercial 
software (COMSOL Multiphysics 5.0®). 

3.1.1. Test Conditions 
A square flat plate of dimensions 2 20.1 0.1 mL = ×  and thickness 5 mmh =  is 
considered. The origin of the ( ), ,x y z  cartesian coordinate system is taken in 
the centre of the plate. In such a flat plate case, the curvilinear coordinates are 
identified to the cartesian ones: p x=  and q y= . 

Material properties. In this test case, a PA66/glass fibre composite material is 
considered. The homogenized material properties are adapted from the litera- 
ture [27]. The in plane conductivity sK  is considered isotropic and all the 
material properties are supposed constant and are listed in Table 1. 

Boundary and initial conditions. The boundary and initial conditions are 
given in Table 2. The plate is supposed to be initially at uniform room tempera- 
ture init 20 CT =  . 

A different heating condition is imposed on the upper and lower surfaces with 
sup sup

imp impT T≠ . It is representative of the temperature imposed by a hot mould con- 
tact. In order to add in-plane variability to the problem, the exchange coeffi- 
cients suph  and infh  artificially depend on space position ( ),x y  through the 
characteristic gaussian function  

( )
2 2

2, exp 500 .x yx y
L

χ
 +

= − 
 

 

The problem is solved on the time interval [ ]0,20 st = . 

3.1.2. Numerical Parameters 
Numerical methods. The 1D transient boundary value problems ( zP ) and 

the 2D transient boundary value problem ( mP ) are solved using a finite element 
method with piecewise linear interpolation. An implicit (backward Euler) time 
integration scheme is used for all time integrations. The proposed algorithm was 
programmed in MATLAB®, which enables the parallel resolution of the ( zP ) 
problems. 
 
Table 1. The material properties used in the test case are adapted from Faraj et al. [27]. 

Density ρ  31870 kg m−⋅  

Specific heat pc  1 1990 JK kg− −⋅  

In plane conductivity ppK , qqK  1 10.44 Wm K− −⋅  

Out of plane conductivity zK  1 10.53 Wm K− −⋅  

 
Table 2. Initial and boundary conditions used in the test case. 

Initial temperature initT  20 C  

Exchange coefficients suph , infh  ( )5 -2 -110  Wm K ,x yχ⋅ ×  

Imposed temperature sup
impT  300 C  

 inf
impT  250 C  



A. Levy et al. 
 

49 

Mesh. For the reference simulation, a 3D regular mesh made of 3600 hexa- 
hedron is obtained by extruding a regular in-plane 2D mesh that consists of 
60 60×  quadrangular elements. There are thus 30 elements in the thickness, 
and in terms of nodes, 3721sN =  and 31zN = . 

For the proposed separated method, the mesh consists of the same 31 nodes 
through the thickness for the zP  problems and of a triangular regular mesh 
with the same 3721 nodes for the mP  problem. 

The interpolations used in every finite element methods (3D in COMSOL, 2D 
in mP  and 1D in zP ) are all linear, which enables to expect for the same 
precision. 

Time step. Time stepping in the FEM reference simulation follows the 
COMSOL built-in algorithm and is forced not to exceed 0.01 s . The time 
integration scheme is a standard backward difference scheme. On the contrary, a 
constant time step d 0.01 st =  is used in the presented method. In this first test 
case, the time steps for both zP  and mP  problems are the same. 

The convergence of the numerical methods used was first validated on a 
standard one-dimensional test case by comparing the numerical solution with an 
analytical solution given by Jaeger [28]. 

3.1.3. Comparison 
Figure 4 shows the in-plane temperature profiles at three different heights, at 
final time 20 st = . Figure 5 represents the through thickness temperature  
 

 
Figure 4. Temperature profile at 0y =  versus x  for three different heights z  in the 
plate. The plot is at final time 20 st = . The reference 3D finite element solution (plain 
lines) is accurately recovered with the proposed methodology (markers). 
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Figure 5. Temperature profile at 0y =  versus z  for two different in plane positions 
x  and two different instants t . Once again, the 3D finite element solution (plain lines) 

is accurately recovered with the proposed methodology (markers). 
 
profiles in the centre and on the edge of the plate at 0.02 st =  and final time 

20 st = . The figures show a good superposition of the reference field obtained 
with the finite element simulation and the one obtained with the presented 
method. The same numerical artifact (a slight oscillation) is found with both 
methods in the through thickness profile at early time ( 0.02 st = ). This is due 
to the finite element and time discretization that fail to accurately predict 
thermal shocks. this artifact does not influence the later time predictions (see for 
instance Fachinotti and Bellet [29] regarding this issue). 

The maximum residual relative error  

( )
( ) ( )( )3

sup
imp init

max
err DT t T t

t
T T

Ω −
=

−
                  (26) 

is defined, where 3DT  is the field computed with the 3D model in COMSOL 
and T  is the field computed with the presented method. At final time 20 st = , 
the error err  does not exceed 2.5%  which represents around 6.5 C . 

3.2. Efficiency and Model Limits 
3.2.1. Speed up 
The reference finite element simulation was computed in 10000 s  on a desktop 
computer (see Table 3). The solving time per time step was about 5 s . The 
separated form solution was computed on the same computer in no more than 
356 s , with about 0.178 s  per time step. This represents a speed up of over 28  
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Table 3. Computational speeds, the proposed method results in a speed up of over 28 
times. In case of asynchronous time stepping and parallel resolution of zP  problems, 
this speed up even reaches 33 times. 

Test Case CPU time per time step CPU time 

COMSOL 3D 5 s 10,000 s 

Proposed method, synchronous 0.178 s 356 s 

mP  0.022 s  

s zN P×  0.145 s  

Proposed method, asynchronous /  300 s 

 
times. Using asynchronous time steps for mP  and zP  results in an additional 
reduction in the total computational time. Moreover, the zP  problems are 
solved in a sequential manner in this test case. Solving them in parallel results in 
additional speed-up. 

3.2.2. Extreme Cases 
The limits of the proposed resolution strategy are investigated in this section. It 
is reminded that two conditions were required in the model development:   

1) A small aspect ratio for conduction ( ) ( )2 2
s zA h L K= K  such that 

Equation (18) stands. This corresponds to the thin-shell assumption in the case 
where the in-plane and through thickness conductivities are of the same order of 
magnitude.  

2) In the case of a curved shell domain Ω , the radii of curvature should be 
large compared to the shell thickness h . This ensures that the metrics g  given 
in the Appendix do not depend on the z hr=  coordinate.  

Thick part. In the test case presented above, the aspect ratio for conduction 

( ) ( )2 2
s zA h L K= K  is very small ( 210A −∼ ) which explains the good app- 

licability of the thin plate assumption and the presented reduced method. The 
limit imposed by the first condition above was investigated by performing 
additional simulations with larger values of A . With this aim, the plate dimen- 
sion L  was decreased. The plate is still flat and square. As shown in Figure 6 if 
A  stays smaller that 0.01 , the thin plate assumption stands and the error given 

by (26) between the 3D finite element reference solution and the separated form 
solution does not exceed 5% . It would even fall to lower than 1% for typical 
part shape encountered in composites processing ( 310A −≈ ). 

Sharp curvature. In order to investigate the curvature limit imposed by the 
second condition discussed above, a curved shell was considered. The domain 
Ω  is now an L-shape blank of length 0.05 mL = , with two flanges of length 

0.1 mfL =  and a radius of curvature of the mid-plane surface 0.005 mR = . 
The blank thickness 0.005 mh =  is kept (see Figure 7).  

The boundary conditions on the upper and lower surfaces are now such that 
12 2 1

inf sup 10  Wm Kh h − −= = ⋅  and inf sup
imp imp 300T T C= =  . The reference field 3DT  

computed with the full 3D formulation using COMSOL Multiphysics® and the  
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Figure 6. Maximum error between the temperature fields computed with COMSOL 
using a 3D model and with the presented approach vs. aspect ratio for conduction A . 
The error is computed at final time 20 st = . As A  increases, the thin plate assumption 
fails, and the separated form resolution cannot predict 3D effects. 
 

 
Figure 7. Geometry of the L-shape domain considered in the sharp curvature study. The 
sharpness of the curvature is given by the ratio between the radius of curvature R  and 
the flange thickness h . The arrow represents the section along which the profile of 
Figure 9 is plotted. 
 
field T  obtained using the proposed strategy are computed for the time range 

[ ]0,20 st∈ . The through-thickness profile along the first diagonal schematized 
in Figure 7 is plotted in Figure 8. 

As the blank thickness to radius of curvature h R  ratio gets larger, the 
metric tensor g  given in Appendix by Equation (30) depends on the through 
thickness position z . Thus Equation (31) does not stand and the proposed 
decomposition strategy fails at predicting the initial 3D problem. This is the case 
for Figure 8 where the thickness to radius ratio 1h R = . 
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Figure 8. Through-thickness temperature profile at time 20 st =  obtained with the full 
3D finite element solution and the proposed strategy. Case of a strong curvature: 

1h R = . 

 
To identify the limit of applicability, several simulations with varying radius of 

curvature R  were performed. As shown in Figure 9 if h R  stays below 0.2, 
which is usually the case in industrial geometries, the error err  between the 3D 
finite element reference solution and the separated form is below 0.3% .  

3.3. Application to Industrial Nonlinear Case 
3.3.1. Problem Definition 
The proposed ADI resolution method was applied to an industrial case 
representative of the thermostamping process. A 2 mm  thick laminate 
comprised of 16 anisotropic plies stacked on a 0,90

s
  

  sequence is considered. 
The temperature dependant thermal properties are adapted from carbon fibre 
reinforced PEEK and are given in Table 4. The initially hot laminate (at 400 C ) 
comes in contact with a cold matrix and punch set, as illustrated in Figure 10, at 
time 0 st = .  

The 2D heat transfer problem is solved using (i) a full 2D resolution in 
COMSOL (ii) the presented alternate direction implicit (ADI) method, and (iii) 
a series of independant one-dimensional through thickness problems. In the 
ADI method, the mP  problem consists of a 1D homogenized through thickness 
problem. Because of the 0,90

s
  

  stacking sequence, the in-plane thermal 
conductivity tensor sK  is isotropic and is an average of the longitudinal and 
transsverse properties given in Table 4. Nonlinear resolution is performed in 
MATLAB over a physical time of 5 s  with 150 time steps. In COMSOL, the 
exact multiply description is implemented. Using symmetry, only half of the 
geometry is considered and presented hereunder. 

3.3.2. Results and Discussion 
Three-dimensional effect. The problem is nonlinear, and, as visible in Figure 

11, highly three-dimensional at the vicinity of the shear edge (between the  
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Figure 9. Maximum error between the temperature fields computed with COMSOL 
using a 3D model and with the presented approach vs. thickness to radius of curvature 
ratio h R . The error is computed at final time 20 st = . As h R  increases, the metric 
tensor g  becomes not constant through thickness, and the separated form resolution 
fails at predicting 3D effects. 
 

 
Figure 10. Industrial test case geometry and boundary conditions. The problem is solved 
on the multiply laminate domain Ω . 
 

 
Figure 11. Industrial test case. Close up on temperature fields at time 3 s  computed 
with the full 2D resolution (up) and the ADI method (down). The three-dimensional 
effect is partly described with the ADI method. 
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Table 4. Material properties used in the industrial case, representative of carbon fibre/ 
PEEK composite. 

Transverse thermal conductivity 1 1W m K− −⋅ ⋅  30.42 1 10 T C−+ × ×   
  

Longitudinal thermal conductivity 1 1W m K− −⋅ ⋅  34.0 7.5 10 T C−+ × ×   
  

Specific heat 1 1J kg K− −⋅ ⋅  800 2.25 T C+ ×   
  

Density 3kg m−⋅  1600 0.2 T C− ×   
  

 
punch and the matrix). Still the proposed ADI method is able to partly discribe 
this tridimensional effect thanks to the mP  problem that considers in plane 
diffusion. 

Temperature profiles at three different positions at time 3 st =  are plotted 
in Figure 12. 

• Far from the shear edge (cut CC'), the temperature gradient is mostly 
through thickness and the three approaches prove efficient at describing the 
through thickness temperature field.  

• In the centre of the shear edge zone (cut AA'), the ADI method enables an 
accurate recovery of the through thickness profile obtained with the full 2D 
method. On the contrary, at this position AA', the one-dimensional method 
highly overestimates the temperature since it does not account for the nearby 
cold moulds.  

• Similarly in the intermediate region over the matrix (cut BB’), the one- 
dimensional approach under predicts the temperature field. On the contrary, the 
ADI proposed method, enables a partial description of the three-dimensional 
effects ( 5 C±  ). Nonetheless, the method results in overpredicting temperature 
at height 1 mmy = . At this worst position, three-dimensional effects are en- 
hanced, the decomposition methods fails and this artifact (also visible in Figure 
11) cannot be overcome.  

Nonlinearity. In addition to this three-dimensional effect, the proposed in- 
dustrial case is nonlinear, since the properties are temperature dependant. In 
this nonlinear case, the ADI method still proved efficient at predicting the 
temperature field. The efficiency of the method is explained by the very smooth 
non-linearities of the thermal properties used in the test case (see Table 4). 
Given that this is the case for the majority of industrial thermoplastic composite, 
the decomposition ADI method will likely be efficient for other industrial 
materials. 

Multiply. Finally, the industrial test case was performed with a 16 plies 
laminates, with a very harsh 0 ,90  

   anisotropic stacking. The ADI, which 
considers an homogenized in-plane conductivity for the in-plane mP  problem, 
still proves efficient at predicting the thermal fields. In conclusion, as far as the 
heat transfer is concerned, a multiply stacking representative of an industrial 
blank can be considered as homogeneous through thickness. 
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Figure 12. Industrial test. Temperature profiles through thickness at three different 
positions. Plots are at time 3 s  for the full 2D resolution, the ADI method and the 
one-dimensional method. 

3.4. Proposed Integration in a Global Procedure 

Several thermostamping simulation tools exist which handle the mechanics. This 
is the case, for instance, of Plasfib [30], Aniform [31] or PAMForm [4]. In order 
to improve the physical description of these tools, accurate prediction of heat 
transfer is required. Implementation using the presented method, is possible for 
several reasons: 

1) In these tools, the global time integration scheme is incremental and 
therefore follows the same scheme as the one described in Section 2.2.2. The 
iterative time integration procedure is thus consistent between the existing 
mechanical algorithm, and the proposed heat transfer with operator splitting 
algorithm.  

2) The two-dimensional problem mP  is a standard partial differential equa- 
tion. The spatial integration can be integrated using standard numerical 
methods. The FEM tools developed for the other physics (in the above examples, 
mechanics) can easily be reused for this heat equation.  

3) The problems zP  are independent one-dimensional partial differential 
equations. Implementation is straightforward using standard numerical methods 
(finite difference, finite elements).  

4) The through thickness average two-dimensional temperature field zT  is 
readily available as the solution of the mP  problem at each time step. Thus it 
can be used as an input for a rough evaluation of a through thickness equivalent 
mechanical behavior. Furthermore, should one want a finer mechanical descrip- 
tion, the full three-dimensional field is also provided at each time step (Equation 
(25)).  

4. Conclusions 

An alternate direction implict (ADI) solving strategy was proposed to predict the 
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temperature field in thin shells. It is particularly adapted to simulate temperature 
effects in thermo-stamping processes. The main contributions of this work are 
the following: 

• An in-plane/out-of-plane decomposition strategy was proposed. The initial 
3D heat transfer problem can be solved in two successive steps: 

-solving of a series of 1D problems ( zP ) with a fine time step and a good 
accounting of thermal shocks problems.  

-solving of one 2D problem ( mP ). 
The strong potential of this numerical strategy for computational costs reduc- 

tion was clearly highlighted.  
• The applicability of this solving strategy was investigated. Two conditions 

are to be fulfilled for the model to be predictive: 
-a small aspect ratio for conduction dimensionless ratio A  that includes 

both geometrical aspect ratio h L  and anisotropy of the conductivity tensor.  
-a small thickness to radius of curvature ratio h R .  
These two conditions are fulfilled in standard thermo-stamping industrial 

cases.  
• The proposed formulation is such that the problems mP  and zP  are 

classical and can be solved within a standard incremental time integration 
scheme and FEM formulations. Thus, the ADI decomposition can readily be 
implemented in existing industrial simulation softwares.  
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Appendix. Arbitrary Curvilinear Shell Description 

In this Appendix, the surface operator s∇  is defined in the arbitrary curved 
shell domain illustrated in Figure 1. This definition follows the framework 
adopted by Benveniste [32] in the case of a thin interphase. A similar approach is 
fully detailed in three dimensions by Bognet et al. [33] in their appendix. 

A.1. Mid-Surface Description 

Mapping. The reference global cartesian system is denoted as ( ), ,X Y Z  with 
its origin O . First, the mid-surface Γ  of the shell like domain is considered. A 
position ( ), ,G X Y Z=  on this surface Γ  is parametrized in a reference 
dimensionless coordinate system ( ),p q  using the mapping function  

[ ]
( ) ( )

2 30,1:
, , ,p q G X Y Z

 → Γ ⊂


→ =

φ                 (27) 

This mapping φ  is such that p  and q  are dimensionless. 
Basis. The natural basis at point G  consists of the two tangent vectors  

0
,p pp

∂
= =
∂
φe φ  

and  

0
,q qq

∂
= =
∂
φe φ  

where the standard comma notation denotes derivation. 
Metric tensor. The first fundamental metric tensor of this 2D surface writes, 

in the local basis,  

( )0 0

0 0 0 0
0

0 0 0 0
,

.
p q

p p p q

p q q q

 ⋅ ⋅
=  

⋅ ⋅   e e

e e e e
g

e e e e
 

The unit normal to the tangent surface at point G  is also defined as  
0 0

0 0
.p q

p q

∧
=

∧

e e
n

e e
                        (28) 

The second order tensor b , representing the second fundamental form, 
which components are defined as ,ij i jb = ⋅e n , { } { }, , ,i p q j p q∀ ∈ ∀ ∈  gives the 
local mean curvature  

( )1 trace
2

H = b  

and Gaussian curvature  

( )detK = b  

of the surface Γ . 

A.2. Shell Domain Parametrization 

Mapping. A position M  in the thin shell domain Ω  is parametrized as 



A. Levy et al. 
 

61 

described in Figure A1. The projection G  of M  on the mid-surface Γ  is 
first defined. Therefore, OM OG GM= +

  

. G  is parametrized using the map- 
ping (27) and the third dimensionless coordinate 

GMr
h
⋅

=


n  

is defined, where h  is the local thin shell thickness. It quantifies the distance 
between M  and the mid-surface Γ . Thus the coordinate [ ]1 2,1 2r∈ −  is 
also dimensionless. In summary, the shell domain mapping writes  

[ ]

( ) ( )

2 31 10,1 ,
2 2:

, , ,p q r M p q rh

  × − →Ω ⊂   
 → = +


ψ

φ n
 

Because r  is the distance to the mid-surface, the ( ), ,p q r  coordinate sys- 
tem is parallel curvilinear as defined by Benveniste [32]. 

Basis. At point M , the natural basis associated to this curvilinear coordinate 
system consists of the three vectors  
 

 
Figure A1. Illustration of the mapping used to parametrize the shell domain Ω . The 
position ( ), ,M X Y Z=  in the physical Euclidean space is obtained from the dimen- 

sionless coordinates ( ), ,p q r  using: (i) the mid-surface Γ  mapping (the function 

( ): ,p q Gϕ → ) and (ii) the distance from the mid-surface hr . 
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( )
( )

0
, , ,,

0
, , ,,

, .

p p p p r pp

q q q q r qq

r r

r h r

r h r

h

= = + = +

= = + = +

= =

e ψ φ n e e

e ψ φ n e e

e ψ n

            (29) 

Metric tensor. The symmetric fundamental metric tensor g  is described in 
terms of its coordinates ijg  where { }, ,i p q r∈  and { }, ,j p q r∈ . By defini- 
tion  

.ij i jg = ⋅e e  

Because the system is parallel curvilinear, 0pr qrg g= = . Moreover, Equation 
(29) gives  

2 2
rrg h h= ⋅ =n n  

because n  is a unit vector. 
Following Equation (64) in [33], the component ppg , pqg  and qqg  write1  

{ } { }0 2 2 2
, ,2 , , , ,ij ij ij ij i jg g rhb r h c r h h i p q j p q= − + + ∀ ∈ ∀ ∈     (30) 

where the second order tensor c  represents the extrinsic third fundamental 
form. This equation shows that the local metric tensor g  is obtained as a 
correction of the metric tensor 0g  at the mid surface Γ . This correction 
depends on the distance rh  from Γ  and gets larger as the curvature b  
increases. But it also depends on the shell thickness variation ( )2

,ijh  that may 
occur in the case of blanks with ply drops. 

In the case where the radii of curvature of the surface Γ  are large compared 
to the shell thickness h , the second term is negligible compared to the first one. 
Because ijc  is a product including the curvature ijb  (see for instance Equation 
(59) by Bognet et al. [33]), the third term also vanishes besides 0

ijg  when the 
curvature of Γ  tends to 0. If, in addition, the shell thickness variations ,ih  are 
small, the last term can also be neglected. Then, the fundamental metric tensor 
in the shell reduces to  

[ ]
[ ]

0 0
0

0 0
2

2

0
0

0
00 0

pp pq

qp qq

g g
g g

hh

 
     = =   
    

 

g
g                (31) 

and is thus independent of the through thickness position r  in the shell. 
Furthermore, the inverse of this metric tensor is also block-diagonal and writes  

( ) [ ]

[ ]

10

1

2

0
.10

h

−

−

  
  

=  
 
 

g
g                     (32) 

A.3. Surface Differential Operators 

Gradient. Following [34], the gradient of a scalar β  is a first order tensor. 

 

 

1The expression (30) for ijg  differs from that of [33] because, in our case, r h=e n , where h  de-
pends on the coordinates p  and q . 
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In the contravariant basis ( ), ,p q re e e , it writes  

,
1

,

,

p

q

r

β
β β

β

−

 
 

∇ =  
 
 

g  

which can be decomposed, using Equation (32) into an in-plane and an out-of- 
plane term:  

,2

1
s r rh

β β β∇ = ∇ + e  

where the surface gradient sβ∇  writes, in the basis ( pe , qe ):  

( ) 1 ,0

,
.p

s
q

β
β

β
−   ∇ =      

g                     (33) 

In the case where the out-of plane coordinate r  is redimensionalized, as 
z hr= , the normal vector z re h= =e n , and  

, .s z zβ β β∇ = ∇ + e  

As described in section 2.1.2, for a conductivity tensor which has a principal 
direction in the out of plane direction (Equation (3)), the flux in-plane/out-of- 
plane decomposition (4) is recovered. 

Divergence. First, the following scalar magnitude is defined:  

( )0 0det .g = g  

The determinant of g  is thus  

( ) 2 0det .h g=g  

Following [34], the divergence of a vector ( ), ,p q rv v v=v  writes  

( )0

0 ,

1
k

k
v h g

h g
∇⋅ =v  

where the Einstein summation notation is used on the index k . Since 0h g  

does not depend on r , this sum can be decomposed into in-plane and an 
out-of-plane terms:  

,s r rv∇⋅ = ∇ ⋅ +v v  

where the surface divergence s∇ ⋅v  writes, in the basis ( pe , qe ):  

( ) ( )0 0

0 0, ,

1 1 .s p q
p q

v h g v h g
h g h g

∇ ⋅ = +v        (34) 

In the case where the out-of plane coordinate r  is redimensionalized, as 
z hr= , z rv hv=  and , ,z z r rv v= . The divergence then writes  

, .s z zv∇⋅ = ∇ ⋅ +v v  

As given in Section 2.1.2, the heat equation decomposition (5) is recovered. 
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