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Abstract 
The purpose of the current work is the development and application of a new identi-
fication method of material parameters of elastoplastic damage constitutive model 
under large strains. A relationship relating the intrinsic and extrinsic parameters of a 
reference material is built and transformed in equivalence relation. Extrinsic para-
meters concern the shape of their experimental tensile force/elongation curve, how-
ever, intrinsic parameters deal with Swift hardening law coupled with an isotropic 
damage variable. The relationship is carried out from a statistical characterization of 
a material reference (standard-steel E24). It based on multiple linear regression of a 
data set obtained according to a full factor design of numerical simulations of me-
chanical tensile tests. All materials satisfying this equivalence relation belong to the 
same equivalence class. This is motivated by observing that gathered materials must 
behave somewhat like the reference material. The material parameters can be imme-
diately identified by only one task by running the found relationship. The current 
method facilitates the identification procedure and offers a substantial savings in 
CPU time. However it just needs only one simulation for the identification of similar 
behavior instead of the few hundred required when using other methods. 
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1. Introduction 

The optimization of the forming process by plastic deformation leads to cost savings in 
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manufacturing and improvement of the reliability of the formed parts. Numerical si-
mulation of the mechanical behavior of thin shells is used as tool to predict and eva-
luate the risks and failures that maybe encountered in the forming process [1] [2]. 

The material constitutive law must be able to capture anisotropy, strain hardening, 
damage evolution and forming limits. Continuum models for hardening plasticity 
coupled with damage help designers to evaluate manufacturability in the early design 
stage for mechanical parts production. Most of these models are based on a macros-
copic consideration whose formulation is defined within the framework of irreversible 
thermodynamic processes [3] based on state variables associated with the phenomena 
under consideration. 

Two modeling approaches are currently available in literature for the damage as-
sessment. The first approach is based on the void growth rate inside a phase with elas-
toplastic behavior [4] [5]. In this approach damage is represented by a scalar representing 
the void volume fraction; its evolution is linked to the growth of the voids in the ma-
terial. This evolution occurs in three stages: nucleation of microvoids or microcracks, 
then coalescence of microcracks into macrocracks and finally crack growth which leads 
to final failure [6] [7]. In the second approach, a damage variable defined as the relative 
reduction of the transverse section of an elementary representative volume element is 
used [8] [9]. This definition for damage allows for the introduction of effective stresses 
using equivalence principles [10] either by using the equivalent strain energy [4] [5] [11] 
or the equivalent strain [6] [7]. The principle of equivalent strain states that the strain 
in the nominal and effective configuration must be the same; whereas the principle of 
equivalent strain energy states that the elastic strain energy densities are the same for 
the effective and nominal configurations. In both approaches, damage is defined ana-
lytically using constitutive laws able to model the forming process and predict the loca-
lized zones of failure [12] [13] [14] [15] [16]. 

The development of different procedures for the characterization of constitutive laws 
of materials through the use of the finite element method [17] [18] [19] was instru-
mental in the identification of nonlinear constitutive laws with a large number of pa-
rameters. The usual continuum mechanics problem consists in determining the para-
meters of the material model; analytical solutions to such a problem are virtually in-
existent except in very special cases. Nevertheless, the identification of parameters of a 
constitutive law is often treated as an inverse problem. Genetic algorithms and neural 
networks were used for parameter identification of nonlinear models [20] [21] [22]. 
The simplex method was used to determine parameters associated with anisotropy of 
materials in linear problems [23] [24]. 

In some cases a combination of methods were used to reach an optimal solution. For 
the most of these methods, the material parameters were obtained iteratively by mini-
mizing an objective error function involving the constitutive law. The objective func-
tion is an expression of the deviation between experimental results and their counter-
parts obtained through the finite element method [25] [26]; this objective function may 
be defined as the square error between the experimental and numerical values at the 
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same points for fields such as elongation and stress [19] [27] etc. 
Parameter identification methods available in the literature are based on complex 

algorithms and time consuming calculation. In most optimization procedures, the un-
iqueness of the optimal solution is not guaranteed and this may be reflected in the de-
pendence of the optimal solution on the initial guess for the parameters. Furthermore, 
additional constraints must be added in order to take into account certain physical 
phenomena that are mathematically impossible to uncouple. Given the complexity of 
these methods and the size of the experimental data, appropriate computing strategies 
are necessary. 

To the authors’ best knowledge there is no method in the literature which would be 
able to identify material parameters easily and quickly. The aim of this paper is to pre- 
sent a new procedure of identifying material model parameters. It deals with establish-
ing a linear relationship between material parameters and shape indexes extracted from 
the experimental force/elongation (tensile test) curves. This study is limited to the Swift 
hardening law coupled with an isotropic damage variable. 

The idea is to gather materials having an equivalent behavior in the same class ac-
cording to the shape of their experimental tensile force/elongation response. This is 
motivated by observing that gathered materials must behave somewhat like a reference 
material. An equivalence relation is built from a statistical characterization of a material 
reference and then extends to other materials belonging to this class. The equivalence 
relation relates the material parameters and shape indexes of experimental tensile force/ 
elongation curve. 

2. Theoretical Development 
2.1. Constitutive Laws 

In a previous study [28] [29], an isotropic damage law D was proposed based on the 
notion of effective stress and apparent stress, an anisotropy using the Hill48 yield crite-
rion and Swift’s isotropic hardening law coupled with the damage variable D. The 
equivalent stress and damage are given as: 

1) Hill’s equivalent stress σeq de Hill48 as a function of the anisotropy parameters (F, 
G, H, N) of the in-plane stresses 1σ , 2σ  and 12σ : 

( )22 2 2
2 1 2 1 122eq F G H Nσ σ σ σ σ σ= + + − +                 (1) 

2) The damage D as a function of the cumulative equivalent plastic strain εeq: 

eq s

u

D
γε ε

ε
+ 

=  
 

                            (2) 

where: D is the damage variable specified as 0 ≤ D ≤ 1; D = 0 (initial undamaged state), 
D = 1 (final fractured state); εu is the total cumulated plastic strain up to failure; εs is a 
threshold strain level under which no damage is incurred; γ is an exponent that indi-
cates the extent of damage in the material. 

3) Swift’s isotropic hardening law coupled with damage expresses the equivalent 
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stress as a function of the equivalent strain through the Equation (3). 

[ ]( )01
n

eq eqK Dσ ε ε= − +                       (3) 

In order to characterize the material law three sets of unknowns must be determined: 
1) Four anisotropy parameters F, G, H and N in terms of the Lankford coefficients (r0, 

r45 and r90) are evaluated experimentally [28]. 
2) Three parameters from Swift’s hardening law (K, ε0, n) where the equivalent yield 

stress is given in terms of the cumulated equivalent plastic strain as: 

( )0
n

Y eqKσ ε ε= +                         (4) 

3) Three parameters to identify the isotropic ductile damage law γ, εs and εu. 
In this study an original method to identify the last two sets of parameters for har-

dening and damage is presented. 

2.2. Identification Procedure 

A procedure of identification by multiple regression is executed in three steps. In the 
first step data are collected according to a full factorial design. The independent va-
riables consist in virtual material parameters of the constitutive law. Ultimately these 
material parameters are the target of the identification procedure. For each set of the 
virtual material parameters, the constitutive law is defined and then implemented in 
ABAQUS/Standard to simulate a characterization test. The dependent variables are 
represented by a set of shape indexes extracted from the simulated characterization 
tests. 

In the second step, it comes to establish a relationship by multiple linear regression 
between material parameters and shape indexes. In fact, multiple regression provides 
a means to express a dependent variable (z) in terms of f independent variables 
( 1 2, , , fx x x ): 

0 1 1 2 2 f f zz x x x eα α α α= + + + + +                   (5) 

where 0 1 2, , ,α α α   are the regression coefficients with residual error ez. 
In the present study we are interested in the transposed problem stated as follows; 

given p dependent variables ( 1 2, , , pz z z ) and f independent variables ( 1 2, , , fx x x ). 
For the ith variable xi multiple linear regression leads to a linear equation of the form 

( )1 2, , ,i i px g z z z=  : 

0 1 1 2 2i i i i ip p ix a a z a z a z e= + + + + +                  (6) 

This generates a system of f linear equations that can be written in a standard matrix 
form: 

{ } [ ] { } { }**X A Z ξ= +                        (7) 

{ }*X  is the unknown vector of the material parameters (independent variables) to be 
calculated, [ ]*A  is the regression coefficient matrix, { }Z  is the vector of the shape 
indexes (dependent variables) and { }ξ  is the residual vector. 
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The criteria for the minimization of the residual vector { }ξ  of the predictive corre-
lations of relation (Equation (7)) is imposed by the hypothesis test of the analysis of va-
riance (ANOVA) such as the coefficient of determination ( 2R ), the adjusted coefficient 
of determination ( 2

adjR ) and the root mean square error (RMSE). Finally the adjusted 
value { }X  is obtained using Equation (8) with { }rξ  the residual between predicted 
and observed values (9). 

{ } [ ]{ }X A Z=                             (8) 

{ } { } { }*
r X Xξ = −                          (9) 

In the third step the material parameters are identified by substituting in the estab-
lished relation (Equation (8)) the shape indexes extracted from the experimental tensile 
curves of a reference material. 

The accuracy of the identified model is estimated by minimizing the objective func-
tions [30] Fξ  and Uξ , which expresses the discrepancy between the experimentally 
measured and the numerically computed force and elongation for a set of m points. 
The average relative errors for the force and elongation from the tensile tests are pro-
vided by the Equations (10) and (11) respectively. 

2

1

1 i i
m exp num

F ii
exp

F F
m F

ξ
=

 −
=   

 
∑                     (10) 

2

1

1 i i
m exp num

U ii
exp

U U
m U

ξ
=

 −
=   

 
∑                    (11) 

where, Fiexp and Finum are respectively the experimental and calculated tensile force. Uiexp 
and Uinum are respectively, the experimental and the calculated elongations and m is the 
total number of experimental points. 

2.3. Equivalence Relation and Equivalence Class 

Once the identification of the material parameters is successful for the reference material, 
the relation (12) of the regression coefficent matrix derived from relaion (8) can be 
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written as: 

{ }{ } { }{ }( ) [ ]
1T T

x x xX Z Z Z A
−
=                   (12) 

where the couple { } { }( ), xX Z  represents respectively the material parameters and the 
experimental shape indexes of the reference material; than the “equivalence relation (R)” 
over the set 1f p+×   (  is the set of real numbers) is built between two couples of 
characteritics as: 

{ } { }( ) { } { }( ), ,x yX Z R Y Z                    (13) 

where { } { }( ), yY Z  represents respectively the material parameters and the experi- 
mental shape indexes of a new material. The relationship (13) can be expressed as: 

[ ] { }{ } { }{ }( ) { }{ } { }{ }( ) 11 T TT T
x x x y y yA X Z Z Z Y Z Z Z

−−
= =        (14) 

It is easy to prove that the equality relation R satisfies: the reflexive, symmetric, and 
transitive properties. The set { }S  is “an equivalence class”. 

{ } { } { }( ) { } { }( ) { } { }( ){ }1, , ,f p
y x yS Y Z X Z R Y Z+= ∈ ×         (15) 

So the reference material characterizes by { } { }( ), xX Z  is considred as a equivalence 
class. Thereby any other new material, that belongs to this equivalence class shares the 
same attributes. This is motivated by its behavior that must be similar to that of the 
reference material. The material parameters verctor {Y} is immediately calculated by 
the relationships (8). This must be true regardless of the experimental conditions (speed, 
temperature) of the tensile test. 

2.4. Shape Indexes of the Tensile Test Curves 

The shape indexes vector { }Z  is constituted by the specific points characterizing the 
tensile force/elongation curve (Figure 1). 
 

 
Figure 1. Shape indexes of the tensile force/elongation curve. 
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The points A(δA, FA) and C(δC, FC) correspond, respectively, to the maximum force, 
the maximum elongation. E(δE, FE) corresponds to the minimum force of the hardening 
area on the tensile force/elongation curve. After selecting ∆1, ∆2 and ∆3 are tangent lines 
to the tensile force/elongation curve that pass through the selected points A, C and E. 
These three tangent lines are plotted on excel to show the bell shaped tensile curve. B(δB, 
FB) and D(δD, FD) are the intersection points of the tangent lines ∆1 with ∆2 and ∆1 with 
∆3, respectively. The indexes p1(∆1), p2(∆2) and p3(∆3) are the respective slopes of the 
tangent lines ∆1, ∆2 and ∆3. 

3. Experimental Procedure 
3.1. Elastoplastic Anisotropic 

The standard-steel specified as E24 in accordance with the NF A 35-573/4 (France 
Standard Structural steel) (United States Equivalent Grades: A283C and European Un-
ion Equivalent Grades: S235) is chosen as reference material. It is a structural grade 
steel with a minimum yield strength which widely used in the engineering and con-
struction industries. With minimum yield strength, E24 structural steel is a common 
carbon structural steel that can be used in a very broad range of fabrication processes 
and its plate has excellent formability. It is often favored by the engineer trying to 
maximize strength or structure while minimizing its weight. 

The procedure used to identify the material parameters of the anisotropic elastoplas-
tic behavior coupled to ductile damage of the reference material E24 is described in a 
previous works [29]. The parameters concerning the anisotropy and the hardening of 
sheet are given starting from the local rational curves (stress/strain) of the tensile tests 
for three rolling directions (Figure 2), whereas the global predicted curved (tensile 
force/elongation) is used obtained to the best plastic stress flow evolutions model 
representing the behavior of the used material. 

The tensile tests were carried out at a strain rate of 10−3 s−1 at room temperature of 
25˚C. The tensile tests of the 0˚ oriented specimens were taken as reference. Table 1 
presents the anisotropy coefficients of the sheet material E24 determined experimen-
tally using the Lankford coefficients (r0, r45 and r90) [29]. 

3.2. Summary of Finite Element Modeling of the Tensile Tests 

A three-dimensional finite element analysis (FEA) has been performed using the finite  
 

 
Figure 2. Oriented tensile test specimens of standard 
steel E24 (NF A03-151). 
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element code ABAQUS/Standard to investigate the tensile test. The imposed boundary 
conditions on the 0˚ oriented specimens (NF A03-151) include a fixed end on the side 
of the stationary grip and a uniform displacement on the side of the moving grip. The 
finite element type “C3D8R” used, are eight-node three-dimensional continuum ele-
ments with reduced linear integration; the mesh size is 2391 elements. For a given con-
stitutive law, the numerical model returns the computed response as a tensile force/ 
elongation curve. 

3.3. Building of the Database for Analysis 

To build the database for analysis the three steps above are applied on two identifica-
tion phases: hardening phase and damage phase. 

The collected data for hardening phase is made up from a set of simulations based on 
full factorial design. The independents variables consist in a virtual hardening material 
parameters (K, ε0, n) of the uncoupled constitutive law (Swift model D = 0; Equation 
(4)). Table 2 illustrates the values of the levels of the hardening material parameters 
used to generate the full factorial design P3(33) (where 33 = (levels number)factors number). 
These levels were chosen within the variability limits of the hardening coefficients ob-
served for steels. 

Each combination of the full factorial design is used to implement the uncoupled 
constitutive law in ABAQUS/Standard to perform simulation of the tensile test. The 
dependent variables are the shape indexes of the computed tensile force/elongation 
curve of the simulation test. Eight shape indexes are retained for the identification of 
the hardening parameters; they are the coordinates of the points A, D and E and the 
slopes of the tangent lines ∆1 and ∆3 (Figure 1). A relationship is built by multiple li-
near regression for each hardening material parameter in function of the selected shape 
indexes. 

Making use of the shape indexes extracted from the experimental tensile curve, the 
relationships are used to get the results of the parameter identification of the uncoupled 
model of the reference material. 

 
Table 1. Characteristic parameters of standard-steel E24. 

Mechanical properties Lankford coefficients Anisotropy parameters 

Modulus of 
elasticity (GPa) 

Poisson’s 
ratio 

Yield stress 
(GPa) 

r0 r45 r90 F G H N 

210 0.33 195 1.985 1.234 1.637 0.665 0.335 0.406 1.285 

 
Table 2. Levels used for the hardening coefficients. 

Influencing factors Label 
Levels 

1 2 3 

Hardening modulus (MPa) K 550 700 850 

Initial strain (%) ε0 0.575 1.05 1.525 

Hardening coefficient n 0.2 0.25 0.3 
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The coefficients (K, ε0, n) identified above are treated as constants and used to ad-
dress the damage phase of identification. The collected data is made up from a new full 
factorial design P3(33) where the simulations are conducted using the coupled constitu-
tive law (D ≠ 0; Equation (3)). The independents variables consist in a virtual damage 
material parameters (γ, εs, εu). Table 3 illustrates the values of the levels of the damage 
material parameters used to generate the full factorial design P3(33); they are chosen in 
the range available for steels. 

Eight other shape indexes are retained for the identification of the damage parame-
ters; they are the coordinates of the points A, B and C and the slopes of the tangent 
lines ∆1 and ∆2. A relationship is built by multiple linear regression for each damage 
material parameter in function of the new selected shape indexes. 

Finally, the shape indexes extracted from the experimental tensile curve are intro-
duced to the relationships to get the results of the parameter identification of the un-
coupled model of the reference material. 

Figure 3 exposes the identification procedure of the reference material parameters.  
 

Table 3. Levels used for the damage coefficients. 

Influencing factors Label 
Levels 

1 2 3 

Damage threshold (%) sε  0.5 0.625 0.75 

Total cumulated plastic strain (%) uε  50 60 70 

Damage index γ  5 7.25 9.5 

 

 
Figure 3. Identification procedure of the reference material parameters. 
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The procedure involves running ABAQUS/Standard from a python script with input 
from an Excel file which holds the full factorial design. The Excel file can be easily pa-
rameterized and analyzed within the Matlab software. 

Once results have been validated through both Equations (10) and (11), all materials 
verifying the equivalence relation (12) belong to the equivalence class { }S  (Equation 
(15)) constituted by the reference material. 

4. Identification Results of Reference Material 
4.1. Identification of the Hardening Material Parameters 

Twenty seven simulations of tensile test according to the full factorial design P3(33) are 
run. The different combinations of the virtual hardening parameters are defined in ac-
cordance with levels in Table 2. Table 4 shows for each combination introduced to im-
plement the uncoupled constitutive law in ABAQUS, the shape indexes extracted from 
the computed tensile force/elongation curves. 
 
Table 4. The full factorial design of the simulation results in hardening case. 

 
Virtual hardening 

parameters 
Shape indexes of simulation tensile force/elongation 

curves (Hardening case) 

P3(33) 
K 

(MPa) 
ε0 

(%) 
n δΕ 

(mm) 
FE 

(N) 
δD 

(mm) 
FD 
(N) 

δΑ 
(mm) 

FA 
(N) 

p3 
(N/mm) 

p1 
(N/mm) 

1 1 1 1 0.25 1486 2.86 2475 15.37 2459 379 −1.25 
2 2 1 1 0.25 1884 2.93 3152 15.47 3129 472 −1.78 
3 3 1 1 0.25 2271 2.92 3827 15.44 3798 583 −2.27 
4 1 2 1 0.25 1670 3.09 2490 15.34 2470 289 −1.62 
5 2 2 1 0.25 2118 3.21 3181 15.32 3144 359 −3.02 
6 3 2 1 0.25 2561 3.24 3863 15.35 3817 436 −3.76 
7 1 3 1 0.25 1797 3.36 2512 14.76 2483 229 −2.49 
8 2 3 1 0.25 2278 3.38 3197 14.65 3159 293 −3.33 
9 3 3 1 0.25 2757 3.43 3882 14.86 3835 354 −4.08 

10 1 1 2 0.25 1163 3.06 2201 17.32 2280 370 5.55 
11 2 1 2 0.25 1468 3.00 2786 17.41 2900 479 7.97 
12 3 1 2 0.25 1779 3.05 3355 17.38 3522 562 11.62 
13 1 2 2 0.25 1342 3.31 2218 17.28 2292 286 5.31 
14 2 2 2 0.25 1698 3.34 2839 17.22 2916 369 5.57 
15 3 2 2 0.25 2056 3.33 3413 17.31 3540 440 9.12 
16 1 3 2 0.25 1465 3.45 2240 17.28 2304 242 4.64 
17 2 3 2 0.25 1860 3.56 2855 17.16 2931 301 5.54 
18 3 3 2 0.25 2250 3.57 3461 17.18 3557 365 7.09 
19 1 1 3 0.25 909 3.16 1948 17.92 2109 357 10.92 
20 2 1 3 0.25 1155 3.19 2451 17.85 2684 440 15.89 
21 3 1 3 0.25 1390 3.21 3006 17.85 3256 546 17.08 
22 1 2 3 0.25 1079 3.49 1977 17.84 2126 278 10.33 
23 2 2 3 0.25 1367 3.48 2507 17.85 2704 352 13.74 
24 3 2 3 0.25 1653 3.48 3030 17.85 3282 427 17.51 
25 1 3 3 0.25 1197 3.62 1999 17.91 2139 238 9.81 
26 2 3 3 0.25 1520 3.70 2546 17.84 2723 298 12.49 
27 3 3 3 0.25 1839 3.69 3079 17.84 3304 360 15.89 
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As a predictive analysis, the Matlab stepwise linear regression is used to select the 
most important shape indexes that contribute to the hardening parameter variations. 
This stepwise method keeps the number of potential variables to a minimum. The coef-
ficients (a1i) of the regression Equation (16) are expressed in Table 5. 

10 11 12 13 14 15 16 17 3 18 1h E E D D A Ax a a a F a a F a a F a p a pδ δ δ= + + + + + + + +      (16) 

where xh expresses the hardening parameter (K, ε0, n); and (δE, FE, δD, FD, δA, FA, p3, p1) 
are the hardening shape indexes of the tensile force/elongation graph. 

The results show that two shape indexes ( Eδ , DF ) do not have any effect on any one 
of the hardening parameters. It is stated that 99.9%, 94.4% and 95.3% of the variability 
of K, ε0 and n, respectively are explained. These high values of R2 indicate that the 
models of hardening material parameters have a good fit. K, ε0 and n can therefore be 
identified by introducing the shape indexes obtained from the experimental tensile 
force/elongation graph (Table 6) in the reduced Equation (17): 

10 12 13 15 16 17 3 18 1h E D A Ax a a F a a a F a p a pδ δ= + + + + + +             (17) 

The results of the parameter identification are presented in Table 7. In Figure 4, a 
comparison between the tensile force/elongation graph obtained by simulation with the 
uncoupled Swift model and the experimental graph for standard-steel E24 tested at  
 
Table 5. Data analysis results from the P3(33) for the hardening case (standard-steel E24). 

Coefficient K ε0 n 

a10 −18.247 −0.044836 0.087771 

a11 0 0 0 

a12 −0.25195 0 0 

a13 27.393 0.017289 0 

a14 0 0 0 

a15 −3.4644 0 0.0098491 

a16 0.43379 0 0 

a17 −0.40557 0 −7.47E−05 

a18 0 −0.00028498 0.0041557 

R2 99.9% 94.4% 95.3% 

R2adj 99.9% 93.9% 94.7% 

RMSE 2.98 0.000973 0.00962 

 
Table 6. Shape indexes of the experimental tensile force/elongation graph of standard-steel E24 
(at 25˚C and 10−3 s−1). 

E D A ∆3 ∆1 

δE(mm) FE(N) δD(mm) FD(N) δA(mm) FA(N) p3(N/mm) p1(N/mm) 

0.2489 1525.8 3.6949 2172.1 16.3284 2193.8 187.5335 1.7213 



M.-A. Rezgui et al. 
 

741 

Table 7. Parameter identification results of the hardening parameters of standard-steel E24 at 
(25˚C and 10−3 s−1). 

Full factorial design 
Parameters Average error 

K (MPa) ε0 (%) n ξF (%) 

P3(33) 517.56 1.86 0.242 0.20 

 

 
Figure 4. Tensile curves: experimental vs. simulated un-
coupled Swift Model of standard steel E24 (25˚C and 10−3 
s−1). 

 
(25˚C and 10−3 s−1) is presented. The average relative error ξF of 0.2% of the hardening 
portion of the graph (between 0.05 mm and 17 mm) was observed indicating good 
agreement between the two graphs. 

4.2. Identification of the Damage Material Parameters 

The hardening material parameters (K = 517.56, ε0 = 1.86, n = 0.242) identified above 
(Table 7) are used to perform the damage phase of identification. Twenty seven simu-
lations of tensile test according to a new full factorial design P3(33) are run. The differ-
ent combinations of the virtual damage parameters (γ, εs, εu) are defined in accordance 
with levels in Table 3. Table 8 shows all combinations introduced to implement the 
coupled constitutive law (D ≠ 0; Equation (3)) in ABAQUS. It also shows the shape in-
dexes extracted from the damage side of the computed tensile force/elongation curves. 

The coefficients (a2i) of the multiple regression Equation (18) are expressed in Table 8. 

20 21 22 23 24 25 26 27 1 28 2d C C B B A Ax a a a F a a F a a F a p a pδ δ δ= + + + + + + + +     (18) 

where xd is a damage parameter (εs, εu and γ); δA, FA, δB, FB, δC, FC, p1 and p2 are the 
damage shape indexes of the tensile force/elongation graph. 
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Table 8. The full factorial design of the simulation results in damage case. 

 
Virtual damage 

parameters 
Shape indexes of simulation tensile force/elongation curves 

(Damage case) 

P3(33) 
εs 

(%) 
εu 

(%) γ 
δC 

(mm) 
FC 

(N) 
δΒ 

(mm) 
FB 

(N) 
δΑ 

(mm) 
FA 

(N) 
p1(∆1) 

(N/mm) 
p2(∆2) 

(N/mm) 

1 1 1 1 17.71 1950 17.51 2180 14.19 2179 0.37 −1136 

2 2 1 1 17.66 1512 17.59 2176 14.19 2178 −0.64 −10634 

3 3 1 1 17.55 1998 17.28 2177 14.19 2178 −0.17 −669 

4 1 2 1 20.79 1633 20.70 2187 15.51 2191 −0.71 −6095 

5 2 2 1 20.74 1873 20.49 2191 15.46 2191 0.19 −1318 

6 3 2 1 20.63 1891 20.39 2191 15.46 2190 0.18 −1300 

7 1 3 1 24.04 1857 23.45 2195 16.34 2197 −0.27 −582 

8 2 3 1 24.04 1821 23.57 2203 15.90 2196 0.91 −818 

9 3 3 1 23.87 1868 23.23 2203 15.90 2196 0.94 −528 

10 1 1 2 20.41 2000 20.16 2195 16.34 2198 −0.69 −799 

11 2 1 2 20.35 2009 20.11 2200 16.06 2198 0.44 −793 

12 3 1 2 20.30 2009 20.06 2198 16.06 2198 0.22 −813 

13 1 2 2 23.65 1989 23.48 2195 17.44 2201 −1.06 −1228 

14 2 2 2 23.65 1964 23.46 2195 17.44 2201 −1.10 −1205 

15 3 2 2 23.65 1932 23.46 2194 17.44 2201 −1.16 −1387 

16 1 3 2 27.34 1782 26.74 2201 17.44 2203 −0.23 −705 

17 2 3 2 27.28 1754 26.79 2201 17.44 2203 −0.19 −905 

18 3 3 2 27.23 1774 26.70 2200 17.44 2203 −0.30 −809 

19 1 1 3 22.00 1999 21.78 2198 17.44 2202 −0.87 −910 

20 2 1 3 21.89 2012 21.67 2198 17.44 2202 −0.90 −846 

21 3 1 3 21.84 1997 21.62 2199 17.44 2202 −0.81 −953 

22 1 2 3 25.52 1872 25.21 2204 17.44 2203 0.05 −1054 

23 2 2 3 25.47 1828 25.22 2204 17.44 2203 0.04 −1515 

24 3 2 3 25.41 1867 25.14 2205 17.44 2203 0.20 −1251 

25 1 3 3 29.15 1756 28.58 2204 17.44 2204 0.01 −783 

26 2 3 3 29.10 1727 28.68 2205 17.44 2204 0.12 −1145 

27 3 3 3 28.99 1756 28.48 2204 17.44 2204 0.07 −885 

 
The results of the analysis presented in Table 9 show that the damage threshold pa-

rameter εs does not depend of the shape indexes. In fact, it may be considered as a pa-
rameter intrinsic to the material and related to the initial damage in the sheet metal. 
However, none of the five shape indexes (FB, δA, FA, p1, p2) has no effect on damage pa-
rameters. The coefficients of determination show that the linear regression relations 
obtained explain 84.6% of the variability in the cumulated total plastic deformation 
εu(%) and 67% of the variability in the damage index γ. 
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The identification of the damage material parameters εu and γ are now achieved by 
introducing the damage shape indexes, of the experimental tensile force/elongation 
curve presented in Table 10, in the reduced Equation (19). 

20 21 22 23d C C Bx a a a F aδ δ= + + +                    (19) 

The identification results of the damage material parameters are presented in Table 
11. The tensile force/elongation graph computed using the coupled Swift model is 
compared to its experimental counterpart for standard-steel E24 in Figure 5. The av-
erage relative error ξU between the elongations of the two graphs is on the order of 
0.34% confirming the accuracy of the predicted response of the identified model. 

To recap, the coupled Swift model of standard-steel E24 depicted by the anisotropic 
elastoplastic behavior coupled to ductile damage of the reference material E24 is de-
scribed by the constitutive model (Equation (20)). The material parameters are identi-
fied above (Table 7 and Table 11). 
 
Table 9. Data analysis results from the P3(33) for the damage case (standard-steel E24). 

Coefficient εs εu γ 

a20 0.00625 0.62376 −15.294 

a21 0 0.24571 −6.8441 

a22 0 −0.00017488 0.0055914 

a23 0 −0.23597 7.4649 

a24 0 0 0 

a25 0 0 0 

a26 0 0 0 

a27 0 0 0 

a28 0 0 0 

R2  84.6% 67% 

R2adj  82.6% 62.7% 

RMSE 0.104 0.0347 1.14 

 
Table 10. Experimental values of the shape indexes to characterize damage of standard-steel E24 
at (10−3 s−1 and 25˚C). 

C B A ∆1 ∆2 

δC(mm) FC(N) δB(mm) FB(N) δA(mm) FA(N) p1(N/mm) p2(N/mm) 

25.3856 1.59E+03 25.1719 2.17E+03 18.0415 2.19E+03 −3.2085 −2.70E+03 

 
Table 11. Damage parameter identification results for standard-steel E24 at (25˚C and 10−3 s−1). 

Full factorial design 
Parameters Average error 

εs (%) εu (%) γ ξU (%) 

P3(33) 0.625 64.29 7.78 0.34 



M.-A. Rezgui et al. 
 

744 

( )
7.78

0.2420.625
517.56 1 1.86

64.29
eq

eq eq

ε
σ ε

  
 = − +    

+
           (20) 

In Figure 6, it presented the simulation result of the tensile force/elongation of the 
standard-steel E24. It shows the cumulated plastic equivalent strain fields and the Mises 
stress obtained from the numerical simulation. For elongations below 17 mm the cu-
mulated plastic deformation as well as damage remained homogenous over the active 
region of the specimen. Beyond this limit the deformation becomes non-uniform and 
starts to localize in the middle section of the specimen when elongation reaches 21 mm. 
Local necking is observed in the form of a shear band signaling the imminent initiation 
of a macroscopic crack. The agreement between the experimental observations and the 
identified model confirm the reliability of the proposed parameter identification pro-
cedure. 

 

 
Figure 5. Tensile curves: experimental vs. simulated coupled Swift 
Model of standard-steel E24 (25˚C and 10−3 s−1). 

 

 
Figure 6. Plastic equivalent strain and Mises stress fields for the coupled 
Swift model of standard-steel E24. 
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4.3. Determination of the Equivalence Class 

The material parameters of the reference material are now identified this means that 
the equivalence class {S} is now defined. For any other material whose the couple of 
parameters ({ } { }, yY Z ) is in accordance with Equation (14) belongs to the equivalence 
class {S}. This means that the material has a behavior partially similar to the reference 
material and is submitted to the same constitutive model. The material parameters {Y} 
can be identified immediately by the Equation (21) which substitutes the Equation (8). 

{ } [ ]
0

3

1

1

E

D

A

A

s

u

C

C

B

F
K

Fn
Y A

p
p

F

δ
δε

ε
ε

δγ

δ

 
 
 
  
  
  
     = =   

   
   
   
    

 
 
  

                         (21) 

Based on Equation (17) and Equation (19) the matrix [A], where all values are ex-
tracted from Table 5 and Table 9, is defined as: 

[ ]

4

5

4

3

18.25 0.252 27.393 3.464 0.4338 0.4056 0 0 0 0
0.045 0 0.0173 0 0 0 2.8 10 0 0 0

0.0878 0 0 0.0098 0 7.5 10 0.0042 0 0 0
0.0063 0 0 0 0 0 0 0 0 0
0.6238 0 0 0 0 0 0 0.2457 1.7 10 0.236

15.29 0 0 0 0 0 0 6.844 5.59 10 7.4649

A

−

−

−

−

− − − − 
 − − × 
 − ×


 − × −

− − × 

=









 

5. Validation and Discussion 

The validation of this technique has been extended is extended to the identification of 
the coefficients of the coupled Swift model of: 

1) The behavior of standard-steel E24 under other conditions of temperature and 
strain rate 

2) The behavior in tension of a material with characteristics different from stan-
dard-steel E24 such as 1050A aluminum. 

5.1. Characterization of Standard-Steel E24 at 1.66 × 10−1 s−1 Strain Rate 

The first implementation of this method is concerned with a tensile test of standard- 
steel E24 at a temperature of 25˚C and a strain rate of 1.66 × 10−3 s−1. Figure 7 shows 
the initiation of hardening; both graphs have similar features. 

The experimental shape indexes from the tensile force/elongation graph are pre-
sented in Table 12. They are introduced in Equation (20) to calculate immediately the 
material parameters according to the coupled Swift model (Table 13). 
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Figure 7. Comparison of the tensile curves of standard-steel 
E24 at different strain rates. 

 
Table 12. Experimental values of the shape indexes of standard-steel E24 at (1.66 × 10−3 s−1 and 
25˚C). 

Hardening 

E D A ∆3 ∆1 

δE(mm) FE(N) δD(mm) FD(N) δΑ(mm) FA(N) p3(N/mm) p1(N/mm) 

1.33 1598.60 4.32 2480.02 19.33 2496.56 295.06 1.10 

Damage 

C B A ∆1 ∆2 

δC(mm) FC(N) δB(mm) FB(N) δΑ(mm) FA(N) p1(N/mm) p2(N/mm) 

22.71 1957.0 22.5238 2503.70 19.33 2496.60 1.3427 −2981.70 

 
Table 13. Identification of parameters for standard-steel E24 at (1.66 × 10−3 s−1 25˚C). 

Hardening Damage 

Parameters Average error Parameters Average error 

K (MPa) ε0(%) n ξF(%) εs(%) εu(%) γ ξU(%) 

593.63 2.951 0.261 0.33 0.625 54.5 8.375 0.34 

 
Figure 8 presents a comparison between the computed response using the coupled 

Swift model and the experimental response; the average relative error ξF between the 
two responses is about 0.33% for elongations between 5.2 mm and 17.0 mm. The aver-
age relative error ξU for elongations between 17.0 mm and 23.0 mm is about 0.34%. For 
elongations below 5.2 mm a difference exists which seems to be affected by the experi-
mental shape indexes due to uncertainty in the coordinates of point A as well as the 
slope p1 of the tangent line ∆1. 
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5.2. Characterization of Standard-Steel E24 at High Temperature 

The second application of the method is concerned with a tensile test of standard-steel 
E24 at 200˚C and a strain rate of 1.66 × 10−3 s−1. Figure 9 shows an acceptable level of 
agreement with the tensile graph of the reference test (standard-steel E24 at 25˚C and 
10−3 s−1); this makes it possible to identify the hardening and damage parameters di-
rectly for the tensile test of standard-steel E24 at 200˚C. The experimental shape index-
es are presented in Table 14. 

 

 
Figure 8. Tensile graphs of standard-steel E24: experimental 
(1.66 × 10−3/s) vs. simulated (coupled Swift model). 

 

 
Figure 9. Experimental tensile graphs of standard-steel E24 
under different conditions. 
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The results of the identification of hardening and damage parameters by multiple re-
gression at a temperature of 200˚C are presented in Table 15. Figure 10 shows that 
below an elongation of 4.4 mm the experimental and simulated results display a differ-
ence. The average relative difference ξF between the two responses is 0.22% for elonga-
tions below 14.6 mm whereas for elongations in the range 14.4 mm to 19.1 mm the av-
erage relative error ξU is about 0.10%. 
 
Table 14. Experimental shape indexes of the standard-steel E24 at (200˚C and 1.66 × 10−3 s−1). 

Hardening 

E D A ∆3 ∆1 

δE(mm) FE(N) δD(mm) FD(N) δΑ(mm) FA(N) p3(N/mm) p1(N/mm) 

0.41 1216.07 3.18 2197.54 16.75 2198.59 355.07 0.08 

Damage 

C B A ∆1 ∆2 

δC(mm) FC(N) δB(mm) FB(N) δΑ(mm) FA(N) p1(N/mm) p2(N/mm) 

18.71 2049.6 18.5208 2205.80 15.5817 2198.60 2.4421 −839.56 

 
Table 15. Identification of parameters standard-steel E24 at (200˚C and 1.66 × 10−3 s−1). 

Hardening Damage 

parameters Average error parameters Average error 

K(MPa) ε0(%) n ξF(%) εs(%) εu(%) γ ξU(%) 

514.137 1.01 0.2265 0.22 0.625 49.1 6.390 0.10 

 

 
Figure 10. Tensile curve of standard-steel E24: experimental 
(200˚C) vs. simulated (with coupled Swift model). 
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5.3. Characterization of 1050A Aluminum 

The third application is concerned with annealed 1050A aluminum. This alloy has good 
plastic deformation properties. Figure 11 shows the tensile curves of the reference ma-
terial standard-steel E24 and that of 1050A aluminum; they exhibit a significant geo-
metric similarity. The shape indexes obtained from the experimental tensile force/ 
elongation graph of 1050A aluminum presented in Table 16; they are used to deter-
mine the parameters of the coupled Swift hardening model (Table 17). 

Figure 12 shows that the computed response from identified model of Table 17 and 
the experimental response have an average error ξF = 0.38% in the elongation range 
between 0.05 mm and 23.7 mm and ξU = 0.25% for elongation in the range 23.7 mm to 
33.1 mm. 
 

 
Figure 11. Similarity of the tensile graphs of standard-steel 
E24 and 1050A aluminum. 

 
Table 16. Experimental shape indexes of aluminum 1050A (25˚C; 1.66 × 10−3 s−1). 

Hardening 

E D A ∆3 ∆1 

δE(mm) FE(N) δD(mm) FD(N) δΑ(mm) FA(N) p3(N/mm) p1(N/mm) 

0.3 324.83 2.629 748.10 22.50 764.29 181.76 0.815 

Damage 

C B A ∆1 ∆2 

δC(mm) FC(N) δB(mm) FB(N) δΑ(mm) FA(N) p1(N/mm) p2(N/mm) 

33.5313 375.3 33.3895 772.687 22.4987 764.29 0.771 −2.80E+03 
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6. Conclusions 

The presented work demonstrates the possibilities available through the multiple re-
gression method to the parameter identification problem. The procedure was proven to 
be efficient in determining the parameters of the Swift hardening model coupled with 
an isotropic damage variable. 

Once the relationship between the material parameters and the shape indexes of the 
reference material is carried out, it will be used to identify directly the material behavior 
for a class of materials having the same attributes. 

However the extended use of these results to other materials under different test 
conditions requires their behavior similarity. Hence, the materials may be grouped into 
equivalence classes according to the shape of their experimental response. 

This method provides significant gains in computer time necessary for a complete 
identification procedure for the reference material. It needs very few simulations com-
pared to other identification methods. However it just needs only one simulation for 
the identification of similar behavior. 

Future efforts will be directed to: 
1) Introduction on nondimensional variable in the analysis which will broaden the 

utility range of the correlations. 
 
Table 17. Identification of parameters for aluminum 1050A (25˚C; 1.66 × 10−3 s−1). 

Hardening Damage 

Parameters Average error Parameters Average error 

K(Mpa) ε0(%) n ξF(%) εs(%) εu(%) γ ξU(%) 

151.80 0.038 0.299 0.38 0.625 91.82 6.56 0.25 

 

 
Figure 12. Tensile graphs of aluminum 1050A: Experimental 
vs. simulated response (coupled Swift model). 
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2) Generalization to constitutive models which have a large number of parameters. 
3) Sensitivity analysis of the parameter to identify with respect to the shape in-

dexes. 
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