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ABSTRACT 

Auger Electron Spectroscopy (AES) and Electron Energy Loss Spectroscopy (EELS) have been performed in order to 
investigate the InP(100) surface subjected to ions bombardment. The InP(100) surface is always contaminated by car-
bon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV 
spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even 
at low energy of ions beam (300 eV) indium clusters and phosphorus vacancies are usually formed on the surface. The 
aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The he-
lium ions accelerated at 500 V voltage and for 45 mn allow removing contaminants but induces damaged and no 
stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room 
temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemi-
cal reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed 
from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the ex-
perimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We 
associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter) simulation method in 
order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of 
the target by argon, helium or proton ions. 
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1. Introduction 

InP is expected to be a promising material for both 
high-speed electrical and optoelectronic device applica- 
tion, in large part due to its high mobility. The most of 
these applications, metal-InP Schottky structures of good 
quality is required [1-4]. The nature and quality of sur-
face preparation in semiconductor technology is of the 
utmost importance during device fabrication and has a 
pronounced influence on the performance of these de-
vices [5-8].  

Many woks have been done concerning the study of InP 
compound in order to understand the origin of the insta-
bilities of components so elaborated from this compound. 
The most important results so found are the instability of 

InP against all physical treatment such as the sputter etch-
ing by Ar+ ion bombardment or heating in UHV [9-12].  

The aim of our study is to compare the behaviour of 
the surface when subjected to He+ or H+ ions compara- 
tively to the Ar+ ions bombardment, which is usually 
used to clean surfaces. In this interest, we use the spec- 
troscopy methods such as the Auger Electron Spectros- 
copy (AES) and the Electron Energy Loss Spectroscopy 
(EELS). So, we present some results about the effect of 
H+ and He+ ions bombardment on the InP(100) surface. 
However, because it is difficult to determine the affected 
depth of the surface by ions, we combine these analysis 
techniques with the simulation method TRIM (Transport 
and Range of Ions in Matter) to determine the affected 
depth of the InP surface as a function of the ions energy. 
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2. Experimental 

The Auger electron spectra (AES) and electron energy 
loss (EELS) were performed by using an hemispherical 
spectrometer. For the best compromise between the 
transmission and the resolution of the apparatus [13], we 
use constant pass energy of 80 eV between the deflectors 
of the analyzer operating in direct mode N (E). The 
InP(100) surface was characterized by AES (electron 
beam of 3 KeV, with a low current density Jp = 10−3 
A·cm−2). The incident electron beam was focussed onto 
an area of 1 mm of diameter. These routine parameters 
were choose in order to reduce the effect of the electron 
beam on the material surface and may be changed when 
needed. An ion pump associated with a cooled titanium 
sublimator assured a bass pressure of 10−9 torr. 

Before loading in the UHV chamber, the InP(100) 
samples were chemically cleaned with successively pure 
H2SO4 acid, 3% Br2 solution in CH3OH and finally 
rinsed in deionised water and methanol bath [14].  

3. Results and Discussion 

The remaining contamination layer on the sample was 
mainly composed of carbon and oxygen as revealed by 
the first recorded AES spectra (C-KLL and O-KLL) 
[15-17]. The sample was sputter-cleaned, as usual, by a 
normal incidence Ar+ ion beam at low energy of 500 eV 
with a current density of about 2 × 10−6 A·cm−2 to re-
move these contaminants. The argon pressure was in the 
range of 10−5 torr. Consequently, a system labelled (In; 
InP) results from such cleaning, where In is the metallic 
indium as clusters distributed on the InP surface. Fur-
thermore, the argon ion bombardment of InP surface in-
duces a superficial roughness which affects the EELS 
spectra as reported by other authors [18-20]. 

3.1. Action of He+ Ions Bombardment on  
InP(100) 

Can we avoid the degradation of the surface by replacing 
the argon ions by helium ions of the same chemical in-
ertness but small sizes? Just after introduction of the 
sample in the UHV chamber of the spectrometer, we 
have recorded the AES spectrum of the contaminated 
surface as shown in Figure 1(a). 

The contaminants are mainly carbon and oxygen. In 
order to remove these contaminants, we have submitted 
the InP surface to He+ ions bombardment for 15 mn at 
500 V accelerated voltage. Figure 1(b) shows the cleaned 
surface of InP(100).  

But this cleaning effect is also accompanied by the for- 
mation of indium metal as shown in fine structure of AES 
spectra of indium In-M45N45N45 recorded in Figure 2.  

The Auger spectra shape varies as a function of bom- 

 

Figure 1. (a) Contaminated surface of InP(100) just after its 
introduction in UHV spectrometer chamber; (b) Decon-
tamination of the surface by the He+ ions. 
 

 

Figure 2. Evolution of In-MNN Auger spectra of indium 
during the He+ ions bombardment. a) just after introduc-
tion of the sample in the UHV chamber, b), c) and d) after 5, 
10 and 15 mn time ions bombardment. 
 
bardment time of the surface. Indeed, there develops a 
peak related to the chemical bond of metallic In. This 
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metallic indium is resulted from the broken of chemical 
bonds (In-P) and distributed on the surface as clusters. 

This result is confirmed by the EELS spectra shown in 
the Figure 3. These spectra are recorded by varying the 
primary energy Ep. We show in this figure the appear-
ance of characteristic peaks of metallic indium. The en-
ergy loss peaks related to surface and bulk plasmons of 
In metal locate clearly at 8.6 eV and 11.6 eV. These 
peaks are more pronounced in the spectrum b) because of 
low primary energy comparatively to the a) one. The low 
primary energy concerns the first layers of the surface. 

3.2. Action of H+ Bombardment on InP(100) 

We bombard the surface of InP(100) by proton ions ac-
celerated by a voltage of 500 V. Preferential etching of 
phosphorus and the formation of indium metal is ob-
served. There is desorption of chemical species as dem-
onstrated by A. Porte and al. [21-22] with a mass spec-
trometer. These observations also coincides with those of 
F. Proix and al. [23] who studied the interaction of atomic 
and ionized hydrogen with cleaved surfaces of InP(110). 

Figure 4 shows the In-M45N45N45 AES spectra of InP 
when bombarded by H+ ions. The spectrum b) involves 
the formation of a characteristic peak of metallic indium.  

The recorded EELS spectra at the same experimental 
conditions of the Figure 5 confirm this result. Indeed, the 
formation of the peaks located at 8.6 eV and 11.6 eV 
related respectively to surface and bulk plasmons of me-
tallic indium appears clearly on the spectrum b) of the  
 

 

Figure 3. Structure of final state of EELS spectra of InP 
bombarded by He+ ions for different primary energy Ep: a) 
Ep = 750 eV and b) Ep = 500 eV. 

 

Figure 4. Evolution of In-MNN Auger spectra of InP: a) 
After introduction of the sample in the UHV chamber, b) 
After H+ ions bombardment and c) pure metallic In sam-
ple. 
 
Figure 5. The high reactivity between the chemical ele-
ments hydrogen and phosphorus led to a rupture of 
chemical bonds (In-P) and formation of PH and PH3 spe-
cies, which desorbed from the surface. 

3.3. Simulation Method TRIM 

The TRIM simulation method is based on the interaction 
process between the Ar+, He+ and H+ ions and the matter. 
The ions bombardment is achieved according to the 
normal incidence with the surface. The effect of ions 
induces a displacement of atoms of the target with the 
possibility to form vacancies on irradiated area. Such a 
process is susceptible to lead to a new arrangement of 
atoms occurring in the material matrix. We interest to 
study the interaction mechanism between ions and the 
InP target. However, our aim is to know also the depth 
affected by ions. The recorded TRIM spectra are consti-
tuted of two main peaks. Disturbed depths, as indicated  
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Figure 5. EELS spectra recorded at 1000 eV of InP: a) Af-
ter introduction of the sample in the UHV chamber, b) Af-
ter H+ ions bombardment and c) pure metallic In sample. 

by the position of the second peak vary as a function of 
ions energy. The interaction process between the ions 
and the target depends on the chemical nature of target, 
its physical structure and even on the nature and energy 
of ions. The interaction process occurs first with the 
outmost layers of the target. The importance of damage 
due to ions on the target is related to the location of the 
TRIM peaks. However, the interaction phenomenon 
ions-matter is complex. It depends on the cross-section as 
was reported by other authors [24,25] and on other phy- 
sical parameters. In Figure 6, we give the variation of 
the depth at which the TRIM second peak appeared as a 
function of the ions energy.  

The curves reflect the effect of the ions irradiation on 
the bulk of the material. Its linear variation is a good 
means for indicating the homogeneity of the physical and 
chemical structure of clean bulk InP compound. We 
show on the Figure 6 that the H+ is penetrated deeply 
that other ions. This might be explained by its small size 
comparatively to He+ and Ar+ ones. On the other hand, 
the action of ions depends on the physical properties re- 
lated to atomic displacement and relaxation phenomenon 
of the target. This lead to a mean depth of ions calculated 
as a function of ions energy as shown on Figure 7.  

4. Conclusions 

Owing to the analysis techniques such as AES and EELS, 
we show that the substitute of Ar+ ions by a small tall 
ions like He+ or H+ to clean the InP(100) surface is not  

 

 

Figure 6. Variation of the depth at which appears the maxima of the TRIM second peak as a function of H+; He+ and 
Ar+ ions energy. 
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Figure 7. Variation of the mean depth calculated by TRIM simulation method as a function of H+; He+ and Ar+ ions energy. 
 
advantageous. Indeed, the use of He+ and H+ ions allow 
to remove carbon and oxygen contaminants but induces 
damaged and no stoichiometric surface. There appears an 
excess of metallic indium distributed on the top of the 
surface with desorption of phosphorus. 

The association of the simulation method TRIM to 
EELS and AES reveals the different interactions in bulk 
between the ions and the InP target. The H+ ions interac-
tion process affects a higher mean depth than He+ and 
Ar+ ones. However, the damaged depth caused on the 
target InP by the Ar+ ions is more important than H+ and 
He+ ones. The combination of AES, EELS and TRIM 
constitutes a good tool to study the compositional aspect 
of disturbed depths by the Ar+, He+ and H+ ions irradiat-
ing the InP compound. 
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