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Abstract 
A phase-field model coupled to the multiphase/multiscale model is used to simulate the micro-
structural morphology and predict the CET during solidification. The considered mechanism for 
the CET is based on interactions of solute between the equiaxed grains and the advancing colum-
nar front. The results for the solute concentration in liquid region, dendrite tip velocity, volume 
fraction of the liquid and solid are presented and discussed. The phase-field model is used to si-
mulate the dendritic morphology of an alloy directionally solidified, by imposing a constant tem-
perature gradient. The simulation of the equiaxed grains growth requires a further important 
element, the growth of grains with different crystallographic orientations. The grain orientations 
are generated randomly for each nucleus introduced in computational domain. Finally, the coupl-
ing results between the multiphase/multiscale model and phase-field are presented and discussed. 
For higher nuclei density present in the melt, a shorter distance between mold wall and the 
equiaxed zone in the solidification process can be observed. A solute concentration boundary 
layer exists in the liquid along the columnar grain contour. The concentrations in the solid indi-
cate the presence of a microsegregation pattern. The simulated results show that the solidification 
features are consistent with those observed based on the metallographic examinations of cast mi-
crostructures reported in the literature. 
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1. Introduction 
Solidification is the main phenomenon taking place during casting. This, in turn, has long been known as a rela-
tively inexpensive means for producing metal goods. Nowadays, a sizable portion of the concepts and methods 
developed over the years in support of the research into solidification phenomena can be successfully and eco-
nomically translated to industrial scale. Noticeable improvement can thereby be achieved insofar as the quality 
of the pieces manufactured by solidification is concerned. For this reason, solidification studies are not just 
mandatory; they truly are a powerful industrial tool. For conventional technologies, thorough understanding and 
control of the solidification process open wide perspectives in terms of its economic potential, since it provides 
the shortest distance from metal input to final product. As a consequence, solidification is one of the most im-
portant specialties in Metallurgy and Materials Science. In-the-mold solidification of a metal, opposite to what 
may, at first, be surmised, is not a “passive” process in any way. On the contrary, the metal undergoes a liquid- 
to-solid transformation of a very dynamic nature. In its course, events take place—like nucleation and growth of 
dendritic structures—which, in the absence of a tight control, may compromise the final output or even halt the 
manufacturing process altogether. Such events can originate several types of material heterogeneities which drasti-
cally affect the metallurgical quality of the final product [1]. The dendrites are among the most common micro-
structures in metals and alloys at the end of solidification. Its shapes, sizes and chemical characteristics have an 
important impact on the properties of the final products. The conditions for the transformation from liquid to 
solid, such as the temperature gradient and the growth rate, vary from process to process and in one process they 
are also as a function of time and space. These variations, together with the different alloy composition, lead to a 
multitude of microstructures and therefore material behavior. Dendritic structures observed in most casting 
processes of metallic alloys are the result of a competition between the growth of several arrays of dendrites that 
develop during solidification process under constrained and unconstrained conditions. One important transition 
which has to be well controlled is the so-called columnar-to-equiaxed transition (CET) [2]. The prediction of the 
CET is of great interest for the evaluation and design of the mechanical properties of solidified products. To this 
aim, it is necessary to understand the CET mechanisms and to develop a model to quantify important features of 
the microstructures. As suggested by many previous studies, the CET, caused by the competition between co-
lumnar and equiaxed growth, is primarily governed by such casting parameters as the alloy composition, pour-
ing superheat, nuclei density present in the melt, cooling capacity at the metal/mold interface, and melt convec-
tion. A change from columnar to equiaxed grains is a common occurrence in metal alloy castings, and numerous 
mechanisms for the CET have been proposed based on experimental evidences. Mathematical modeling of the 
CET is limited owing to the complex interplay of macroscopic phenomena, such as heat transfer, fluid flow, and 
microscopic phenomena, such as nucleation and dendritic growth [3]. Typically, all previous CET models neg-
lect or oversimplify the treatment of movement of equiaxed grains. The equiaxed grains are assumed to nucleate 
and grow in the constitutionally undercooled liquid ahead of the advancing columnar front [4]. The CET occurs 
when the advance of the columnar front is blocked by the equiaxed grains. The CET models can be classified as 
stochastic or deterministic. Stochastic models aim to follow the nucleation and growth of each individual grain. 
Its main limitation is related to the large amount of computer resources needed to resolve the large number of 
grains potentially present in a casting [5]-[7]. Deterministic models, on the other hand, do not attempt to resolve 
the nucleation and growth of each grain. Instead, they rely on averaged quantities and equations that are solved 
on a macroscopic scale. By tracking the columnar front movement and calculating the growth of equiaxed grains 
in the undercooled liquid in front of it, the CET can be predicted [3] [8]-[15]. In both stochastic and determinis-
tic models, the evolution of grain morphology and the competitive growth between columnar and equiaxed 
grains during the solidification process are not considered. For a number of years now, appreciable attention has 
been paid, in open literature, to the simulation of dendrite growth and related phenomena. Several different nu-
merical approaches were proposed to that end. Some works have focused on pure materials [16]-[18], whereas 
others take heed of multicomponent alloys of metallurgical interest [1] [19]-[22]. In particular, the phase-field 
model has garnered wide acceptance, given its ability to simulate the solidification process in the presence of a 
complicated solid-liquid interface. The seminal work on the model is presented in [23], dating back to the early 
1980s. A collection of models has stemmed from that paper, ever since. The reason by which we adopt alumi-
num alloy (Al-Cu) in this work is that the aluminum nowadays is the leading non-ferrous metal in use, finding 
ever more applications in sectors as varied as aeronautics, beverage containers, construction and energy trans-
portation. The qualities of aluminum and its alloys are deciding factors for designers, manufacturers and indus-
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trial users who are always on the lookout for better-performing materials. In this present study, the microstruc-
tural evolution and competitive growth from onset of solidification process in Al-0.013 mol% Cu alloy under a 
constant cooling rate are simulated. A phase-field model coupled to the multiphase/multiscale model is used to 
simulate the morphology of columnar grains and equiaxed and predict the columnar-to-equiaxed transition (CET) 
during solidification of said binary alloy. It is in this general framework that the present study is developed, with 
a focus on Al-Cu binary alloy and phase-field model coupled to the multiphase/multiscale model implemented 
via finite differences method in the explicit form. 

2. Governing Equation 
First of all, we present the governing equations the multiphase/multiscale model. This model is used to predict 
the CET. Then, equations of phase-field model are presented and discussed. 

2.1. The Multiphase/Multiscale Model 
The governing equations are based directly as in [3] and [13]. Therefore, the equations are only briefly described, 
followed by detailed comments on the features of the present model. To separate the various regions present in 
dendritic solidification, three phases are defined within a representative elementary volume (REV): solid (s), in-
terdendritic liquid (d), and extradendritic liquid (l). The volume factions are introduced in the model as follows: 

1s l dε ε ε+ + =                                     (1) 

where εs is solid, εl is the extradendritic liquid and εd represents the interdendritic liquid. As shown in Figure 1, 
the inter- and extradendritic liquids are separated by a grain envelope that is a smooth surface extending around 
the dendrite tips. 

The grain envelope volume fraction is defined as 1g s d lε ε ε ε= + = − . The internal solid volume fraction can 
be defined as si s gε ε ε= . When the internal solid fraction is unity, the equiaxed grains are said to be globulitic 
(i.e., fully solid globules). The interdendritic liquid is associated with the relatively small length scale of the 
spaces between the dendrite arms inside the envelope and is assumed to be solutally well mixed at the liquidus 
concentration ( *

lC ) given by the phase diagram at the temperature T. The extradendritic liquid, on the other hand, 
is associated with the larger length scale. When its average solute concentration (Cl) is below *

lC , the extraden-
dritic liquid is undercooled. It is this undercooling that primarily drives the dendritic growth. Due to solute re-
jection by the growing dendrites/grains into the finite extradendritic liquid, Cl can become greater than C0 (initial 
concentration). The presence of a solute profile in the solid in Figure 1 reflects the fact that the mass diffusivity 
of the solid (Ds) is much smaller than that of the liquid (Dl), this results in incomplete solute diffusion in the 
solid. In fact, back-diffusion in the solid is neglected in the present study for the multiphase/multiscale model. 
For the one-dimensional system considered in the present study used to predict the CET during solidification of 
Al-Cu binary alloys, the interdendritic liquid solute and extradendritic liquid solute can be written, respectively, 
as in [3] [13] 

 

 
Figure 1. Schematic illustration of a dendrite envelope.        
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where k0 is the solute partition coefficient and Se represents the envelope area of grains. The last term in equa-
tion (2) and (3) accounts for diffusion of solute from the dendritic growth into the undercooled extradendritic 
liquid. The δe represents the diffusion length and it is discussed in greater details in [3]. The previous equations 
are coupled by the liquidus line of a binary equilibrium phase diagram, i.e., 
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where Tf is the melting point of the pure metal, and ml is the liquidus line slope. Then, Equation (2) can be 
solved for the solid fraction, εs, and Equation (3) provide the average solute concentration in the extradendritic 
liquid, Cl. The following equation is used to calculate the grain (or extradendritic liquid) volume fraction: 
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eS V

t t
ε ε∂ ∂

= − =
∂ ∂

                                    (5) 

where V is the dendrite tip velocity [14] 
( ) ( )( )
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where ( )* 21 4πσ ≈  is the stability constant [3], Г  is the Gibbs–Thomson coefficient, and 1Iv−  is the in-
verse of the Ivantsov function, which can be approximated by the following equation [13]: 

1.195
1 0.4567

1
Iv− Ω =  −Ω 

                               (7) 

The dimensionless undercooling (Ω) is defined as 
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*

*
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Note that in Equation (8) the undercooling is defined relative to average solute concentration in the under-
cooled extradendritic liquid ( )lC  [3]. The previous works [11] [12] used instead the initial composition ( )0C  
to determine the undercooling for dendrite growth. Others works [8] and [13] adopted lC  for equiaxed growth, 
but 0C  for columnar growth. As proposed in the [3] lC  for both equiaxed and columnar growth. This differ-
ence constitutes the main new feature of the present model; it is discussed in more detail in [3]. The spacing 
between the equiaxed envelopes is governed by the equiaxed grain density (n), whereas the columnar envelope 
spacing is determined by the primary dendrite arm spacing (λ1). The following expressions are used to obtain a 
first-order estimate of the characteristic half spacing (Rf) in the two types of growth: 

equiaxed: 
1 33

4πfR
n

 =  
 

 and columnar: 1 2fR λ=                         (9) 

As proposed in [3], it is assumed that nuclei appear instantaneously at a liquid region undercooled. Another 
issue in modeling the solute diffusion into the extradendritic liquid is the shape of the dendrite envelopes. As in 
[13] is assumed a spherical shape for the equiaxed grain envelopes and a cylindrical shape for the columnar en-
velopes. In this present study, we adopted a simpler method, where the basic envelope shape is spherical for 
both columnar and equiaxed growth. While this approximation may seem inadequate for columnar growth, it 
was verified to result in only minor differences in results [3]. This way, the spherical envelope shape is intro-
duced in the model as in [13]: 

( )2 33 1 l
e

f

S
R
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The envelope diffusion length (δe) is calculated as a function of the envelope Peclet number (Pe), from 
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where the instantaneous envelope radius (Re) is given by. 

( )1 31e
l

f

R
R

ε= −                                    (12) 

The Equation (11) differs slightly from the one proposed in [13], its derivation and a closed-form analytical 
solution are provided in details in the [3]. The main new feature of the model proposed in [3] is that both the 
equiaxed and columnar dendrite growth velocities are controlled by a solutal undercooling proportional to the 
difference between the local liquidus concentration and the local average solute concentration in the extraden-
dritic liquid (Equation (8)). At least for columnar growth, all other models [7] [8] [11]-[13] [24] used the initial 
alloy composition C0 instead of Cl in the dimensionless undercooling. Governing equations of phase-field model 
are presented in the following section.  

2.2. The Phase-Field Model 
In phase-field models, the state of the domain is customarily represented by a distribution of the single variable 
known as the “order parameter” or “phase-field variable,” here represented by the Greek letter φ. In this present 
study, it is assumed that the solid state corresponds to a value of +1 for the order parameter, while, in the liquid 
region, φ is taken to be 0. The region through which φ decreases from +1 to 0 is defined as the solid/liquid inter-
face [35]. For simulation of microstructures in binary alloys during solidification, we used two equations: one 
for solute concentrations, the other for the phase field itself [25].  
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The evolution of the solid region with time ( )tφ∂ ∂  is assumed to be proportional to the variation of the free 
energy functional with respect to the order parameter, φ. The terms of the phase equation are derived from this 
free energy functional, which must decrease during any solidification process [17]. In Equation (13), M quanti-
fies the phase-field mobility. The product ε2∇φ is a diffusivity term. The next component of the equation, 

( )wg φ′ , factors in the excess free energy arising from surface tension around the interface. The last product on 
the right-hand side translates the driving force behind the solidification process. Here, R is the gas constant; T is 
the temperature and Vm, the molar volume. The arguments to the natural logarithms, e

SC  and e
LC  are, respec-

tively, the equilibrium concentration in the solid and liquid regions. While, the respective ordinary concentra-
tions in the liquid and solid region are denoted, by pair, CL and CS. The ( )h φ′  is the derivative of the so-called 
“smoothing” function [26], to be defined later. The solute concentrations in both regions are calculated with the 
solute transport equation [25], numbered (14).  
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              (14) 

In this equation D(φ) is the solute diffusivity in the solid and in the liquid regions. The model carried out, 
takes into account solute diffusivity in the liquid and in the interface regions. The “smoothing” function h(φ) and 
the function g(φ), which models the surface tension effect around the interface, are defined as [17] 

( ) ( )3 210 15 6h φ φ φ φ= − +                                 (15) 

( ) ( )22 1g φ φ φ= −                                    (16) 

Equations (15) and (16) are widely employed in phase-field works. Notice ( )h φ′  and ( )g φ′  are zero for 
both φ = 0 (liquid region) and φ = +1 (solid region). This ensures that only at the interface will the second and 
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third terms in Equation (13) be nonzero. Moreover, a commonly resorted way of including anisotropy in the 
model is to regard ε in Equation (13) as dependent on a so-called “growth angle”, θ. The growth angle reflects 
the orientation of the normal to the interface with respect to the x axis, i.e., the longitudinal interface advance 
direction [16]: 

( ) ( ){ }0 01 cos jεθ θ θε ε δ  = + −                             (17) 

where δε gauges the anisotropy. The value j controls the number of preferential growth directions. For example, 
with j = 0 we shall be looking at a perfectly isotropic case, while j = 4 is indicative of a dendrite with four pre-
ferential growth directions. Orientation of the maximum-anisotropy interface is identified by the θ0 of Equation 
(17). Furthermore, ε0 in that equation, and w in Equation (13) are model parameters associated with interface 
energy (σ) and thickness (2λ), respectively, according to the following expressions [27]: 
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where me is the slope of the liquidus line at equilibrium, ke is the equilibrium partition coefficient, Di is the dif-
fusion coefficient in the interface region, and the kinetic coefficient, β, is defined to be the inverse of the usual 
linear kinetic coefficient, µ.k.. For the binary alloy system, we use the same parameters shown in the [22]. To 
simulate growth of an asymmetrical dendrite, it is necessary to introduce a noise term on the right-hand side of 
Equation (13), the phase-field equation. A usual expression for this noise is [1] 

( )22noise 16 1arφ φ= −                                  (22) 

with “r” a random number between −1 and +1. The “a” parameter is the noise amplitude. Maximum noise cor-
responds to φ = 0.5, at the center of the interface, whereas at φ = 0 (liquid region) and φ = 1 (solid region) there 
occurs no noise. That is to say, noise is generated at the interface. The Equations (13) and (14) were solved nu-
merically. They were discretized on uniform grids using an explicit finite scheme. 

3. Results and Discussions 
The main objective of the present work is to propose a numerical simulation of microstructure evolution by 
phase-field method coupled to the solutal interaction mechanism for the columnar-to-equiaxed transition (CET). 
First of all, we show results of the CET model, and then, results obtained by phase-field method are presented, 
and finally the results of coupling between CET model and phase-field. Simulations in this present study are 
carried out disregarding the energy equation and instead imposing the following linear temperature profile: 

( ) 0T t T T= − �                                       (23) 

where T0 is the initial temperature and T�  represents a constant values for cooling rate. Table 1 presents the 
physical properties of the binary alloy (Al-Cu) used in the computations that follow. 

3.1. Results of Multiphase/Multiscale Model 
We begin by displaying the results obtained with help of the CET model for predictions of temporal evolution of 
the equiaxed grain volume fraction in the two cases. The solutal interactions are quantitatively examined in this 
section for purely equiaxed growth. Simulations are performed for a cooling rate of 0.005 K/s. The results are 
presented for two different equiaxed nuclei densities equal to 2.4 × 10+5 and 8.8 × 10+6 m–3. According to Equa- 
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Table 1. Physical properties of Al-Cu alloy.                                                                   

diffusivity in liquid region, Dl (m2∙s−1) 3 × 10−9 

diffusivity in solid region, Ds (m2∙s−1) 3 × 10−18 

slope of liquidus line, me (K∙mol−1) 672 

partition coefficient, ke (−) 0.14 

liquidus temperature, TL (K) 923 

Gibbs-Thomson coefficient, Γ (m∙K) 2.41 × 10−7 

molar volume, Vm (m3∙mol−1) 1.095 × 10−5 

 
tion (9), these nuclei densities give the following characteristic half-spacings for the equiaxed grains, respec-
tively: Rf = 10 and 3 mm. Figure 2 shows the temporal evolution of the equiaxed grain volume fraction (εg) in 
the that cases, together with the temperature variation. The present work and literature [3] data are plotted for 
comparison (Figure 2). When compared the present work results and with those in [3], one can see an excellent 
quantitative agreement between them. It is useful to first focus on the curves corresponding to the largest nuc-
leus densities, n = 2.4 × 10+5 m–3. One can see from Figure 2 that grain growth is initially very slow, until about 
200 seconds, which can be attributed to the small values of the envelope area concentration (Se) in Equation (10). 
Starting at 200 seconds, the grains undergo a period of rapid growth until the grain volume fraction (εg) reaches 
values of about 0.95 at 350 seconds. This rapid increase in grain volume fraction (εg) can be attributed to Se in 
Equation (10) and to the solutal undercooling in Equation (8) for the dendrite tip velocity simultaneously reach-
ing larger values. The time when the solutal undercooling (Ω) in Equation (8) reaches a negligibly small value 
and dendritic growth ceases is marked as an asterisk in Figure 2. This asterisk is labeled “CET” and, indicates 
that if columnar grains were present, they would stop growing too. A similar result is obtained for the case with 
nucleus densities equal to 8.8 × 10+6 m–3, except that the undercooling dissipates earlier due to the somewhat 
larger values of Se at early times. Also, the maximum equiaxed grain fraction, corresponding to the time when 
the undercooling vanishes, is about 0.7. 

Through of numerical example (Figure 2), the sensitivity of the columnar-to-equiaxed transition (CET) with 
the nucleus density is demonstrated. Figure 3 shows the solute concentration in both the interdendritic and 
extradendritic liquid during the solidification process. 

Figure 3 shows the corresponding variations in the liquid solute concentrations during the solidification 
process. One can see solute concentration in extradendritic liquid ( )lC  increases very fast to the interdendritic 
liquid concentration ( )*

lC  at around 350 seconds, i.e., the undercooling dissipates within a few seconds for 
nucleus densities (n) equal to 2.4 × 10+5 m−3. On the other hand, when the nuclei density is 8.8 × 10+6 m−3, the 
solutal under-cooling dissipates in about 260 seconds. When solutal under-cooling reaches a negligibly small 
value, this means that not only the equiaxed dendritic growth stops, but also the columnar growth, in this situa-
tion we can determine the columnar-to-equiaxed transition (CET) in solidification of Al-0.013 mol% Cu alloy. 
The main feature of the CET model is that both the equiaxed and columnar dendrite growth velocities are a 
function of a solutal under-cooling proportional to the difference between the local liquidus concentration and 
the local average solute concentration in the extradendritic liquid, in Equation (8). Figure 4 shows both the co-
lumnar front position (zt+Δt) and said growth velocity (V) during the solidification process. 

The two different cases shown in Figure 4 illustrate why the present model can result in different CET pre-
dictions. Both cases are characterized by same temperature gradient and alloy composition, but different colum-
nar front velocities. For n = 8.8 × 10+6 m−3 case, the equiaxed grain density is relatively large, as would case if 
an inoculants (grain refiner) had been used, one can see from Figure 4 the grain growth until about 220 seconds, 
after that, the velocity of front columnar decreases fast to the zero, indicating that CET has already occurred. For 
n = 2.4 × 10+5 m−3 case, the curve profile is similar to the previous case, i.e., one can see for said case that the 
columnar front velocity is initially very slow until 40 seconds, after this, the velocity undergo a abrupt increase 
until reaches a maximum value of about 8.5 × 10−5 m/s at 320 seconds, then decreases to zero, it indicates that 
columnar grains stopped growing, and the CET occurred too. Both velocity and position curves are consistent; 
because when velocity decreases to zero the columnar front position becomes constant at the time. One can see, 
that at the time when the velocity is zero (at about 340 seconds), the columnar front position is constant. The  
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Figure 2. Effect of the equiaxed nuclei densities (n) on the columnar-to-equiaxed transition 
(CET) of an Al-0.013 mol% Cu alloy cooled at a constant rate ( )0.005 K sT =� .          

 

 
Figure 3. Variation of the extradendritic and interdendritic liquid concentration during the 
solidification time.                                                              

 

 
Figure 4. Dendrite tip velocity and columnar front position versus time solidification.        
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knowledge of the columnar front position is needed in order to decide which equation to use to calculate the 
characteristic half-spacing (Rf). The model results indicate that the CET occurred when the columnar front posi-
tion has a maximum and the velocity of the columnar front is almost zero (Figure 4). Figure 4 shows the tem-
poral evolution of the extradendritic liquid (l), solid (s) and interdendritic liquid (d) calculated for the 2.4 × 10+5 
m−3 case. One can see that, until about 200 seconds the control volume is totally extradendritic liquid. As said 
liquid decreases both the solid and interdendritic liquid increases until about 350 seconds. At the 350 seconds, 
the equiaxed grains have enough time to reach a sufficiently high volume fraction to block the columnar grains 
growth. In this time, the extradendritic liquid fraction (l) becomes very small and the control volume is almost 
totally solid (s) and interdendritic liquid (d). Starting at 350 seconds, the solid fraction keeps the growth, while 
interdendritic liquid (d) decreases, i.e., from that time the interdendritic liquid (d) becomes solid. An interesting 
behavior concerning progress of solidification can be observed through results in Figure 5, the interdendritic 
liquid (d) is the last to solidify, because the rejected solute from solid enriches the interdendritic liquid (d) and it 
decreases the liquidus temperature. That blocking between grains is the CET, and the result in Figure 5 is in 
agreement with those of Figure 2. 

In this subsection, we present the results for numerical simulation of solutal interaction mechanism for the 
columnar-to-equiaxed transition. The results obtained by phase-field model are presented in the following sub-
section. 

3.2. Phase-Field Model Results 
To calculate the governing equations, there are seven unknown values. Three of them are phase-field parameters. 
W and ε are determined by solving Equations (18) and (19) simultaneously. Since the phase-field mobility is a 
function of temperature, it should be calculated with the temperature during the computation. The values of so-
lute concentration in liquid, cL, and solid, cS, are also required; they are determined from Equation (14) depend-
ing on the values of φ and c at each point and every time step. The governing Equations (13) and (14) above are 
solved numerically, using a finite-difference scheme. In the calculations, the system temperature is uniform and 
continuously decreased with a constant cooling rate from the initial temperature (T0), which is slightly lower 
than the liquidus temperature of the Al-Cu alloy. We analyze columnar growth in a two-dimensional system. 
The phase field model is used to calculate the alloy directionally solidified from left to the right side of compu-
tational domain, by imposing a constant temperature gradient in an undercooled melts system. Solidification in 
the presence of walls is of great practical importance. In casting, solidification usually starts by heterogeneous 
crystal nucleation on the walls of the mold. Those crystals that grow from mold walls are known as columnar 
dendritic grains. The concentration field, growth and selection of columnar dendritic grains with constant cool-
ing rate equal to 0.005 K/s for Al-0.013 mol% Cu are shown in Figure 6. In the said figure, the gray scale  

 

 
Figure 5. Volume fraction for extradendritic liquid, solid and interdendrit-
ic liquid versus time solidification in seconds.                         



A. F. Ferreira et al. 
 

 
916 

 
Figure 6. Simulation of the advancing of the columnar front with a cooling rate 
of 0.005 K/s. (a) early stage of arm growth, t = 0.062 sec; (b) arm growth and 
selection, t = 0.083 sec; (c) coarsening of arm, t = 0.200 sec.                     

 
represents solute concentration, while the white represents the concentration of the segregated copper from solid 
to liquid region. The copper concentration in solid is much less than that of copper in liquid. All the columnar 
dendritic grains are growing from left surface but the shapes of the arms are different from each other due to the 
imposed noise by Equation (22). In this simulation, a fine solid layer was added to left side of the domain boun-
daries. 

During the calculations, the system temperature is uniform and continuously decreased with a constant cool-
ing rate from the initial temperature of 922 K, which is slightly lower than the liquidus temperature of the 
Al-0.013 mol% Cu alloy. The advanced columnar grains in Figure 6(a) grows preferably, grains stop advancing 
or slightly melt back (Figure 6(b)). After the selection of the columnar grains, the coarsening of the selected 
grains is observed in Figure 6(c). In this way phase-field calculation shows the columnar selection and the co-
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lumnar spacing occurs sequentially. In the phase-field model, initial solid seeds are physically selected to grow 
or shrink. It should be observed that the spacing between columnar grains depends on the competitive growth of 
grains during solidification. During the beginning of the solidification process, the competitive growth between 
columnar grains is more intense and the spacing between them is narrow. The competitive growth of grains be-
comes less intensive with the advance of the columnar grains into the liquid region. In this present simulation, 
the competitive growth and selection of columnar grain are successfully reproduced. With the exception of ex-
tremely pure materials, even nucleation in the bulk liquid happens mostly via a heterogeneous mechanism, i.e., 
on the surface of suspended foreign particles. This way, particulate additives are widely used as grain refiners to 
reduce grain size by enhancing the nucleation rate. Most functional and structural materials consist of an assem-
bly of small grains of different orientations, which can vary in size from few nanometers to several hundred mi-
crons, the physical properties of polycrystalline materials are strongly influenced by them. In order to simulate 
the growth of equiaxed grains, the phase-field model also has been used to address problems with multi-den- 
dritic growth into liquid region with a constant cooling rate equal to 0.005 K/s and initial temperature of 922 K 
(Figure 7). Simulation of the equiaxed grains growth requires a further important element, the growth of 
equiaxed grains with different crystallographic orientations. Nuclei of same size were artificially introduced in 
computational domain to mimic the nucleation in the liquid region. The grain orientations between 0 and +1 are 
generated randomly for each nucleus introduced in computational domain. The growth process of six dendrites 
is shown in Figure 7. The snapshots correspond to the growth time of 3.4 × 10–3 sec, 8.8 × 10–3 sec, and 2.38 × 
10–2 sec are shown in Figures 7(a)-(c). The equiaxed grains grow faster along the crystallographic orientations. 
At the early stage, as shown in Figure 7(a) and Figure 7(b), the equiaxed grains with different orientations 
grows freely and independently. In Figure 7(c), with increase of time, the grains begin to coalesce and impinge 
the adjacent grains. The advanced equiaxed grains in Figure 7(c) grow and other grains stop advancing or slightly 
melt back. 

The competitive growth of these grains during solidification process can be observed. Due to the solute redi-
stribution from solid to liquid region, the interdendritic liquid just ahead of the interface always has a composi-
tion greater than liquid region distant of solid-liquid interface. While the copper concentration in solid region is 
the lowest, the highest concentration corresponds to the interdendritic liquid. The simulation patterns of dendrit-
ic growth shows typical equiaxed grains structure, and comparing these simulations (Figures 7(a)-(c)), one can 
see that the equiaxed grains structure is very sensitive to the competitive growth. The results of the coupled 
models are showed in the following subsection. 

3.3. Results of Coupling between the Multiphase/Multiscale Model and Phase-Field Model 
In spite of phase-field models being suitable for simulating solidification processes, they suffer from low com-
putational efficiency. For example, for computation of a dendrite with side-branches, i.e. secondary and tertiary 
arms, the computational domain should be discretized into one millions points. Thus, the computational stability 
condition in an explicit finite scheme can be guaranteed only with a very small time step [18]. From Figure 2, 
one can see that the columnar-to-equiaxed transition (CET) occurs earlier for high nuclei density. For this reason, 
we increased artificially the nuclei density (n = 8.4 × 10+12 and 24.8 × 10+12 m−3), in order reduce the solidifica-
tion time and consequently the computer run time. With the increase in nuclei density in the bulk liquid, more 
equiaxed grains are nucleated. This, in turn, leads to a finer grain size in casting. Grain refinement by inocula-
tion involves addition of particles which can act as substrates for heterogeneous nucleation. Inoculation is par-
ticularly widely practiced in the aluminium industry [28]. Figure 8 shows the profile of grain volume fraction 
(εg) versus solidification time, in which the columnar-to-equiaxed transition (CET) can be determined. Despite 
of the profiles for the two cases are qualitatively similar (Figure 2 and Figure 8). Quantitatively, it can be an-
ticipated than the columnar-to-equiaxed transition (CET) occurs earlier when the Al-Cu alloy has a higher nuclei 
density present in the melt. 

For nuclei density equal to 8.4 × 10+12 m–3, one can see that columnar-to-equiaxed transition takes place at 0.2 
seconds. On the other hand, for a value equal to 24.8 × 10+12 m–3, the columnar-to-equiaxed transition takes 
place earlier to the 0.13 seconds. This transition times are input data for phase-field model, the results are showed 
to following. 

Figures 9(a)-(d) show the morphology of dendrites which are calculated for an initial concentration of 0.013 
mole fraction. To simulate the chill effect near the mould wall, a fine solid layer was added at the bottom of 
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Figure 7. Simulation of the multiple dendrite growth of Al-Cu binary alloy under 
cooling rate of 0.005 K/s. (a) early growth stage of the equiaxed grains, t = 3.4 × 10−3 
sec; (b) the equiaxed grains grow freely and independently in the liquid region, t = 8.8 
× 10−3 sec; (c) finally, the impingement on one another equiaxed grain with orienta-
tion different of growth, t = 2.36 × 10−2 sec.                                      
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Figure 8. The grain volume fraction versus solidification time, for a nuclei density 
equal to 8.4 × 10+12 and 24.8 × 10+12 m−3.                                      

 

 
Figure 9. Numerical simulation of the morphology dendritic of an Al-0.013 mol% Cu alloy 
with solidification time of (a) 0.087 sec; (b) 0.17 sec; (c) 0.25 sec; (d) 0.32 sec.            
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the computational domain before simulation. The fine solid layer becomes unstable in a supercooled domain, 
with branching advancing into the liquid region (Figure 9(a)). One can see that some grains grew from solid 
layer and only few long columnar grains succeed in growing due to the competitive nature of the growth 
(Figure 9(b)). Figure 9(c) shows the formed equiaxed grains in random directions in the liquid region ahead of 
the columnar zone, in this way, the advance of the columnar front is blocked by the equiaxed grains. That way, 
the columnar grains shall have their growth inhibited and the columnar-to-equiaxed transition (CET) can be de-
termined. The concentration field during grain growth is depicted in that figure. In the picture, the color scale 
represents solute concentration; so to speak, the white represents the concentration of the segregated solute from 
the solid to the liquid region, while the dark gray is the solute concentration in the solid region. Note that the 
solute concentration is higher between dendrites/grains. Due to solute rejection by the growing dendrites/grains 
into the liquid region, the extradendritic liquid concentration (Cl) becomes equal to interdendritic liquid concen-
tration (Cl

∗) (Figure 9(c) and Figure 9(d)). Figure 10 illustrates the microstructure evolution during the colum-
nar-to-equiaxed transition (CET) for a nuclei density equal to 24.8 × 10+12 m−3. For the said density, the colum-
nar-to-equiaxed transition takes place at 0.13 seconds, which is determined by multiphase/multiscale model, as 
previously indicated in Figure 8. 

Through comparison between Figure 9 and Figure 10, which presents the dendritic morphology during the 
solidification process for an Al-0.013 mol% Cu alloy, one can see before columnar-to-equiaxed transition (CET), 
the two-dimensional simulations presents columnar dendrites similar (Figure 9(a) and Figure 10(a)). However, 
after columnar-to-equiaxed transition (CET), Figure 10(c) and Figure 10(d) show smaller columnar dendrites, 
as expected, for a higher nuclei density present in the melt, at a shorter distance between mold wall and the 
equiaxed zone. The simulated results showed that the solidification features are consistent with those observed 
based on the metallographic examinations of cast microstructures reported in the literature [31] [32] and [34].  

 

 
Figure 10. Numerical simulation of the dendritic morphology of an Al-0.013 mol% 
Cu alloy with solidification time of (a) 0.0815 sec; (b) 0.1039 sec; (c) 0.157 sec; (d) 
0.309 sec.                                                               
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During the solidification process the extradendritic liquid (l) decreases, while both solid (s) and interdendritic 
liquid (d) increase gradually through that period. After the columnar-to-equiaxed transition (CET), the said in-
terdendritic liquid begins to solidify, suggesting that solidification process approaches its ending (Figure 5). In 
response to columnar-to-equiaxed transition (CET), the extradendritic liquid concentration (Cl) increases very 
rapidly to interdendritic liquid concentration (Cl

∗) (Figure 3), while growth velocity of columnar grains ap-
proaches zero (Figure 4). It should be noted that in Equation (8) the undercooling is defined relative to the av-
erage solute concentration in the undercooled extradendritic liquid, Cl. In the [2], [8] and [11] is used instead the 
initial alloy composition, C0, to determine the undercooling for dendrite growth. In the [13] adopted Cl for 
equiaxed growth, but C0 for columnar growth. In this present study, Cl is used for both equiaxed and columnar 
growth. This difference constitutes the main new feature of the CET model. The dendritic morphology during 
the columnar-to-equiaxed transition (CET) in directional solidification is simulated using the phase-field model. 
The model relies on the solute conservation equation (Equation (14)) and a phase-field equation (Equation (13)) 
on the scale of the developing microstructure. A solute entrapment can be observed in the region next to the co-
lumnar grains and equiaxed (Figure 9 and Figure 10). Therefore, these regions are richest in solute. As result, 
the solidification temperature is lower for those regions. With a greater solute concentration and lower solidifi-
cation temperatures, these will tend to be the last parts to solidify. A solute concentration boundary layer exists 
in the liquid along the columnar grain contour. In this boundary layer, the concentration decreases exponentially 
to C0. The concentrations in the solid indicate the presence of a microsegregation pattern. It should be observed 
that the phase-field calculations physically reproduces competitive growth of the columnar grains from the per-
turbed interface (Figure 9(a) and Figure 9(b)), the final arms spacing are independent of initial conditions, as 
discussed in [22]. On the other hand, spacing between columnar grains depends on the competitive growth of 
them during solidification. Thus, at the onset of solidification, the competitive growth is intense, which decreas-
es with time during any solidification process (Figure 9(a) and Figure 9(b)). 

4. Conclusion 
A model based on coupling between the multiphase/multiscale model and phase-field was proposed in the present 
study. The multiphase/multiscale model proposed in the [3] was applied to predict the columnar-to-equiaxed 
transition (CET) in the solidification of Al-Cu alloy. The main feature of model is the concept of solutal block-
ing of the columnar front, which is opposed to a mechanical blocking criterion based on a critical equiaxed grain 
fraction, as introduced in [8]. The solute blocking effect is achieved in the model by basing the undercooling 
that drives dendrite tip growth on the average solute concentration of the liquid surrounding the grain envelopes 
(extradendritic liquid), instead of the initial alloy composition (C0). The columnar-to-equiaxed transition (CET) 
will occur, when the solute rejected from the equiaxed grains is sufficient to dissipate the solutal undercooling at 
the columnar front, such that Cl has increased to *

lC . Through numerical examples (Figure 8), one can see that 
the columnar-to-equiaxed transition (CET) is strongly influenced by nuclei density (n), as suggested by previous 
studies [31]-[33]. The time of columnar-to-equiaxed transition (CET), in turn, is used as an input data for phase- 
field model. Thus, the phase-field model is used as computational method to simulate the microstructural mor-
phology of columnar and equiaxed grains during any solidification process. Phase-field models have become 
popular in the field of structure evolution in solidification because of their capability for accurate and grid-in- 
dependent simulations of alloy solidification at the scale of microstructure. Their chief advantage is to avoid the 
explicit interface tracking by the introduction of a phase field variable, φ(x, y, t), which takes on constant values 
in the bulk phases and varies smoothly but steeply in a diffuse interface region. The phase field method is a po-
werful algorithm to simulate the evolution of S/L interface in both 2D. The technique is capable of reproducing 
most of the phenomena associated with microstructure formation as competitive growth, coarsening and den-
drite tip kinetics. Through phase-field model, an investigation of the columnar-to-equiaxed transition on the 
morphology of columnar and equiaxed grains for different nuclei density can be performed, for a binary alloy. 
The results show that microstructural morphology depends strongly on said nuclei density (Figure 9 and Figure 
10). In the other words, the simulations showed a decrease in columnar zone length with the nuclei density in-
crease, an effect resulting from equiaxed grains nucleated in front of columnar zone. However, the major prob-
lem is that the interface width in phase-field model has to be extremely small which limits the entire domain size 
and computation efficiency. It should be emphasized that the columnar-to-equiaxed transition (CET) depends on 
the thermal profile and inoculation on the macroscopic scale and the solute undercooling determined by the so-
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lute diffusion, dendritic morphology, and alloy composition in microscopic scale. Through model proposed in 
the present study, the influence of nuclei density on the columnar-to-equiaxed transition and dendritic morphol-
ogy can be quantitatively simulated. On the other hand, the numerical modeling is dependent on input parame-
ters, accuracy of phase diagram and material properties such as nuclei density, diffusion coefficient and interface 
energies. In order to improve the accuracy of the CET simulation, numerical models including multi-phases and 
fluid flow will need to be considered in future works. 
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