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Abstract 
New algorithm for optimizing technological parameters of soft magnetic composites has been de-
rived on the base of topological structure of the power loss characteristics. In optimization mag-
nitudes obeying scaling, it happens that one has to consider binary relations between the magni-
tudes having different dimensions. From mathematical point of view, in general case such a pro-
cedure is not permissible. However, in a case of the system obeying the scaling law it is so. It has 
been shown that in such systems, the binary relations of magnitudes of different dimensions is 
correct and has mathematical meaning which is important for practical use of scaling in optimiza-
tion processes. The derived structure of the set of all power loss characteristics in soft magnetic 
composite enables us to derive a formal pseudo-state equation of Soft Magnetic Composites. This 
equation constitutes a relation of the hardening temperature, the compaction pressure and a pa-
rameter characterizing the power loss characteristic. Finally, the pseudo-state equation improves 
the algorithm for designing the best values of technological parameters. 
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1. Introduction 
Recently novel concept of technological parameters’ optimization has been applied in Soft Magnetic Compo-
sites (SMC) by Ślusarek et al., [1]. This concept is based on assumption that SMC is a self-similar system where 
function of loss of power obeys the scaling law [2]-[4]. The efficiency of scaling in solving problems concerning 
power losses in soft magnetic composites has already been confirmed in [1]. 
The scaling is very useful tool due to the three reasons:  

• it reduces number of independent variables f  and mB  to the effective one ( )mf B α , 
• and determines general form of loss of power characteristic in a form of homogenous function in general 

sense (h.f.g.s.), 
• as well as enables us to use binary relations between magnitudes of different dimensions.  

Reduction of independent variables is based on definition of the h.f.g.s., namely, ( ), mF f B  is the h.f.g.s. if:  

{ } ( ) ( ), , : , , .a b c
m ma b c F f B F f Bλ λ λ λ+ =>∃ ∈ × × ∀ ∈ =                   (1) 

According to the assumption concerning λ  we are free to substitute any positive real number, for instance  

( ) 1 b
mBλ −=  then we get: 

( ),
,1m

m m

F f B fF
B Bβ α

 
=  

 
                                        (2) 

where f  and mB  are frequency and pik of magnetic inductance, respectively. ( ) ,1F ⋅  is an arbitrary function,  
a
b

α = , c
b

β =
 

are scaling exponents.  

Choice for the ( ) ,1F ⋅  depends on the power loss characteristics of investigated materials. In [1] we have 
modified the Bertotti decomposition rule [5] [6] which led to the following form for ( ) ( )tot ,1mP B Fβ⋅ = ⋅ : 

( ) ( )( )( )tot
1 2 3 4Γ Γ Γ Γm m m m

m

P
f B f B f B f B

B
α α α α

β = ⋅ + ⋅ + ⋅ + ⋅                 (3) 

where nΓ , α  and β  have been estimated for different values of the technological parameters [1] (pressure and 
temperature). For purpose of this paper we take into account only one family of power loss characteristics which 
are presented in Figure 1 and Figure 2. The corresponding estimated values of the model parameters are pre-
sented in Table 1. For all other details concerning SMC material and measurement data we refer to [1]. Now we 
are ready to formulate the goals of this paper. Main goal is to minimize the power loss in SMC by using model 
density of power loss (3) and corresponding values of the model parameters. From the first row of Table 1, we can 
see that dimensions of the nΓ  coefficients depend on the values of the α  and β  exponents. Therefore, the  
 

 
Figure 1. Selection of the power loss characteristics Ptot/(Bm)α 
vs. f/(Bm)α calculated according to (3) and Table 1 for Soma-
loy 500 [1], T = 500˚C.                                   
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Figure 2. Selection of the power loss characteristics Ptot/(Bm)α 
vs. f/(Bm)α calculated according to (3) and Table 1 for Soma-
loy 500 [1].                                            

 
Table 1. Somaloy 500. Values of scaling exponents and coefficients of (3) vs. compaction pressure and hardening temperature, 
a selection from [1].                                                                                         

T  p  α  β  1Γ  2Γ  3Γ  4Γ  

[˚C] [MPa] [−] [−] [m2∙s−2Tα−β] [m2∙s−1T2α−β] [m2T3α−β] [m2∙sT4α−β] 

500 
500 
500 
500 
400 
450 
550 
600 

500 
600 
700 
900 
800 
800 
800 
800 

−1.312 
−1.383 
−1.735 
−1.395 
−1.473 
−1.596 
−2.034 
−1.608 

−0.011 
−0.125 
−0.517 
−0.082 
−0.28 

−0.123 
−1.326 
−0.232 

0.171 
0.153 
0.156 
0.101 
0.183 
0.145 
0.106 
1.220 

3.606 × 10−5 
3.328 × 10−5 

2.393 × 10−5 
6.065 × 10−5 
1.347 × 10−5 
2.482 × 10−5 
1.407 × 10−4 
8.941 × 10−4 

1.953 × 10−8 

9.254 × 10−8 

2.309 × 10−8 

−8.031 × 10−8 

3.689 × 10−9 

−1.218 × 10−9 

−1.066 × 10−8 

−5.302 × 10−8 

−2.255 × 10−12 
−1.177 × 10−12 
−8.075 × 10−14 
7.877 × 10−13 
1.185 × 10−13 

6.120 × 10−14 
4.541 × 10−13 
1.664 × 10−11 

 
power loss characteristics presented in Figure 1 and Figure 2 are different dimensions. So, we have to answer the 
following question: are we able to relate them in the optimization process which has been described in [1]? 

In this paper we will prove that if the considered characteristics obey the scaling, then the binary relation be-
tween them is invariant with respect to this transformation and comparison of two magnitudes of different di-
mensions has mathematical meaning. Reach measurement data of power losses in Somaloy 500 have been 
transformed into parameters of (3) vs. hardening temperature and compaction pressure Table 1 in [1]. Information 
contained in this table enable us to infer about topological structure of set of the power loss characteristics and 
finally to construct pseudo-state equation for SMC, and derive new algorithm for the best values of technological 
parameters.  

2. Scaling of Binary Relations 
Let the power loss characteristic has the form determined by the scaling (2). It is important to remain that α  
and β  are defined by initial exponents a , b  and c  (see after Formula (2)): 

;     a c
b b

α β= =                                           (4) 

Let us concentrate our attention at the point on the ( )mf B α  axis of Figure 1 and Figure 2: 

31 2 4
1 2 3 4
1 2 3 4m m m m m

ff f ff
B B B B Bα α α α α= = = =                                     (5) 
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Let us take into account the two characteristics and let us assume that  

tot1 tot2
1 2
1 2m m

P P
B Bβ β>                                             (6) 

Therefore, the considered binary relation is the strong inequality and corresponds to natural order presented in 
Figure 1 and Figure 2. The most important question of this research is whether (6) is invariant with respect to 
scaling: 

tot1 tot2
1 2

1 2m m

P P
B Bβ β

′ ′
>

′ ′
                                           (7) 

Let 0λ >  be an arbitrary positive real number. Then, the scaling of (7) goes according to the following al-
gorithm: 

• Let us perform the scaling with respect to λ  of all independent magnitudes and the dependent one: 

tot tot;     ;     i i ia b c
i i mi mif f B B P Pλ λ λ′ ′ ′= = =                                  (8) 

where 1,2, , 4i =   labels the considered characteristics. 
• Substituting appropriate relations of (8) to (7) we derive: 

1 1 1 2 2 2tot1 tot2
1 2
1 2

c b c b

m m

P P
B B

β β
β βλ λ− −>                                  (9) 

• Collecting all powers of λ  on the left-hand side of (9) and taking into account (4) we derive the resulting 
power to be zero and 

1 1 1 2 2 2 1c b c bβ βλ − − + =                                        (10) 
Therefore (6) is invariant with respect to scaling. This binary relation has mathematical meaning and consti-

tutes the total order in the set of characteristics. 

3. Binary Equivalence Relation 
The result derived in Section 2 can be supplemented with the following binary equivalence relation. Let 

, tot ,
,

 ,  ,

,
i i

i j i j
i j

m i j m i j

f P
X

B Bα β

 
=   
 

                                      (11) 

be the j -th point of the i -th characteristic. Two points j  and k  are related if they belong to the same i - 
th characteristic: 

, ,i j i kX XR                                              (12) 

Theorem: R  is equivalence relation. (The proof is trivial and can be done by checking out that the consi-
dered relation is: reflexive, symmetric and transitive.) Therefore, R  constitutes division of the positive-posi- 
tive quarter of plane spanned by (11). The characteristics do not intersect each other except in the origin point 
which is excluded from the space. The result of this section implies that the power loss characteristics (2) and (3) 
are invariant with respect to scaling. Structure of derived here the set of all characteristics of which some exam-
ples are presented in Figure 1 and Figure 2 enables us to derive a formal pseudo-state equation of SMC. This 
equation constitutes a relation of the hardening temperature, the compaction pressure and a parameter characte-
rizing the power loss characteristic corresponding to the values of these technological parameters. Finally, the 
pseudo-state equation will improve the algorithm for designing the best values of technological parameters. 

4. Pseudo-State Equation of SMC 
Let   be set of all possible power loss characteristics in considered SMC. Each characteristic is smooth curve 

in ( ) ( )tot,m mf B P Bα β 
   plane which corresponds to a point in [ ],T p  plane. In order to derive the pseudo-  

state equation we transform each power loss characteristic into a number V  corresponding to ( ),T p  point. 
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By this way we obtain a function of two variables: 

( ),T p V→                                            (13) 

This function must satisfy the following condition. Let us concentrate our attention at the two following 
points: 

1 2

1 2

1 2

;     
m mm m

f ff f
B BB Bα α α α= =                                  (14) 

Let us consider the two characteristics ( ) 1
tot1 1mP B β  and ( ) 2

tot2 2mP B β  of the two samples composed under 
1T , 1p  and 2T , 2p  values of temperature and pressure, respectively. 
While, the other technological parameters powder compositions and volume fraction are constant. Let us as-

sume that for (14) the following relation holds: 

tot1 tot2
1 2
1 2m m

P P
B Bβ β>                                             (15) 

It results from the derived structure of   that (15) holds for each value of (14).Therefore we have to assume 
the following condition of sought V  ( ),T p : If the relation (15) holds for 1T , 1p , 2T , 2p  then the fol-
lowing relation has to be satisfied for V  ( ),T p : 

( ) ( )1 1 2 2, , .V T p V T p>                                        (16)  

Moreover, V  ( ),T p  has to indicate place of corresponding characteristic in the ordered  . The simplest 
choice satisfying these requirements is the following average: 

( ) max

min

tot

max min

1, dm

m m

fP
B fV T p

B B

α
ϕ

β αϕϕ ϕ

 
 

  =  
−  

∫                                  (17) 

where the integration domain is common for the all characteristics. We have selected the common domain of 
Figure 1 and Figure 2: min 0ϕ = , max 4000ϕ =  [s−1∙T−α]. Using (3) we transform (17) to the working formula 
for the measure V : 

( ) ( )( )( )max

min
1 2 3 4

max min

1, Γ Γ Γ Γ dV T p x x x x x
ϕ

ϕϕ ϕ
= + + +

− ∫                          (18) 

where ( )mx f B α= , iΓ  are coefficients dependent on T  and p , see Table 1. The values of V  ( ),T p  
are tabulated in Table 2. Table 2 enables us to draw pseudo-isotherm. It is presented in Figure 3. However, in 
order to derive the complete pseudo-state equation we must create a mathematical model. On basis of Figure 3 
we start from the classical gas state-equation as an initial approximation: 
 

 
Figure 3. Pseudo-Isotherm T = 500˚C of the Low-losses phase, according to data of Table 2 for Somaloy 500 [1]. 
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Table 2. V measure vs. hardening temperature and compaction pressure.                                             

T p V 

[K] [MPa] [W∙kg−1T−β 

723.15 800 40.60 

773.15 900 43.75 

773.15 700 47.25 

673.15 800 50.30 

773.15 600 57.12 

823.15 800 81.50 

773.15 500 89.28 

742.15 764 492.3 

753.15 780 509.2 

804.15 764 528.5 

711.15 764 547.0 

873.15 800 720.0 

 

1
B

p V
k T
⋅

=
⋅

                                       (19) 

where Bk  is pseudo-Boltzmann constant.  
In order to extent (19) to a realistic equation we apply again the scaling hypothesis (2) [2]-[4]: 

, Φ c

c c c

c

T
TT p pV

T p p p
p

γ

δ

 
 

     
=     

      
    

                               (20) 

where ( )Φ ⋅  is an arbitrary function to be determined. γ , δ  and cT , cp  are scaling exponents and scaling 
parameters respectively, to be determined. For our conveniences we introduce the following variables: 

;     ;     c

c c

c

T
TT p X

T p p
p

δ δ

ττ π
π

 
= = = = 

  
 
 

                             (21) 

In order to extent (19) to a full state-equation we apply the Padé approximant by analogy to virial expansion 
derived by Ree and Hoover [7]: 

( )
( )( )( )
( )( )( )

0 1 2 3 4

1 2 3 4

,
1

G X G X G X G XG
V

X D X D X D XD
γτ π π

+ + + +
=

+ + + +
                   (22) 

where 0 4, ,G G , 1 4, ,D D  are parameters of the Padé approximant. All parameters have to be determined 
from the data presented in Table 2. 

5. Estimation of the Pseudo-State Equation’s Parameters 
At the beginning we have to notice that the data collected in Table 2 reveal sudden change of V  between two 
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points: [773, 15; 500, 0] and [742, 15; 764, 0]. This suggests existence of a crossover between two phases: low- 
losses phase and high losses phase. We take this effect into account and we divide the data of Table 2 into two 
subsets corresponding to these two phases, respectively. Since the cross over consists in changing of characteris-
tic exponents for the given universality class it is necessary to perform estimations of the model parameters for 
each phase separately. Minimizations of 2χ  for both phases have been performed by using MICROSOFT 
EXCEL 2010, where 

( )( )( )
( )( )( )

2

0 1 2 3 42
1

1 2 3 4

( , )
1

i i i iN
i i ii

i i i i

G X G X G X G X G
V

X D X D X D X D
γχ τ π π

=

 + + + +
 = −
 + + + + 

∑               (23) 

where 7N =  and 5N =  for the low-losses and high-losses phases, respectively. Table 3 and Table 4 present 
estimated values of the model parameters for the low-losses and for high-losses phases, respectively. 

6. Optimization of Technological Parameters 
Function V  ( ),T p  serves a power loss measure versus the hardening temperature and compaction pressure. 
In order to explain how to optimize the technological parameters with the pseudo-state Equation (22) we plot the 
phase diagram of considered SMC Figure 4. Note that all losses’ characteristics collapsed to a one curve for the 
eachphase. Taking into account the Low-losses phase we determine the lowest losses at 19.75δτ π −⋅ = . This 
gives the following continuous subspace of the optimal points: 

19.75c

c

T
T

p
p

δ =
 
 
 

                                      (24) 

Formula (24) represents the minimal iso-power loss curve. All points satisfying (24) are solutions of the opti-
mization problem for technical parameters of SMC. 

7. Conclusion  
By introducing the binary relations we have revealed twofold. The power loss characteristics do not cross each 
other which makes the topology’s set of this curves very useful and effective that we can perform all calcula-
tions in the one-dimension space spanned by the scaled frequency or here in the case of pseudo-statee quation in 
the scaled temperature. For general knowledge concerning such a topology we refer to the papers by Egenhofer 
[8] and by Nedas et al. [9]. However, to our knowledge this paper is the first one about the binary relations be- 
 
Table 3. Somaloy 500, low-losses phase. Values of pseudo-state equation’s parameters and the Padé approximant’s coeffi-
cients of (22).                                                                                              

  Tc pc G0 G1 G2 

0.1715 1.2812 21.622 37.729 370,315,315 −47,752,251 1,734,952 

G3 G4 D1 D2 D3 D4 - 

−1.3764 −678.26 170.80 6243.8 386.96 −28.699 - 

 
Table 4. Somaloy 500, high-losses phase. Values of pseudo-state equation’s parameters and the Padé approximant’s coeffi-
cients of (22).                                                                                                

  Tc pc G0 G1 G2 

0.1810 1.5550 22.949 30.197 365,210,688 −47,714,207 1,762,773 

G3 G4 D1 D2 D3 D4 - 

−1.3763 −683.38 170.77 5739.9 387.81 −22.514 - 
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Figure 4. Phase diagram for Somaloy 500.                  

 
tween magnitudes of different dimensions in the sense of different physical magnitudes. Also, this paper is the 
first one which presents an application of scaling in designing the technological parameters’ values by using the 
pseudo-state equation of SMC. The obtained result is the continuous set of points satisfying (24). All solutions 
of these equations are equivalent for the optimization of the power losses. Therefore, the remaining degree of 
freedom can be used for optimizing magnetic properties of the considered SMC. Ultimately, one must say that 
the degree of success achieved when applying the scaling depends on the property of the data. The data must 
obey the scaling. 
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