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Abstract 
This research presents Pure Condition approach, which has used in analyzing 
simultaneously the singularity configuration and the rigidity of mechanism. 
The study cases analysis is implemented on variable joints orientation of 6R 
(Revolute) Serial Manipulators (SMs) and variable actuated joints position of 
3-PRS (Prismatic-Revolute-Spherical) Parallel Manipulators (PMs) using 
Grassmann-Cayley Algebra (GCA). In this work we require in Projective 
Space both Twist System (TS) and Global Wrench System (GWS) respectively 
for serial and parallel manipulators which represent the Jacobian Matrix (J) in 
symbolic approach to Plücker coordinate vector of lines and unify framework 
on static and kinematics respectively. This paper, works, is designed to de-
termine geometrically at symbolic level the vanished points of inverse form of 
this Jacobian Matrix (J) which called superbracket in GCA. The investigation 
vary to those reported early by introducing GCA approach on the singularity 
of serial robot, variable joints orientation and actuated positions on robot 
manipulators (RMs) to analyze rigidity frame work and singularity configura-
tion which involve simultaneously Pure Condition. And the results also re-
vealed a single singularity condition which contains all particulars cases and 
three general cases such as the shoulder, elbow and wrist singularity for 
SMs while double, single and undermined singularities respectively for 
3-PRS, 3-PRS and 3-PRS PMs which contain all generals and particulars 
cases. 
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1. Introduction 

Pure Condition is a scalar value that is needed to identify both singularity con-
figuration and rigidity of robot framework. Singularity of Serial robot arises 
when certain direction is unattainable and one or more Degree of Freedom 
(DOF) is loosed while the end-effector of Parallel robot becomes uncontrollable 
and gained more DOF. Rigidity of Robot framework preserves the length 
bar-joint which is lacked at singularity [1]. One classical approach to solve Pure 
Condition problem is determining where J is non-singular. In the past years, ex-
tensive studies were carried out on analytically [2], algebraically [3] [4], kine-
matical [5] [6], numerical [5] [7], geometrical [2] [8] and simulation [9] ap-
proaches. Since Jacobian Matrix J is expressed in Plücker coordinate vector of 
lines [10] [11], recently experiments by S. Amine, S. Caro et al. [12] have sug-
gested the geometric method associated with dependency of Plücker vector lines 
to get the determinant of Matrix J which is formulated in GCA language [10] 
[13]. On the basis of previous literature data, we intend to investigate pure con-
dition of 6R SMs within variable orientated joints which TS is calculated before 
computing its superbracket while 3-PRS PMs within variable actuated joints: 
3-PRS; 3-PRS and 3-PRS which GWS are calculated before computing their su-
perbrackets decomposition. Interpretation of the vanishing condition of these 
superbrackets decomposition involves the robot pure condition.  

The key contribution in this paper is a simultaneous determination of both 
singularity condition of Robots Manipulators and rigidity framework without 
algebraic calculus by Grassmann-Cayley Algebra approach. We shall calculate 
the determinant of the Jacobian Matrices in coordinate free manner by develop-
ing and reducing the Superbracket expression. A novelty from other research is 
that Serial Robot in this paper is cheeked and investigated by Grassmann-Cayley 
Algebra. 

This paper is organized as follows: Section 2 recalls mathematics background 
of projective space such as Plücker coordinate of vectors line, screw theory, twist 
system, Global Wrench System with their associate graphs before the concept of 
brackets which represent the Jacobian matrix used in GCA applied to robot ma-
nipulators. Section3 describes respectively 6R SMs and 3-PRS PMs with their 
adopted representation. Section 4 focuses firstly on computing the TS of 6R SMs 
where all joints are simultaneous actuated and the GWS of 3-PRS PMs where the 
actuators are sequenced on prismatic, revolute or spherical joint. Secondly on 
the vanished condition of TS and GWS which represent the determinant of ma-
trix J in GCA language. The interpretation, comparison and verification of these 
obtained results are discussed as the pure condition of robot. Finally, concluding 
and remarks are given in Section 5. 

2. Mathematics of Robot Manipulator Using  
Grassmann-Cayley Algebra  

This section gives firstly a mathematical background of both TS and GWS from 
Plücker coordinate line in Projective Space; useful tool to describe the instan-
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taneous motion of robot manipulators (RMs). Secondly brief notion of GCA is 
applied on robot manipulators to determine the Jacobian Matrix in bracket 
form. More details on GCA and superbrackets decomposition should refer to 
[10]-[17]. 

First of all, the brief background information about this research is provided 
in the Diagram 1 below. 

2.1. Projective Space Extended to Robot Motion 

The projective space refers to the affine space augmented by the points at infini-
ty where any pair of parallel lines can be said to meet at the unique point at in-
finity on the plane ∞Π . In projective space any point (line) has four (six) ho-
mogeneous coordinates and each line is called Plücker line which can be ex-
tended to coordinates for the screws and the duality twist-wrenches in applica-
tion for kinematics of robot manipulators [12]. A finite line, L, is represented by 
its Plücker coordinates vector F: 

( );F s r s= ×                         (1) 

where s is the line direction, ( )r s×  represents the moment of L with respect to 
the origin and r is the position vector of any point on L. An instantaneous screw 
axis is a Plücker coordinate vector line with it associated pitch in a given posi-
tion, then the screw axis of PMs is described by: 

( )0$̂ ;
T

s s s hs = × +                      (2) 

 

 
Diagram 1. Brief background information about this research. 
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with, s the unit vector along the screw axis, 0s  the position vector of a point on 
the screw axis with respect to a reference frame, h the pitch of the screw. A zero 
pitch screw 0$̂  and an infinite pitch screw $̂∞  can be respectively identified 
with a Plücker coordinate vectors of a finite line and a line at infinity: 

( )0 0$̂ ;
T

s s s = ×                       (3) 

[ ]$̂ 0; Ts∞ =                         (4) 

Since n number of independents kinematic chains form (n)screw space which 
is composed of (n)system screws, all screws which are reciprocal to a (n)system 
screws form (6-n)system. Two zero pitches screws, 0$̂  and 0$̂′ , are reciprocal 
to each other if and only if their axes are coplanar. A zero pitch screw 0$̂  is re-
ciprocal to an infinite pitch screw $̂∞  if only if their directions are orthogonal 
to each other. Two infinite pitch screws $̂∞  and $̂∞′  are always reciprocal to 
each other. A body instantaneously undergoing a pure rotation about an axis l is 
a twist of zero pitch 0$̂ . A body instantaneously undergoing a pure translation 
along an axis l is a twist of infinite pitch $̂∞ . A manipulator subjects to a pure 
force along the axis l is a wrench of zero pitch screw 0$̂ . A body subject to a 
pure couple is a wrench of infinite pitch screw $̂∞ . In robotics; wrench is a 
screw representing a combination of a force and a couple acting on a manipula-
tor [12]. 

2.2. Twist System (TS) and Global Wrench System (GWS) 

Twist Space of a serial kinematic chain is the support of the join extensors that 
represents the twist spaces, and then the Twist System Ti of a serial kinematic 
chain composed of k joints extensors is described as [17]:  

1 2i kT T T T∨ ∨= ∨                       (5) 

Similarly, the Wrench Space of a parallel kinematic chain is the support of the 
join extensors that represents the wrench spaces and then the Wrench System 
Wn of an n parallel kinematic chain composed of m serial chains is described as 
[17] 

1 2i nW W W W∨ ∨= ∨                      (6) 

Each actuated serial limb constraint the mobility of mechanism. The con-
straint wrench system ( iF ) of limb il  is obtained as a reciprocal screw system 
to all joints screws of the corresponding limb il  and it’s imposed by architec-
ture of the robot while the actuation wrench system ( nW ), imposed by the actu-
ator of il  is obtained by locking the actuator of il  before determining a reci-
procal screw to the joint screw except that of the actuated nlink . The combina-
tion of ( iF ) which defines how the mobile platform (end-effector) is forced by 
the limbs and ( nW ) which defines how the actuators act on dof of the effector, 
represents the instantaneous motion of robot manipulator or Jacobian matrix of 
Plücker lines also called GWS; a combinatory platform of these wrenches system 
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[18] and described as: 

( ) ( )1 1 6ˆ ˆ ˆ ˆ, $ , ,$ ,$ , ,$n n
n i a a c cGWS W F −= =              (7) 

with 
( )

1

system-actuated

ˆ ˆ$ , ,$n
n a a

n

W = 



 and 
( )

1 6

6 system-constraint

ˆ ˆ$ , ,$ n
i c c

n

F −

−

= 



. The ( )det J  is written in the 

GWS form as: 

( ) [ ]
( ) ( )
1 1

system 6 system

det , , , , ,n i

n n

J GWS W W F F
−

 
 = =
 
 

 

 

           (8) 

The bracket of these vectors is defined as the determinant of matrix having 

iw  as its columns and described as: 

[ ]
1,1 1,2 1,

1 2

,1 ,2 ,

, , , det
k

k

k k k k

x x x
w w w

x x x
=



    



           (9) 

The determinant GCA in language represents the symbolic approach of 
Plücker coordinate lines and is used to analyze the pure condition without alge-
braic coordinates. In consequence, the system is linearly dependent when: 

[ ]1 2 1 2, , , 0k kw w w w w w∨ ∨ ∨ = =               (10) 

3. Description and Adopted Representation of both 6R SMs  
and 3-PRS PMs  

3.1. Description and Adopted Representation of 6R SMs  

The 6R SMs consist of seven links ( )1,2, ,7i il = 

 connected in succession by six re-
volute joints (Figure 1). The link li fixed to the ground in a fixe frame 
( )1 1 1O x y z  while the last three non-coplanar axis intersect at a unique common 

point h. The revolute axis Zi are respectively the joint axis of li and li+1 where 
1,2, ,6i =  ; Z1 is perpendicular to both Z2 and Z3, Z2 and Z3 are parallel. Z4, Z5 

and Z6 are three no-coplanar intersecting axis at a unique point h (Figure 2). In 
projective space, we choose two points on each of these six joint axis centers:  
 

 
Figure 1. General 6 revolute wrist serial manipulator for spray painting robot.  
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Figure 2. Descriptions of 6RSMs. 

 
, , , ,aB cD fE hG hJ  and hL  respectively on 1 2 3 4 5, , , ,z z z z z  and 6z  (Figure 

3). 

3.2. Description and Adopted Representation of 3-PRS PMs 

Each independent il  has five degrees of freedom (Figure 4). Express as one 
translation, one revolute and one spherical joint which is consist of three inter-
secting and non coplanar rotations joints at ( ), ,i i i iS u v w  The input of the me-
chanism consists of three variable positions of the actuated joints defined as: 
Firstly the prismatic joints are actuated and all other joints are passive. Secondly 
the revolute joints are actuated and all other joints are passive. Thirdly the 
spherical joints are actuated and all other joints are passive. The axis pi of the 
prismatic joint and the following axis ri of the revolute joint are perpendicular. 
Let αi be the plane formed by the spherical joint center Si and the revolute joint 
axis ri (Figure 5). Let βi be the plane which contains the spherical joint center Si 
and perpendicular to the prismatic joint pi (Figure 5). Consequently αi and βi 
intersect each over at a line Fi. Lines ab, ef and ij represent respectively F1, F2 
and F3 while cd, gh, and kl represent respectively r1, r2 and r3. Thus each Fi pa-
rallel to each ri. Let γi be the plane formed by lines perpendicular to the prismat-
ic joint pi and coplanar to the revolute joint ri (Figure 6). 

4. TS and GWS Computation Respectively for 6R SMs and  
3-PRS PMs in Coordinate Free Manner  

4.1. TS Computation for 6R SMs and Its Vanished Points in GCA  
Approach without Algebraic Calculus  

6R SM consists of 6 serial joints with six center of the motion, the twist space T 
of serial connection of kinematic links is identified as the join of all the 6-extensors,  

https://doi.org/10.4236/mme.2018.84016


L. D. C. Akonde et al. 
 

 

DOI: 10.4236/mme.2018.84016 239 Modern Mechanical Engineering 
 

 
Figure 3. Adopted representation in projective space. 

 

 
Figure 4. Descriptions of 3-PRS PMs. 

 
see Equation (5). In projective space, any line is formed by two different points 
which can be either two different finite points or one finite point and one point 
at infinity. Therefore in this paper, Grassmann-Cayley Algebra applied to 6R 
serial robot involves the symbolic approach of these six Plücker coordinates fi-
nite lines and lines at infinity are graphically represented as its Twist Wrench 
graph (Figure 7). 

Geometrically singularity arises when the joint screws which are Plücker 
coordinate lines are linearly dependent. ( )det tJ  Vanishes then Equation (5) 
becomes: 
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Figure 5. Wenches space αi and βi. 

 

 
Figure 6. Wenches space γi. 

 

[ ]
0
, , , , , 0

T
aB cD fD hG hJ hL
=

=
                   (11) 

This expression can be developed into 24 combination of linear monomials. 
Each of them represents the product for three brackets of four projective points. 
The useful tool, Graphic User Interface, provided by S. Amine, S. Caro et al. [12] 
perform this calculus and gives the singularity condition: 

[ ] [ ][ ][ ], , , , ,aB cD fD hG hJ hL aBDh cfDh GjhL= −          (12) 
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Figure 7. Twist graph of 6R SMs. 

 
And then Equation (12) vanishes when at least one of the three monomials 

vanish.  
If [ ] 0aBDh =  then: aB hD∧  means h lies either on aB  or aBD . Ac-

cording to the adopted representation h lies on one of: ( ) ( ){ }1 1 2 1 3, ,z z z z z  with 
a particular case 1h z∈ : a shoulder singularity. 

If [ ] 0cfDh =  then: cD hf∧  or fD hc∧  means h is either collinear to cD  
or fD  since 2z  and 3z  are parallel lines and intersect in the projective space 
at infinity at point D, h must lies on a plane formed by 2 3z z : it is a an elbow 
singularity, the end effector is at the boundary of the workspace. 

And at last if [ ] 0GJhL =  then hG LJ∧  or hJ LG∧  or hL GJ∧ , means 

4z LJ∧  or 5z LG∧  or 6z GJ∧ , it is obvious that we are in wrist singularity 
condition and the last three axes 4 5 6, ,z z z  must be parallel to each over: This 
condition is impossible to implement practically: except that the wrist design 
was modified. Two of the last three axis must be parallel to each over. 

4.2. GWS Computation for 3-PRS PMs and Its Vanished Points in  
GCA Approach without Algebraic Calculus 

Each limb il  of a 3-PRS PMs consist of five serial kinematic chains, a twist iT  
of each limb il  form 5-system. Instantaneously the composition of these five 
serial twists corresponds to their simple addition in the projectiv space (Equa-
tion (13) [10] [12] [17] 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ$ $ $ $ $i
pi ri ui vi wiT  = + + + + 

            (13) 

with [ ]$̂ 0, T
pi ip= ; ( )$̂ ,ri i i ir R r = ×  ; ( )$̂ ,ui i i iu S u = ×  ; ( )$̂ ,vi i i iv S v = ×  ; 
( )$̂ ,wi i i iw S w = ×   where , , ,i i i i i i i ip r u S u v S v= =  and i i iw S w=  are respec-

tively the unit vectors along the prismatic, revolute and the three intersecting 
non-coplanar revolute joints axis of the spherical joint for the i-th limb (Figure 
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4). 
In this paper, each serial limb, PRS PMs has five degree of freedom while the 

closed chain of the 3-PRS fully PMs has only three. This means the limbs con-
strained the mobile platform by three degree of freedom when each limb is dri-
ven by one actuator. The mechanism supposes to be constrained when it is acti-
vated and may be stressed at some critical poses. 

Constraint wrench system iF , the reciprocal constraint wrench system to all 
(5)system twist iT  form a (1)ystem constraint wrench of zero pitch. This con-
straint wrench system iF  of each limb il  is defined as a line force passing 
through the center of the spherical joint iS  along the direction parallel to the 
revolute joint ir  [10] [17]. 

( ),i i i iF r S r = ×                         (14) 

Actuated wrench system 
When the actuated prismatic joint of il  is locked, only 4-system twist is valid. 

Consequently each prismatic actuated wrench, iW , of each il  form 2-system 
wrench and only reciprocal to all passive 4-system twist ˆ ˆ ˆ$ ,$ ,$ri ui vi  and $̂wi . 
Then all reciprocal screws lie on a plane iα  (Figure 5) [10] [11]. When the ac-
tuated revolute joint of il  is locked, only 4-system twist is valid. Consequently 
each revolute actuated wrench, iW ′ , of each il  form 2-system wrench and only 
reciprocal to all passive 4-system twist ˆ ˆ ˆ$ ,$ ,$pi ui vi  and $̂wi .Then all reciprocal 
screws lie on a plane iβ  (Figure 5) [10] [11]. Spherical joint correspond to the 
three intersecting and no-coplanar revolute joints, when each actuated spherical 
joint of each limb PRS is locked, only 2-system twist will be valid for each limb 
PRS. Consequently each spherical actuated wrench, nW , of each limb-PRS form 
4-system wrench and only reciprocal to all remain passive 2-system twist $̂ pi  
and $̂ri  [10] [11] 

Global Wrench System of 3-PRS PMs 
Each limb il  is identified by iF  and iW .Both graphical representation of 

GWS is called wrench graph  
For: 3-PRS (Figure 8) 

( )
[ ]

6 6

1 2 3 1 2 3

det

, , , , , with i i

J GWS

GWS F F F Fα α α α
× =

= ∈
              (15) 

Each iF  and ir  are parallel, in projective geometry they intersect each over 
at infinity at a unique point. Then ,b d f h≡ ≡   and j l≡  respectively for 
limbs 1 2,l l  and 3l . For notation convenience, let designed by the capital letters 
these points at infinity and rewrite Equation (15) as:  

[ ], , , , , andGWS aB cB eF gF iJ kJ P aB cB eF gF iJ kJ= = ∨ ∨ ∨ ∨ ∨   (16) 

The Superbracket in Equation (16) is decomposed, reduced [12] and gave: 

[ ]
[ ][ ][ ] [ ][ ][ ]
[ ][ ][ ] [ ][ ][ ]

, , , , ,aB cB eF gF iJ kJ

aBce BgFJ FikJ aBcF BgFJ eikJ

aBcg BeFJ FikJ aBcF BeFJ gikJ

= + −

− +

         (17) 
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Figure 8. Wrench graphs of PRS.   

 
Equation (17) vanishes at singularities configuration with the condition: 

[ ] [ ], , , , , 0 when 0 oraB cB eF gF iJ kJ xBFJ aBc ikJ eF= = ∧ ∧     (18) 

{ }, , , , , ,x a b c e g i k= , in singular configuration: [ ] 0xBFJ =  or aBc ikJ eF∧ ∧   
If [ ] 0aBFJ =  then aB FJ∧  means F collinear to aB  or J collinear to aB . 

Since F and J are respectively the unique intersecting point at infinity of parallel 
lines ,eF gF  and ,iJ kJ  then F collinear to aB  or J collinear to aB  which 
means aB  intersect also , ,eF gF iJ  and kJ  at F as infinity point. Since two 
parallel lines intersect each over at a unique point at infinity it is obvious that 
aB  is parallel to , ,eF gF iJ  and kJ .This means 1F  parallel to 2 2 3 3F W F W . 
Similarly if [ ] 0cBFJ =  with the same processes, 1W  Parallel to 2 2 3 3, , ,F W F W . 
For 1l , the singularity occurs when 1F  or 1W  parallel to 2 3 2 3, , ,F F W W . It is 
obvious to deduce for il . If aBc ikJ eF∧ ∧  means the line 2F  crosses the in-
tersection line of the two planes 1α  and 3α  

For 3-PRS (Figure 9) 

( ) ( )

( ) [ ]
6 6

1 2 3 1 2 3

det

, , , , , with i i

J GWS

GWS F F F Fβ β β β

×
′′ =

′ = ∈
            (19) 

Any line can be represented in projective space by one finite point and one 
point at infinity, let choose one point at infinity on each of these six Plücker lines. 
Equation (19) can be rewrite as: 

( ) [ ], , , , , andGWS Ab bN Ef fP Ij jR P Ab bN Ef fP Ij jR′ ′= = ∨ ∨ ∨ ∨ ∨  (20) 

Any line can be represented in projective space by one finite point and one 
point at infinity. Let choose one point at infinity on each of these six Plücker 
lines described as: , , , , ,a A n N e E p P i I r R≡ ≡ ≡ ≡ ≡ ≡ . Equation (20) can be 
rewritten as: 
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Figure 9. Wrench graph of 3-PRS PMs. 

 

( ) [ ], , , , , andGWS Ab bN Ef fP Ij jR P Ab bN Ef fP Ij jR′ ′= = ∨ ∨ ∨ ∨ ∨  (21) 

The Superbracket in Equation (21) decomposed and reduced with the given 
tool [12]: 

[ ]
[ ][ ][ ] [ ][ ][ ]
[ ][ ][ ] [ ][ ][ ]

, , , , ,Ab bN Ef fP Ij jR

AbNE bfPj fIjR AbNf bfPj EIjR

AbNf bEfj PIjR AbNP bEfj fIjR

= − +

+ −

        (22) 

Equation (22) vanishes at singularities configuration with the condition:
 [ ], , , , , 0Ab bN Ef fP Ij jR =  when AbN bfj IjR EPf∧ ∧ ∧  The singular configu-

ration arises when the four planes 1 2 3, ,β β β  and bfj  intersect at a unique 
point. 

For 3-PRS 

( ) ( )

( ) [ ] ( )
6 6

1 2 3 1 2 3

det

, , , , , with ,i i i

J GWS

GWS F F F p rγ γ γ γ

×
′′′′ =

′′ = ≡
       (23) 

Instead of 6 Plücker coordinates lines we found nine Plücker coordinates lines. 
This means in such situation, the frame rigidity of the mechanism has problem. 
Once the spherical actuator is locked the number of Plücker lines increase to 
two-9 extensor. Equation (23) confirms this absurdity. When the actuated 
spherical joint is locked the number n of degree of freedom becomes negative 
then “it is preloaded structure and no motion is possible and some stresses may 
also be presented at the time of assembly” [19]. The tool provides by Stéphane 
Caro et al. [12] can neither decompose nor reduce it. 

4.3. Pure Condition Analysis in Grassmann-Cayley Approach 

The determinant of Jacobian matrix equal to zero or the superbracket vanishes. 
In this situation the serial robot controller will demand power from the actuators 
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to meet infinity joint rate requirement and the actuators will blow off. The actu-
ating prismatic joints reached robot in singularity configuration when the ac-
tuated force or the constraint force of any kl  is parallel to either a constraint 
force or an actuated force of kl ′  with k k ′≠ . Singular motion arises when the 
common actuated force of 1l  and 3l  crosses the constraint force of 2l . The 
revolute actuated joints reached robot in singularity configuration when the four 
planes 1 2 3, ,β β β  and bfj  intersect at a unique point. The common actuated 
wrench of the three limbs crosses the plane formed by the three constraint forces 
at a point and then the robot manipulator is in a plane configuration. The 
spherical actuated joints give different form of the symbolic Plücker coordinates 
lines. Instead of 6 Plücker coordinates lines we found nine Plücker coordinates 
lines. Once the spherical actuator is locked the number of Plücker lines increase 
to two-9 extensor. Equation (23) confirms this absurdity. The results presented 
above show that firstly whatever wrist singularity is theoretical possible; practi-
cally this singularity could be possible if only if the design of two of the last three 
axis are parallel. Secondly, when the spherical joint is actuated, the architecture 
mechanism becomes preload and stressed. This suggests that the rigidity of the 
manipulators depend of the position of the actuated joints in the mechanism. 
Thirdly, parallel robot or serial robot, the six legs bars have dependent Plücker 
coordinates when the architecture lacks rigidity in the critical pose. And the last 
but not the least, we suggested that the rigidity framework of the robots mani-
pulators depends on both architecture structure and operating mode. 

5. Conclusion 

This paper presented the geometric interpretation of pure condition which 
means simultaneous singularity and rigidity analysis on both 6R SMs through a 
variable orientation joint and 3-PRS PMs within variable actuated joints with no 
coordinate approach based on GCA. Symbolic TS and GWS were respectively 
applied on serial and parallel robots to determine the vanished points (singular-
ity) of their superbrackets. Existing theories suggested that GCA should only ap-
ply for the singularity of parallel robots; the results, however, show that serial 
parallel robots can be investigated using GCA. This evidence let us to remark 
that parallel robot is combination of some serial kinematic chains. Based on the 
discussion in the preceding sections, the following conclusions can be drawn: 
For 6R SMs, singularity of the serial shoulder and elbow singularities arose. It 
was deduced that wrist singularity for 6R SMs could be possible if and only if the 
design of two of the last three axes were parallel according to the orientation of 
the actuators. The rigidity of the framework is dependent of the operating mode 
of the architecture. For 3-PRS PMs, where each fully kinematic chain had only 
one actuator, singularity arose when three constraints forces lie on a common 
plane and intersect at the particular point. The negative value for the DOF of the 
mechanism of locked and actuated spherical joint confirmed that the rigidity of 
the framework is dependent of the position of the actuated join and the operat-
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ing mode of the architecture. We recognize that the method adopted in current 
study does not cover all class of robot such as hybrid robot, hybrid parallel robot 
which will be our future research in the next paper. These results suggest that 
pure condition confirmed that both position and orientation of the actuator 
have to be integrated in the conceptual design stage in order to avoid singulari-
ties configuration and to optimize the rigidity frame of the architecture. The 
analysis of robot pure condition is a practical problem of robot manipulators de-
signers who need many mathematical theories such as Geometry Algebra, Lie 
Group theory; therefore Robotic field is a multidisciplinary field belongs to Me-
chatronics applications. 
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Nomenclatures 
Symbols nomenclatures 

∨ : Join operator (in Grassmann-Cayley Algebra) 

∧ : Meet operator (in Grassmann-Cayley Algebra) 

 : Intersection of vectors 

⊕ : Spanning by vectors 

iF : Constraint wrench force of the ith limb for the Parallel Robot 

σ : Permutation 

ρ : Wrench intensity 

,p qΓ : Plücker coordinate vector of finite line passing through two distinct finite 
points p and q 

∞Γ : Plücker coordinate vector of lines at infinity, passing through two points at 
infinity 

6 6J × : Jacobian of Square Matrix of six columns six rows 

k: Number of joint 

il : ith Limb or ith kinematic chain 

m: Number of link 

η : Order of task space 

3P : Projective Space of 3 dimensional 

sP : Symbolic level of Plücker coordinates 

ip : Prismatic joint axis of ith limb 

π∞ : Plane at infinity in the Projective Space 

ir : Revolute joint axis of the ith limb 

is : Spherical joint axis of the ith limb 

0S : Position Vector of any point on the screw axe 

S: Unit vector along the screw axis 

0$̂ : Zero pitch screw 

$̂∞
: Infinite pitch screw 

V: Vector Space 

nW : nth Actuated wrench force 

0$̂r : Wrench of zero pitch 

$̂r∞ : Wrench of infinite pitch 

-points

[ , , ]
n

a b



: Superbracket which consist of n points 

0S s× : Moment of the screw related to the origin of the reference frame 
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