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Abstract 
Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized ma-
thematical model for determining photoelastic constants in arbitrary orientation of cubic crystal 
system. Two times rotations are utilized in the model relating to crystallographic coordinates with 
Cartesian coordinates. The symmetry of photoelastic constants is found to have strong depen-
dence with rotation angle. Using the model, one can determine photoelastic constants in any 
orientation by selecting appropriate rotation angle. The outcome of this study helps to character-
ize spatial variation of residual strain in crystalline as well as polycrystalline materials having cu-
bic structure using the experimental technique known as scanning infrared polariscope. 
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1. Introduction 
The quality of semiconductor materials as well as devices is strongly dependent on residual strain induced in the 
materials during the growth and cooling processes [1]-[3]. Yamada et al. [4] [5] have developed computer con-
trolled scanning infrared polariscope (SIRP) that is used to measure spatial distribution of strain in crystalline 
semiconductor wafers and ingot. Although SIRP can be effectively utilized for residual strain mapping in crys-
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talline materials [6] [7], it can not be applied to measure residual strain in polycrystalline materials, particularly, 
in solar cell materials [8]. The main problem is the photoelastic constants which are the key parameters required 
for SIRP measurements [6] [7] and have crystal direction/orientation dependence [9]. The photoelastic constants 

11P  and 12P , and 44P  are measured by applying stress parallel to <100>, and <111> directions [10] [11]. To the 
best of our knowledge, there is no experimental measurement of photoelastic constants in arbitrary crystal direction. 

It is well known that some mechanical and optical properties of semiconductor materials and devices strongly 
depend on crystal orientation [12] [13]. The polycrystalline Si-based solar cells exhibit poor efficiency that is 
speculated to be due to residual strain induced in the grain boundary as reported so far [8]. However, the quan-
titative amount of strain can not be measured due to lacking of orientation-dependent photoelastic constants of Si. 
Although Fukuzawa et al. [14] have reported spatial distribution of strain in polycrystalline Si using SIRP, de-
termination of photoelastic constants in arbitrary crystal direction was not reported in details. 

In this study, we for the first time propose a generalized mathematical model to determine photoelastic constant 
in arbitrary crystal orientation combining Euler’s rotation theorem and tensor rotation technique. Using the model 
one can calculate different components of photoelastic constants in cubic crystals just by choosing appropriate 
rotation angle. Herein the model is applied to determine the orientation-dependent photoelastic constants in Si 
crystal as an example. However, the model developed in the present study can be used to determine photoelastic 
constants in cubic/Zincblende crystal structure. 

2. Proposed Model 
The model is developed with the combination of Euler’s rotation theorem [15] and tensor rotation technique [9]. 
The rotation schematic is shown in Figure 1 where two times rotations are performed for the versatility of the 
model. At first X axis is rotated in XY plane by an angle ϕ  about the Z axis so that Y axis is rotated in -XY plane 
by the same angle. After the first rotation, the new position of X, Y, and Z are denoted by X′, Y′, and Z′. Again, 
the X′ axis is rotated in X Z′ ′  plane about the Y ′  axis by an angle θ , as a result, the Z ′  axis is also rotated 
in—X′Z′ plane by the same angle. The final position of X″ and Z″ is obtained after the second rotation. If Carte-
sian coordinate system relates to the conventional crystal coordinate system, the rotation angles ϕ and θ  of the 
general [hkl] direction relative to a crystal coordinate system fixed onto the [100], [010], and [001] directions 
can be given by the following relationships [16] 

tan k
h

ϕ =                                                (1) 

2 2

tan h k
l

θ +
=                                          (2) 

where the indices h, k, and l are the real integers for the case when the crystalline direction is specified in terms 
of the angles ϕ and θ . We can determine the photoelastic constants in any crystal direction/orientation with the 
combination of the angles ϕ and θ. 
 

 
Figure 1. Rotation schematics applied in the 
proposed model. 
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3. Mathematical Analysis 
At first, transformation of XY plane about Z axis by an angle ϕ and then transformation of X Z′ ′  plane about 
Y ′  axis by an angle θ  is applied according to the schematics shown in Figure 1. The rotation matrices ob-
tained from the first and second rotations are represented by C and B, respectively, and indicated by Equations 
(3) and (4) 

cos sin 0
sin cos 0
0 0 1

X Y Z
X

C Y
Z

ϕ ϕ
ϕ ϕ

′
′= −
′

                                     (3) 

cos 0 sin
0 1 0

sin 0 sin

X Y Z
X

B Y
Z

θ θ

θ θ

′ ′ ′
′′
′′=
′′ −

                                     (4) 

According to Euler’s rotation theorem, the combined rotation matrix M can be given [15] by 

cos cos cos sin sin
sin cos 0

sin cos sin sin cos
M BC

θ ϕ θ ϕ θ
ϕ ϕ

θ ϕ θ ϕ θ

 
 = = − 
 − − 

                           (5) 

The photoelastic constant, ijklP , stress, ijX , and change in refractive index, n∆  in semiconductor materials 
can be expressed by [9] 

ijkl ijn P X∆ = −                                        (6) 

Expansion of Equation (6) yields 81 ijklP
 
components. Details are available in [9]. According to tensor rota-

tion/transformation rule, symmetry transformation results in equivalent 36 components form the 81 components 
[9]-[11]. Employing an additional symmetry for the cubic system, only three independent components of pho-
toelastic constants P11, P12, and P44 are existed [9]. The independent components along with other components are 
summarized in Table 1. If photoelastic constant in any direction is known, its value in unknown direction can be 
determined using the following tensor rotation rule [9], 

, , , 1
mnop mn nj ok pl ijkl

i j k l
P a a a a P

=

′ = ∑                                (7) 

where mia , nja , oka , and pla  are the respective direction cosines between the two sets of coordinate axes 
before and after symmetry transformation in the case of Cartesian tensors which are expressed in the form of ro-
tation matrix shown in Equation (5). ijklP  is the value of known photoelastic constant and mnopP′  indicates the 
value which is to be evaluated. By expanding Equation (7) and considering the symmetry described in Table 1 
[9], the independent components of photoelastic constants in rotated direction can be expressed by 
 

Table 1. Equivalent components of Pijkl for cubic crystal system [9]. 

11P  12P  12P  0 0 0 

12P  11P  12P  0 0 0 

12P  12P  11P  0 0 0 

0 0 0 44P  0 0 

0 0 0 0 44P  0 

0 0 0 0 0 44P  
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( )4 4 4 4 4 2 2 2 2
1111 11 12

4 2 2 2 2
44

cos cos sin sin 2 cos cos sin cos sin

cos cos sin cos sin

P P P

P

θ θ θ θ θ

θ

ϕ ϕ ϕ ϕ

ϕ θ θϕ

   ′ = + + + +  
 + + 

                 (8) 

4 4 2 2 2 2
2222 11 12 44cos sin 2 cos sin cos sinP P P Pϕ ϕ ϕ ϕ ϕ ϕ     ′ = + + +                                    (9) 

( )4 4 4 4 4 2 2 2 2
3333 11 12

4 2 2 2 2
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                (10) 

( )2 2 2 4 4 2 2 2 2
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( )2 2 2 2 4 4 2 2 2 2
2233 3322 11 12 442 sin cos sin sin cos sin cos cos sin sinP P P P Pθ θϕ ϕ ϕ ϕ ϕ ϕθ θ    ′ ′= = + + + −       (13) 
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ϕ ϕ ϕ ϕ

ϕ ϕ

θ θ θ θ θ θ
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4. Orientation Dependent Photoelastic Constant 
Using the mathematical formulations derived in Equations (8) to (16), we have calculated orientation-dependent 
photoelastic constants from [100] to [010], [110] to [001], and [100] to [001] directions with the combination of 
rotation angles ϕ and θ. The results are determined for the semiconductor Si using the known values of photoe-
lastic constants listed in Table 2. 

Figures 2(a)-(c) show a comparison among the photoelastic constants 1111P′ , 2222P′ , and 3333P′  which are 
determined for the rotation angles ϕ = 0˚ to 90˚ and θ = 0˚, ϕ = 0˚ and θ = 0˚ to 90˚, and ϕ = 45˚ and θ = 0˚ to 
90˚, respectively. To compare their magnitudes, the figures are plotted in the same scale. The components 

1111P′  and 2222P′  are found symmetrical in Figure 2(a), but in Figure 2(b), 1111P′  and 3333P′  are symmetrical 
and their values are maximum at 45˚ that is in the [110] direction. Apart from 45˚ they decrease following 
Gaussian profile and become equal to the known component P11 in the [100], [010], and [001] directions. It is 
also found in Figures 2(a) and (b) that the components 3333P′  and 2222P′  are independent of the rotation angles 
and their values are equal to P11. The variations of the same components of photoelastic constants are shown in 
Figure 2(c) for the rotation from [110] to [001] direction. It is found that the components 1111P′  and 2222P′  are 
symmetrical at [110] direction. In contrast, 2222P′  and 3333P′  are symmetrical at [001] direction. Apart from 
these directions the cubic symmetry of these components has been lost due to the rotation. It is also found in 
Figure 2(c) that the component 2222P′  is independent of the rotation angle. On the other hand, the components 

1111P′  and 3333P′  vary nonlinearly and their magnitudes change oppositely from −0.0593 to −0.1053 due to the 
rotation. 
 

Table 2. Experimental measurement of Photoelastic constants P11, P12, and P44 for Si crystal taken from Ref. 
[10]. 

Photoelastic constants P11 X<100> P12 X<100> P44 X<111> 

 −0.1053 0.0137 −0.054 
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Figure 2. Variation of orientation-dependent photoe-
lastic constants 1111P′ , 2222P′ , and 3333P′  plotted for the 
directions from (a) [100] to [010]; (b) [110] to [001]; (c) 
[100] to [001]. 

 
The variations of the photoelastic constants 1122P′ , 2211P′ , 1133P′ , 3311P′ , 2233P′ , and 3322P′  are shown in 

Figures 3(a)-(c) for the same rotation angles and directions as mentioned above. The curves are also presented 
in the same scale for making a comparison among them. It is found in Figure 3(a) that the components 1133P′ , 

3311P′ , 2233P′ , and 3322P′  are symmetrical and their values are equal to the component P12. Similar results are 
found for the components 1122P′ , 2211P′ , 2233P′ , and 3322P′  in Figure 3(b). In contrast, the components 1122P′ , 

2211P′ , 1133P′ , and 3311P′  vary symmetrically following Gaussian distribution similar to that shown in Figures 3(a) 
and (b). The maximum value is found −0.0323 for the components 1122P′  and 2211P′ , and 1133P′  and 3311P′  in the 
directions [110] and [101], respectively. The direction dependent photoelastic constants 1122P′ , 2211P′ , 1133P′ , 

3311P′ , 2233P′ , and 3322P′  is shown in Figure 3(c) where cubic symmetry in these components has been lost due to 
rotation, but the symmetry between 1122P′  and 2211P′ , 1133P′  and 3311P′ , and 2233P′  and 3322P′  are found. The 
magnitudes of the components 1122P′  and 2211P′ , and 2233P′  and 3322P′  vary from −0.0323 to 0.0137, and 0.0137 
to −0.0323, respectively. As seen in Figure 3(c) that the profiles of the components 1133P′  and 3311P′  follow 
Gaussian distribution and their magnitude is equal to 0.0137 in the directions [110] and [001]. The magnitude of 
these components is also found to be −0.0162 in the direction [111]. 

Figures 4(a)-(c) show a comparison among the orientation-dependent photoelastic constants 1212P′ , 2323P′ , 
and 3131P′  where their profiles are found identical for the rotation from [100] to [010] and [110] to [001] with 
respect to the profiles obtained from [110] to [001]. As seen in Figures 3(a) and (c), the cubic symmetry of 
these components has been lost due to the rotation from [100] to [010] and [110] to [001] directions. On the other  
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Figure 3. Variation of orientation-dependent pho-
toelastic constants 1122P′ , 2211P′ , 1133P′ , 3311P′ , 

2233P′ , and 3322P′  plotted for the directions from (a) 
[100] to [010]; (b) [110] to [001]; (c) [100] to [001]. 
The magnitude of the photoelastic constants 1122P′  
= 2211P′ , 1133P′  = 3311P′ , and 2233P′  = 3322P′ . 

 
hand, the component 3131P′  is found asymmetrical with respect to the components 1212P′  and 2323P′  in Figure 
3(b). The magnitudes of 1212P′ , 2323P′ , and 3131P′  are equal to the known component P44 at [100], but their mag-
nitudes are evaluated −0.073, −0.06615, and −0.027, respectively, at [110] direction. The components 1212P′  and 

2323P′  are evaluated −0.027 and 3131P′  is −0.073 at [101] direction. Further, their magnitudes are found to be 
very small at [010] and [001] directions. In Figure 3(c), the components 1212P′ , 2323P′ , and 3131P′  are estimated 
−0.073, −0.06615, and −0.027, respectively, at [110] direction. On the other hand, their values are evaluated 
−0.0428, −0.0361, and −0.0582, respectively, at [111] direction. Furthermore, the values of 1212P′ , and 3131P′  are 
estimated −0.027, and 2323P′  is −0.0203 at [001] direction. 

5. Conclusion 
A generalized mathematical model is developed for cubic crystal system to determine photoelastic constants in 
arbitrary orientation with the combination of tensor rotation technique and Euler’s rotation theorem. Three in-
dependent components of photoelastic constants become nine independent components due to two times rota-
tions. However, some of them are found symmetrical depending on the rotation direction. The magnitude and 
variation pattern of the photoelastic constants are also found to have direction-dependent. But, for a particular  
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Figure 4. Variation of orientation-dependent pho-
toelastic constants 1212P′ , 1313P′ , and 2323P′  plotted 
for the directions from (a) [100] to [010], (b) [110] 
to [001], and (c) [100] to [001]. 

 
direction, some components are found independent of rotation angle. Here, the model is applied for silicon crys-
tal as an example. It can be applied for any crystal having cubic/Zincblende structure. 
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