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1. Introduction 

One-dimensional (1D) nanostructured materials, including nanotubes, nanowires, na-
nobelts, nanoribbons and nanorods, often exhibit specific physical and chemical prop-
erties due to their nanometer dimensions, which differ greatly from those of their bulk 
counterparts [1]. Among one-dimensional structures, the synthesis of vanadium pen-
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toxide (V2O5) and their derivative compounds has been researched intensively due to 
their redox activity and layered structures [2]-[11]. The layered crystal structure of 
V2O5 allows the insertion of small ions, for example Li+ and has potential applications 
in lithium batteries [12]-[14], electric field-effect transistors [15] and chemical sensors 
or actuators [16]. 

Vanadium forms a variety of binary compounds with the general formula, VO2+x 
(−0.5 ≤ x ≤ 0.5), such as V2O3, VO2, V2O5, V3O7, V4O9, V6O13 [17]. Among them vana-
dium pentoxide presents the polymorphs α-V2O5 (orthorhombic) [18], β-V2O5 (mo-
noclinic or tetragonal) and γ-V2O5 (orthorhombic) structures [19] [20]. The polymorph 
α-V2O5 is one of the most widely studied transition metal oxides in the V-O system, 
because it is the most stable phase at atmospheric pressure and room temperature. It 
has a band gap of ∼2.3 eV and shows a semiconductor-metal transition at about 250˚C. 
The α-V2O5 is lightly soluble in water (0.08 g/ml, 20˚C) but extremely soluble in acids. 
In particular it is physically and chemically stable in hot acid solutions. By increasing 
pressure and temperature, it is possible to improve the contact between the phases in 
the orthorhombic structure formed by VO5 layers forming square pyramids that share 
edges and corners. In addition, the interaction between these layers is based on Van der 
Waals chemical bonds which favour growth of the planes along the [001] direction 
[21]-[23]. 

Nowadays, several research groups have reported the partial or total use of the sol-
vothermal method of synthesis because it is an easy route to the formation of vanadium 
oxides with different morphologies [24]-[33]. In this work we synthesized by a solvo-
thermal method at low temperature monocrystalline α-V2O5 nanowires with preferen-
tial [200] growth direction. In the solvothermal synthesis the oxidation states V5+, V4+ 
and V3+ were present. The presence of V4+ ions in the material, promotes the growth of 
V10O24∙12H2O/V3O7∙H2O nanobelts in metastable phase. However the metastable phases 
present in the V10O24∙12H2O/V3O7∙H2O template are stabilized after applying a thermal 
process, which encourages and promotes formation of α-V2O5 nanowires in an orthor-
hombic phase. With the aid of XRD, SEM and HRTEM we have studied the morpho-
logical changes and structural behavior during the formation of α-V2O5 nanowires. The 
solvothermal chemical route seems optimal, since it is suitable for the synthesis of ma-
terials that decompose at elevated temperatures, which are poorly soluble, reactive, or 
for species with multiple oxidation states, as in the case of α-V2O5 nanowires. A benefit 
of this method of synthesis is that one obtains very pure products at low temperature 
using only V2O5 as starting material and hydrogen peroxide (H2O2) as solvent-oxidant 
agent. Furthermore, these α-V2O5 nanowires can be doped with small ions, for example 
Li+ ions by electrochemical methods, and subsequently can be used as electrodes in re-
chargeable lithium-ion nanobatteries. 

2. Experimental 
2.1. Synthesis of Monocrystalline α-V2O5 Nanowires  

The synthesis of α-V2O5 nanowires was performed using a solvothermal method similar 
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to the one reported by Guicun Li et al. [34]. In a typical synthesis process, 0.18 g of 
V2O5 powders (Aldrich, 99.99%) was dispersed into 30 ml of distilled with magnetic 
stirring (Nuova, SP18420-26Q) to form a yellow slurry solution with pH 4 (Oakton, 
pH/Ion 510). Then 2.5 ml of H2O2 (Aldrich, 30 wt%) were added drop wise to the slurry 
solution and stirred to 100 rpm for 5 min to form an orange solution where the pH 
dropped to 0.5. The solution was directly poured into an acid digestion vessel of 45 ml 
capacity with Teflon a liner (Parr instruments, 4744). The closed acid digestion vessel 
was introduced into a furnace (Lindberg/Blue M, BF81894C-1) and was maintained at 
180˚C for 48 h. Once the thermal treatment was over, the furnace was turned off and 
left to cool to room temperature. Green precipitates were obtained at the bottom of the 
container, which was surrounded by a colorless solution (reduction from V5+ to V3+). 
The green precipitates were collected on a paper filter, washed several times with dis-
tilled water and finally dried at room temperature for 30 h. After this, the precipitates 
form a film and the surface color changed from a green (V3+) to a dark-blue (V4+). The 
dark-blue layer that forms on the film of the green precipitates suggests that the end 
products of the solvotermal synthesis are in a metastable phase (this hypothesis was 
confirmed by XRD and HRTEM analysis). Finally at atmospheric pressure and starting 
from room temperature the metastable film was heated on a hot plate to 80˚C in treat-
ments of 4 h and 12 h long. The crystallographic evolution of the α-V2O5 nanowires is 
presented in Figure 1. Starting with V2O5 in an orthorhombic phase and morphologi-
cally heterogeneous, we obtained one-dimensional structures in a metastable phase af-
ter the solvothermal synthesis due to the condensation of vanadic acid via homogene-
ous nucleation in the redox process and ending with α-V2O5 nanowires in stable or-
thorhombic phase formed via dehydration of the one-dimensional structures in me-
tastable phase. 

2.2. Structural Characterization  

X-ray diffraction analysis (XRD) was performed using a D8-Advanced Bruker 
 

 
Figure 1. Simulation CaRIne V.3.1 of the synthesis of α-V2O5 nanowires. 
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diffractometer with CuKα monochromatic radiation (λ = 1.5405 Å, 2θ) using a Bragg- 
Brentano geometry. The samples for this analysis were subjected to slight mechanical 
milling. The XRD was refined using the Rietveld method and the FULLPROF program. 
The size of the structure was determined by the Debye Scherrer method. The morph- 
ological characterization of the products was studied by Scanning Electron Microscopy 
(SEM) with a microscope JEOL model JSM 7600F equipped with tungsten filament, 
operating at 20 kV and a pressure of 20 Pa and using the backscattered electron signal. 
For SEM analysis, the samples were directly placed on a specimen carrier and without 
adding any conductive layer. The High-Resolution Transmission Electron Microscopy 
(HRTEM) was done with a TITAN 80 - 300 microscope operating in the 80 - 300 kV 
range and a Tecnai G2-F30 operating at 300 kV. For the HRTEM observations, me-
chanically milled samples were deposited on the surface of a copper grid, previously 
coated with carbon and fomvar films. 

3. Results and Discussion 

XRD patterns and SEM images obtained from the samples show the structural and 
morphological changes during the synthesis of the α-V2O5 nanowires. In the Figure 2, 
the SEM images correspond to each of the patterns of X-ray diffraction of the samples 
in different reaction times. As shown by SEM, the V2O5 reagent (Aldrich) is formed by 
agglomerates of morphologically heterogeneous grains with sizes 62.46 nm - 816.73 
nm. In this case, the reflections in the XRD pattern (Figure 2(a)), are indexed as V2O5 
in orthorhombic phase (PDF 41-1426). The precipitates dried at room temperature for 
30 h obtained after solvothermal synthesis at 180˚C for 48 h, XRD patterns show that 
the metastable film green-blue (V3+/V4+) is a mixture of vanadium oxides in different 
phases (Figure 2(b)).  
 

 
Figure 2. XRD patterns and SEM images of vanadium oxide synthesized by solvothermal method 
at 180˚C for 48 h. (a) V2O5 reagent (Aldrich), (b) V10O24∙12H2O/V3O7∙H2O in metastable phase, 
(c) after the thermal process for 4 h, (d) after the thermal process for 12 h. 
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The XRD patterns refined by Rietveld (Figure 3), determine that the metastable film 
is constituted by 66% of V10O24∙12H2O in monoclinic phase (Figure 3(a)) with lattice 
parameters a = 11.70 Å, b = 3.63 Å and c = 29.06 Å (PDF 25-1006). In addition this 
analysis shows that the other 34% present in the metastable film, corresponds to the 
V3O7∙H2O oxide in orthorhombic phase (Figure 3(b)) with lattice parameters a = 9.34 
Å, b = 17.00 Å and c = 3.62 Å (PDF 28-1433). SEM images shown that the bi-com- 
pound template of V10O24∙12H2O/V3O7∙H2O is conformed by overlapping nanobelts, 
growing both on the surface and in the inside of the film. These one-dimensional 
structures have an average width of 209.55 nm and hundreds of micrometers long. 

The color of the metastable V10O24∙12H2O/V3O7∙H2O film (monoclinic and orthor-
hombic, respectively) changes from green-blue to yellow-pale after a thermal process at 
80˚C at atmospheric pressure for 4 h, which causes the oxidation of the products to V5+ 
and the stabilization partial of the phases. The XRD pattern (Figure 2(c)) shows reflec-
tions corresponding to a 92.8% V2O5 in orthorhombic phase (α-V2O5), with lattice pa-
rameters a = 11.51 Å, b = 3.56 Å and c = 3.22 Å, indexed in agreement to the PDF 
41-1426. However, we see the reflections due to the remnant of the V10O24∙12H2O in 
monoclinic phase (PDF 25-1006). The smaller interplanar spacing is caused by the re-
moval of water from the interlamellar region of V10O24∙12H2O/V3O7∙H2O structure. 
SEM images show homogeneous α-V2O5 nanowires measuring in average 111.90 nm in 
cross section and hundreds of micrometers long. After increasing the thermal process 
to 12 h, the color in the metastable film change from green-blue to orange, indicating 
the progress of oxidation state V5+ in the material. The intensity of the diffractions 
peaks associated α-V2O5 in stable orthorhombic phase increased with 95.8% of (Figure 
2(d)) and clearly decreased by 4.2% the reflections associated to V10O24∙12H2O in me-
tastable monoclinic phase. The crystal structures of the α-V2O5 nanowires are similar to 
that of the commercial V2O5 powders (Figure 2(a)). 

 

 
Figure 3. XRD pattern refined by Rietveld of metastable phase. (a) V10O24∙12H2O monoclinic 
phase; (b) V3O7∙H2O orthorhombic phase. 
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A probable process for the observed evolution of morphologies and crystal structures 
can be understood as follows: the process begins when vanadium salts are dissolved 
partially in distilled water; the metal cations (V5+) are solvated by molecules of water 
and the proposed reaction is (Equation (1)): 

2 5 2 2 5 2V O H O V O nH O+ →                     (1) 

For transition metal cations, charge transfer occurs from the σ orbitals of the water 
molecule to the empty metal d orbitals, this causes an increase in the acidity of the wa-
ter [35]. The molecule is dissociating by the acid hydrolysis caused by the addition of 
H2O2. Therefore, the degree of acid hydrolysis is controlled by pH 0.5 in the precursor 
phase solution (Equation (2)). 

2 5 2 2 2 3 4V O nH O H O 2H VO+ →                    (2) 

The electron transfer increases the charge on the molecule and weakens the OH 
bonds [36]-[39]. Applying pressure and temperature, monoperoxo and dimer species 
are then progressively formed as peroxo groups are decomposed (Equation (3)). 

+
3 4 2 22H VO VO VO OH+ −→ + +                    (3) 

The system redox efficiently promotes a molecular rearrangement due to the con-
densation of vanadic acid via a homogeneous nucleation into the reduction of V5+ ions 
to V3+ ions, resulting in a metastable crystalline structure V10O24∙12H2O (hydrated ba-
riandite) in monoclinic phase with one-dimensional growth (Equation (4)). 

+
2 2 10 24 28VO 2VO 12OH V O 12H O+ −+ + → ⋅              (4) 

The partial stability of these products in metastable phase is achieved naturally when 
oxidized by exposure to air in the process of washing and drying (partially oxidation of 
V3+ to V4+ ions), obtaining as final products, a mixture of vanadium oxide in different 
phase but with an one-directional growth (Equation (5)). 

10 24 2 10 24 2 3 7 2 supV O 12H O V O 12H O V O H O⋅ → ⋅ + ⋅             (5) 

With the thermal process of 4 and 12 h the phases in the metastable products 
V10O24∙12H2O/V3O7∙H2O are stabilized removing the un-coordinated water molecules 
with metal centers V-O, giving rise to structures of V2O5 nanowires in stable orthor-
hombic phase (Equation (6)). 

10 24 2 3 7 2 sup 2 5V O 12H O V O H O V O⋅ + ⋅ →                (6) 

The HRTEM micrographs (Figure 4), show the variety of one-dimensional struc-
tures forming the metastable phase V10O24∙12H2O/V3O7∙H2O template. These bi-com- 
pound nanobelts exhibit an average width of 125 - 250 nm and in some cases are core- 
shell types. On the other hand it is determined that the shell is not uniform in all cases; 
furthermore, it varies along the same nanobelt, which clearly indicates a non- uniform 
oxidation. 

It is determined that the shell is constituted by the V3O7∙H2O oxide in orthorhombic 
phase with families of planes {200}, {200}, {101}, {230}, {120} and interplanar distances 
of 0.850 nm, 0.467 nm, 0.339 nm, 0.360 nm, 0.630 nm respectively (Figure 5). 
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Figure 4. TEM images of the V10O24∙12H2O/V3O7∙H2O template in metastable 
phase. (a) Distribution to low-magnification; (b) Metastables structures to 
high-magnification; (c) and (d) Bi-compound nanobelts type core-shell. 

 

 
Figure 5. HRTEM images of V3O7∙H2O shell. 
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In the same way is established that the core corresponds to V10O24∙12H2O in monoc-
linic phase which exhibits the families of planes {004}, {317} and {313} with d-spacing 
of 0.708 nm, 0.236 nm and 0.245 nm respectively (Figure 6). These results are consis-
tent with those established by the XRD patterns corresponding to the analysis in the 
metastable phase. 

With the thermal processes of 4 and 12 h the metastable phases in the one-dimen- 
sional V10O24∙12H2O/V3O7∙H2O template are stabilized. The crystal structure corres-
ponds to an orthorhombic phase, obtaining α-V2O5 nanowires monocrystalline that are 
morphologically stable at atmospheric pressure and room temperature. As result the 
α-V2O5 nanowires are monocrystalline, they have families of planes {200}, {310}, {110}, 
with d-spacing of 0.576 nm, 0.340 nm and 0.261 nm, respectively (Figure 7). 

4. Conclusion 

We have obtained monocrystalline nanowires of α-V2O5 in orthorhombic phase by a 
low temperature using a solvothermal synthesis, inducing a redox process controlled in 
the V2O5 reagent grade and morphologically heterogeneous. These one-dimensional 
α-V2O5 structures have lengths of tens of micrometers and widths of about 75 nm, with 
a preferential [200] growth direction. Into the solvothermal synthesis, the formation of 
α-V2O5 nanowires is promoted by a template conformed of V10O24∙12H2O/V3O7∙H2O  

 

 
Figure 6. HRTEM images of V10O24∙12H2O core. 
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Figure 7. HRTEM images of α-V2O5 nanowires 12 h. 

 
nanobelts in metastable phase. In addition, formation of V10O24∙12H2O/V3O7∙H2O na-
nobelts in metastable phase depends strongly on the reaction conditions, like pH of the 
phase precursor solution, temperature into the acid digestion vessel, along with the 
time of the solvotermal reaction. It is determined that the bi-compound system in me-
tastable phase may present core-shell type structures with average widths 209.55 nm 
and hundreds of micrometers long. Furthermore, the analysis presented identified the 
V10O24∙12H2O in monoclinic phase as the core, and the orthorhombic phase V3O7∙H2O 
as the shell. A thermal process stabilized metastable phases in the products in periods of 
4 and 12 h. The influence of the time in the thermal process has a direct impact on the 
morphologies of the monocrystalline α-V2O5 nanowires, which have wide applications 
in lithium-ion batteries. 
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