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ABSTRACT 

By eliminating the need for externally applied coolant, internally cooled turning tools offer potential health, safety and 
cost benefits in many types of machining operation. As coolant flow is completely controlled, tool temperature mea- 
surement becomes a practical proposition and can be used to find and maintain the optimum machining conditions. This 
also requires an intelligent control system in the sense that it must be adaptable to different tool designs, work piece 
materials and machining conditions. In this paper, artificial neural networks (ANN) are assessed for their suitability to 
perform such a control function. Experimental data for both conventional tools used for dry machining and internally 
cooled tools is obtained and used to optimise the design of an ANN. A key finding is that both experimental scatter 
characteristic of turning and the range of machining conditions for which ANN control is required have a large effect on 
the optimum ANN design and the amount of data needed for its training. In this investigation, predictions of tool tem- 
perature with an optimised ANN were found to be within 5˚C of measured values for operating temperatures of up to 
258˚C. It is therefore concluded that ANN’s are a viable option for in-process control of turning processes using inter- 
nally controlled tools. 
 
Keywords: Control Systems; In-Process Control; Artificial Neural Network; Machine Tools 

1. Introduction 

A closed loop cooling system integrated with a novel de- 
sign of tool insert, Figure 1, has many advantages: it 
eliminates a potential health hazard for machine opera- 
tors; it is environmentally friendly as there is no coolant 
wastage; it consumes less power; swarf is easier to dis- 
pose of and it has the potential to reduce machine oper- 
ating costs, [1]. However, confining coolant to internal 
channels built into the tool insert, presents new chal- 
lenges: first of all, it will inevitably change the way in 
which the heat produced by the cutting operation is dis- 
tributed and disposed of and secondly it will change the 
state of lubrication at the tool—work interface. This pa- 
per is concerned with the first of these challenges where, 
with the new technology, there is a risk that the local 
temperature at the cutting edge of the tool, may, under 
some machining conditions, exceed a permissible thresh- 
old and therefore reduce or at least offset any benefit in 
tool life. 

As for internally cooled tools, coolant is completely 
under control, the measurement of tool temperature be- 
comes a more meaningful and practical proposition. It is 
not subject to large fluctuations by small adjustments of 
coolant flow and direction as is the case for externally 
applied coolant and it therefore relates, to a much greater 
extent, to the machining conditions, work piece material, 
tool design and state of wear. Thus, routinely monitoring 
the temperature of internally cooled tools is one way of 
observing and hence avoiding the conditions that may 
create excessively high temperatures. Furthermore, there 
is now a wealth of evidence to show [2,3] that for many 
materials there is an optimum cutting temperature which 
gives maximum tool life and good surface integrity so to 
be able to control tool temperature has real practical  
advantages. However this requires tool temperature 
measurement to be combined with an intelligent control 
system that can interpret the measurements and signify 
some form of corrective action. For example, simply 
knowing temperature allows a judgment to be made about  
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Figure 1. Experimental apparatus. 
 
whether it is too high for the tool or work piece material, 
however knowing the machining conditions along with 
the temperature also enables the state of tool wear to be 
assessed when the temperature is well within material li- 
mits. Control systems based on artificial neural networks 
(ANN) are well suited to this form of decision making. 
They need to be trained with experimental data to gener-
ate a structured relationship between a number of input 
variables, in this case, machining conditions and an out-
put variable-tool temperature. This relationship provides 
a reference for interpreting any new tool temperature 
measurements taken for any machining conditions within 
an allowable range. Furthermore, the ANN may be re-
trained any number of times enabling the interpretation 
tool temperature to be adapted to different work piece 
materials and tool designs. 

Evaluating the benefit of using an ANN based system 
for controlling the temperature of internally cooled turn-
ing tools is the main objective of this paper. In this work, 
the tool is part of a system that incorporates a variable 
speed coolant delivery pump so that for a given tool de-
sign and work piece material the dominant input vari-
ables are coolant flow rate, cutting speed, cutting depth 
and feed/rev. Essential to the use of an ANN for control-
ling tool temperature in this system is how accurately it 
can predict tool temperature given these four input vari-
ables. But also of importance is how the prediction accu-
racy depends on the amount of experimental data and the 
time required for training. 

Past work on ANN’s applied to process/machine con-
trol is extensive with more than 1000 papers published 
since 1990. Whilst there are many types of ANN that can 
be used for machine tool or industrial process control 
those based on the Multi Layer Perceptron (MLP) have 
been used in more than 60% of investigations and have 
met with most success, [4]. They have generally em-
ployed an activation function attached to hidden neurons 
to improve the accuracy of prediction for the continuous 

and nonlinear target data characteristic of real control 
systems. Training has generally been performed off line 
utilizing back propagation or feed forward algorithms i.e. 
[5-14]. However what isn’t clear from the published 
work is a strategy for determining the optimum ANN 
design for a given application. ANN designs vary widely 
and in many publications there is no indication as to how 
a particular design has been arrived at whilst in others, 
trial and error techniques or systematic variation of pa-
rameters have been used to determine an optimum design 
based on application specific, experimental data. Even in 
publications where systematic optimization of the ANN 
design has been undertaken, there have been apparently 
contradictory findings. For example, [15] found the best 
results were obtained with a low number of neurons in 
the hidden layer whilst [16] concluded that increasing the 
number of neurons improved the results. Alternatively [6] 
concluded that best results were achieved with an opti-
mum number of neurons. Ref [17] presents the results of 
a wide ranging investigation into the effect of ANN de-
sign on prediction accuracy for data associated with 
wound toroidal cores. In this case, accuracy improved 
with the total number of neurons in the hidden layers but 
it didn’t matter whether they were arranged in a single 
layer or several layers. 

The lack of clear guide lines for ANN design and ap-
parently contradictory findings of past work, at least in 
relation to process control, suggests ANN design and 
hence performance is strongly dependent on the experi-
mental data it is required to predict. For the case of in-
ternally cooled turning tools the data may be character-
ized by an extremely wide dynamic range, significant 
experimental scatter and a non linear relationship be-
tween the output parameter—tool temperature and the 
machining parameters that constitute the input variables. 

Turning is a universal process performed on a wide 
range of materials with an equally wide range of tool 
designs, machining speeds may vary from a few mm/s to 
tens of m/s, similarly depths of cut may range from a 
fraction of a mm to more than ten mm and tool feed/rev 
from tens of microns to a several mm. To determine whe- 
ther ANN’s can be of practical use to industry it is nec-
essary to know how ANN design and prediction accuracy 
depends on data range; whether or not a single ANN de-
sign can cover a useful range of machining conditions 
and if so how much experimental data will be required 
for its training? 

For a given tool and work piece material, tool tem-
perature is primarily dependent on the machining condi-
tions—speed, depth of cut and feed/rev. But it is also 
affected to a minor extent by many other factors that may 
collectively have a significant influence [18,19]. Toler-
ances on material specifications, tool geometries, the 
accuracy to which the work piece can be located, its ini-
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tial geometry and how well it is clamped are just a few 
examples of variables that may influence tool tempera-
ture in an apparently random manner. How well do 
ANN’s cope with this type of variation, is it necessary to 
smooth or precondition experimental data before training 
the ANN in order to predict the required dominant trends 
or can the ANN filter out these random effects? 

The dependence of tool temperature on machining 
conditions is well known to be non linear with tempera-
ture generally approaching some limiting value as cutting 
speed, depth and feed/rev continue to increase in severity. 
ANN’s with activation functions attached to hidden layer 
neurons are reported to cope well with non linear data 
but what is the best activation function to use, how does 
prediction accuracy depend on the degree of non linearity 
and how much experimental data is required for training? 

In an attempt to answer the above questions and hence 
assess the suitability of an ANN based system for con-
trolling the temperature of internally cooled tools, ma-
chining trials have been performed on CNC lathes fitted 
with conventional tools and with internally cooled tools 
and variable flow rate cooling systems. Conventional 
tools were used to generate dry machining data with which 
to assess the effect of ANN design on prediction accu- 
racy; dry machining being a reference condition for in- 
ternally cooled tools. The results of this study were then 
used to optimise ANN design for experimental data gen- 
erated by internally cooled tools. 

2. Dry Machining Experiments 

A small desk top lathe, a Weiss WM280V-F was used for 
dry machining experiments. It was capable of handling 
work pieces of up to 250 mm diameter and 500 mm long. 
Spindle speed was infinitely variable from 50 to 2000 
rpm and the tool feed/rev was incrementally variable be- 
tween 0.07 and 0.42 mm. Motor power was limited to 2 
kW peak and was the limitation to the depth of cut that 
could be used. The tool comprised of a tool holder with a 
tungsten carbide insert. The insert, DCMT060202, was 
diamond drilled from its underside as shown in Figure 2. 
A 0.6 mm hole positioned 1 mm from the cutting tip, was 
drilled to reach to within 0.8 mm of the cutting surface. 
 

 

Figure 2. Diamond drilled tungsten carbide insert, type 
DCMT060202. 

A slot was ground into the tool holder to allow a J type 
thermocouple, 0.5 mm diameter to access the hole in the 
insert and to be spring loaded against the end of the hole, 
0.8 mm from the cutting surface. The lathe and tool were 
set up to dry machine 6082-T6 aluminium bar 75 mm in 
diameter and 300 mm long with a tailstock to provide 
rigid support to the work piece for all tests. 

Experiments consisted of setting a depth of cut, the 
feed/rev and a surface speed and then maintaining the cut 
until the tool temperature reached a stable value. Figure 
3 shows a typical tool temperature—time recording. In 
this case the stable cutting temperature was 119.6˚C. A 
series of 96 different cutting trials were performed cov-
ering the range of conditions: Cutting speeds, 0.2 - 3.3 
m/s; Feed/rev, 0.07 - 0.42 mm; Depth of cut, 0.1 - 1.5 
mm. For these conditions, recorded tool temperatures 
varied from 24˚C to 172˚C. Figures 4-6 show the ex-
perimental data obtained for feeds of 0.07, 0.28 and 0.42 
mm respectively. 
 

 

Figure 3. Typical tool temperature-time recording. 
 

 

Figure 4. Experiments performed for a 0.07 mm feed/rev 
and 1.5, 0.8, 0.4, 0.2 and 0.1 mm depths of cut. 
 

 

Figure 5. Experiments performed for a 0.28 mm feed/rev 
and 1.5, 0.8, 0.4, 0.2, 0.1 and 0.05 mm depths of cut. 

Copyright © 2013 SciRes.                                                                                 MME 



F. WARDLE  ET  AL. 4 

 

Figure 6. Experiments performed for a 0.42 mm feed/rev 
and 0.8, 0.4, 0.2 and 0.1 mm depths of cut. 
 

The data exhibited significant scatter. Generally data 
points were within +/−5˚C of a best fit curve but isolated 
points, i.e. at 0.28 mm feed/rev, 0.8 mm depth and 1.8 
and 2.1 m/s were found to be as much as 16˚C from the 
curve. The reason for the scatter was attributed mainly to 
inconsistent swarf clearance. In these experiments a chip 
breaker was not used and the continuous stream of swarf 
varied somewhat randomly in path and direction. Occa-
sionally swarf would wrap around the work piece or tool 
and produce obvious fluctuations in temperature, these 
experiments are not included in the results. Small tem-
perature measurement errors (estimated at less than 2˚C) 
also occurred as in practice the tool temperature never 
reached a perfectly stable value. The bulk temperature of 
the tool and tool holder continued to rise after the initial 
rapid transient increase causing the recorded tool tip 
temperature to continue to increase slowly. The effect 
of this was minimized by waiting for the rate of in-
crease of tool temperature rate to be less than 1˚C per 
minute. 

Experiments were performed with 4 different work 
pieces and two tools. Selected experiments, i.e. 0.28 mm 
feed/rev, 2.3 m/s and 0.8mm and 0.2 mm depth were 
repeated with the second tool on different work pieces to 
determine whether tool wear or variation in material pro- 
perties affected temperature measurements. Within the 
limits of experimental scatter, agreement with the origin- 
nal data suggested neither tool wear nor work piece ma- 
terial was a significant factor in these experiments. 

Figures 4-6 clearly show the relationship between tool 
temperature and cutting speed to be nonlinear, the degree 
of non linearity increasing with depth of cut. For exam-
ple at a feed/rev of 0.07 mm and a depth of 1.5 mm tool 
temperature increases rapidly as speed is increased but 
reaches a maximum at 1.2 m/s. The same trend is evident 
at lower depths of cut but a maximum temperature is not 
reached within the speed range examined. 

Figures 7 and 8 are extracted from Figures 4 to 6 and 
show the dependence of tool temperature on depth of cut 
and feed rate respectively. The 3 curves in Figure 7 are 
for cutting speeds of 0.5, 1.0 and 1.5 m/s whilst the 3 
curves in Figure 8 are for cut depths of 0.1, 0.2 and 0.4  

 

Figure 7. The effect of cut depth on tool temperature for 
cutting speeds of 1.5, 1.0 and 0.5 m/s. 
 

 

Figure 8. Effect of feed rate on tool temperature for 0.4, 0.2 
and 0.1 mm depths of cut. 
 
mm. Both figures show that the relationship between tool 
temperature and depth of cut or feed rate to be non linear. 

3. Optimization of ANN Design 

The experimental data in Figures 4-6 was used as a basis 
for determining an optimum ANN design. The best fit 
curves to the data shows clearly defined non linear rela- 
tionships between tool temperature and the machining 
parameters cutting speed, cut depth and feed rate. But the 
experimental data points show that superimposed upon 
the underlying trends there are small but significant ran-
dom temperature measurement errors. This is broadly 
attributed to experimental scatter and is a characteristic 
of machining data. As part of a tool temperature control 
system, the ANN is required to provide a relationship be- 
tween tool temperature and machining parameters aga- 
inst which real time tool temperature measurements can 
be compared and decisions made about the condition of 
the machining process and what adjustments may be re- 
quired, if any. Thus, in this application the ANN is re- 
quired to predict the underlying trends shown in Figures 
4-6 and filter out the random temperature measurement 
errors. 

3.1. Application to Data Containing 
Experimental Scatter 

The design algorithm described in [15] was used to opti- 
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mize the ANN design for this application. A network 
with a single hidden layer and a TanH activation function 
was used as a starting point for the work. For the 96 ex- 
perimental data points of Figures 4-6 the effect of the 
number of neurons in the hidden layer upon convergence 
accuracy was determined by systematically varying the 
number of neurons and finding the minimum conver-
gence error within 100,000 iterations. This was repeated 
4 times to assess the repeatability of the convergence 
process. The results are shown in Figure 9, the curve is 
the average RMS convergence error and the black lines 
indicate maximum and minimum values. The conver-
gence process exhibited considerable scatter and the mi- 
nimum convergence error at 12.8% is considered high. 
Variation in the convergence process was attributed to 
the selection of random initial values with which to start 
the iteration process and the random selection of data 
points for testing and training. However the extent of the 
variation and the relatively high convergence error was 
attributed, at least in part, to experimental scatter within 
the data points used for training the network. The ex-
perimental data in Figures 4-6 show an average error of 
7% relative to best fit curves and this must limit the ac-
curacy that the convergence process can achieve. 

Figure 10 shows an example of a comparison between 
ANN predictions and experimental data. This is for a 
network with 18 neurons in the hidden layer giving a 
convergence error of 18%. ANN predictions do show the 
underlying trends in the data but careful inspection of the  
 

 

Figure 9. ANN convergence error for experimental data. 
 

 

Figure 10. Comparison of ANN predictions and experi- 
mental data and 1.5, 0.8, 0.4, 0.2 and 0.1 mm depths of cut. 

curves for cut depths of 0.8 and 0.4 mm reveal that the 
predictions depart from a best fit curve, generally overes- 
timating tool temperature for a given cutting speed. The 
maximum error is 14.3˚C at a speed of 1.2 m/s and a 
depth of 0.4 mm. 

In applying ANN to machining data subject to experi- 
mental scatter it has been found that the training process 
gives inconsistent convergence errors so that several 
training exercises may be necessary to find a low con- 
vergence error. ANN does however find the under lying 
trends in the data but even the minimum convergence 
errors are relatively high and difficult to relate to the ac- 
curacy to which predictions fit the real experimental data. 
Furthermore the optimum number of neurons in the hid- 
den layer is unclear. Figure 9 shows the convergence 
errors to be most consistent for 12 neurons but similar 
convergence errors also occur for 18 neurons. 

3.2. Application to Filtered Data 

Removing experimental scatter from the data by using 
the best fit curves shown in Figures 4-6 significantly 
improve the convergence accuracy of the training proc- 
ess. 

Figure 11 shows the convergence errors and the con- 
sistency of the convergence process for the filtered ex-
perimental data to be significantly improved compared to 
those obtained the raw experimental data. For the TanH 
activation function used on both sets of data, conver- 
gence errors obtained for the filtered data were on aver- 
age about half of that for the experimental data. Chang- 
ing the activation function from TanH to Sigmoid gave 
similar convergence errors for 6 to 14 hidden neurons but 
a significantly reduced convergence error for 16 to 20 
neurons. The lowest average convergence error was 9.3% 
for 20 neurons and a Sigmoidal activation function. 
However a network with a hidden layer of 12 neurons 
and a TanH activation function gave an average conver- 
gence error of 9.4% and within the limits of repeatability 
of the convergence process is considered to be the opti- 
mum design. 

Figure 12 compares ANN predictions to the filtered 
data taken from Figure 5. The markers represent the data 
 

 

Figure 11. ANN convergence error for filtered data. 
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Figure 12. Comparison of ANN predictions and filtered 
data and 0.8, 0.4, 0.2 and 0.1 mm depths of cut. 
 
whilst the solid lines are ANN predicted trends. The 
network with a hidden layer of 12 neurons, a TanH acti- 
vation function and a convergence accuracy of 8.1 % was 
used for the predictions. Figure 12 is equivalent to Fig- 
ure 10 but now predicted tool temperatures are within 
2˚C of the filtered experimental data. The maximum er-
ror for all the data shown in Figures 4-6 is 5˚C occurring 
locally for a feed/rev of 0.07 mm, a cutting depth of 0.1 
mm and a speed of 0.5 m/s. 

3.3. Minimum No. of Data Points for Training 
the ANN 

Acquiring experimental data with which to train the ANN 
can be time consuming. Ninety six data points were ob-
tained to generate Figures 4-6. Seventy eight filtered 
data points were used to train the network corresponding 
to Figure 12. On the assumption that reliable and con- 
sistent experimental data can be obtained by for example, 
repeating the same cut condition and averaging tempera- 
ture measurements, then knowing how convergence error 
depends upon the number of data points used for training 
can help to minimise experimental work. 

The filtered data corresponding to Figure 12 was as- 
sumed to be representative of experimental data not sub- 
ject to significant experimental scatter. The original 78 
data points were reduced to 55 points by eliminating the 
0.5 m/s and 2.0 m/s speed conditions and then to 36 
points by also eliminating the 0.2 mm and the 0.8 mm 
depths of cut. All 3 sets of data were used to train the 
optimised ANN having a single hidden layer of 12 neu-
rons. For each set of data the ANN was trained 5 times to 
determine the minimum convergence error. Table 1 
shows how the minimum convergence error depends on 
the number of data points. 

The results show convergence error to steadily in- 
crease as the number of points used for training decreases. 
An example of the effect of this upon tool temperature 
predictions is shown in Figure 13 where for 36 data 
points and a 0.28 mm/rev feed rate, ANN predictions are 
compared with the filtered data of Figure 12. Whereas 
for Figure 12 ANN predictions based on 78 training data 

Table 1. Minimum convergence error v No. of training data 
points. 

No. of data points RMS convergence error (%) 

78 7.8 

55 9.3 

36 12.2 

 

 

Figure 13. Example of ANN predictions for 36 training data 
points depths of cut—1.5, 0.8, 0.4, 0.2 and 0.1 mm. 
 
points are within 2˚C of the filtered experimental data, 
the error has increased to 8˚C for 36 data points. This 
error is for the 0.28 mm feed/rev, the maximum error 
over the full range of test conditions used for Figures 4- 
6 was 11˚C, about the maximum acceptable in this ap- 
plication. 

3.4. Reduced Range of Cutting Conditions 

Not every machining application needs to embrace a 
wide range of cutting conditions. Where only a narrow 
range of conditions are being used, a further reduction in 
the number of data points required for training the ANN 
is of interest. 

Reducing the range of the machining conditions effec-
tively reduces the degree of non linearity exhibited by the 
experimental data and it is reasonable to expect to be 
able to reduce the number of data points required for trai- 
ning the ANN without compromising convergence error. 
The original seventy eight filtered data points were re-
duced by first eliminating maximum and minimum speed 
conditions and then by also eliminating maximum and 
minimum depths of cut. The feed rates of 0.07, 0.28 and 
0.42 mm/rev were retained. The effect of the number of 
data points used for training upon RMS convergence 
error for an ANN with a single hidden layer of 12 neu-
rons and a TanH activation function is shown in Table 2. 
RMS convergence error tabulated is the minimum over 5 
training processes and is shown to generally decrease 
with reduced number of data points and parameter range. 
An example of the effect of this on tool temperature pre- 
dictions is shown in Figure 14. 

For 55 data points and the cutting speed range reduced  
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Table 2. Convergence error v No. of data points for reduced 
parameter range. 

No. of data 
points 

RMS convergence 
error (%) 

Speed range 
(m/s) 

Depth range 
(mm) 

78 9.4 0.1 - 2.5 0.1 - 1.5 

64 7.0 0.5 - 2.5 0.1 - 1.5 

55 6.8 1.0 - 2.5 0.1 - 1.5 

42 6.2 1.0 - 2.0 0.1 - 1.5 

32 7.1 1.0 - 2.0 0.2 - 1.5 

27 5.9 1.0 - 2.0 0.2 - 1.0 

 

 

Figure 14. Effect of reduced parameter range on ANN pre- 
dicted tool temperatures for 1.5, 0.8, 0.4, 0.2 and 0.1 mm 
depths of cut. 
 
to 0.5 - 2.0 m/s the tool temperature predictions are ac- 
curate with one exception—the 0.5 m/s, 0.8 mm depth 
shows an error of 14˚C. For 27 data points and the speed 
range reduced to 1.0 - 2.0 m/s and depth of cut reduced 
to 0.2 - 0.8 mm the predictions are generally less accu- 
rate showing errors of 13˚C and 8˚C at a cutting speed of 
2.0 m/s and depths of 0.8 and 0.4 mm respectively. The 
RMS convergence errors were similar at 6.8% for 55 and 
5.9% for 27 data points. For both examples the ANN 
prediction accuracy in terms of absolute cutting tool tem- 
perature is of concern as in this application it is required 
to have a reasonable accuracy over a full range of condi- 
tions rather than good accuracy over most of the range 
combined with high local errors. The predictions have 
also failed to preserve the non linear trends exhibited by 
the data even though the range of the data and hence the 
degree of non linearity has been reduced. 

In reducing the range of the experimental parameters, 
the characteristics of the data are also being changed and 
it follows that ANN design containing a single layer of 
12 neurons, optimized over the full range of experimental 
conditions may no longer be appropriate. For the reduced 
parameter ranges shown in Figure 14 the ANN design 
was re-optimized. For 55 data points a single hidden 
layer of 8 neurons produced a minimum convergence 
error of 5.3% whereas for 27 data points a single hidden 
layer of 5 neurons gave a minimum error of 3.9%. Both 
networks retained the TanH activation function used pre- 

viously. The results are shown in Figure 15 and in both 
cases the ANN predictions in terms of absolute tool 
temperature are greatly improved over those shown in 
Figure 14. For 27 data points prediction accuracy was 
within 1˚C over the full range of conditions. The im-
proved prediction accuracies are accompanied by much 
faster convergence times. 

3.5. Application to Internally Cooled Tools 

The set up shown in Figure 1 was used to generate ex- 
perimental data for assessing the application of artificial 
neural networks to internally cooled tools. The machine 
tool was an Alpha Colchester Harrison 600 Group CNC 
lathe. The tool is a composite design comprising of a tool 
holder with integrated inlet and outlet tubes, a cooling 
block with integrated cooling geometry and a wear resis-
tant insert made from tungsten carbide [ref: 20. Sun 
2011]. The tool insert is a hollow shell with a fixed wall 
thickness which fits over the top of the cooling block, 
this allows the coolant to be pumped through the tool 
holder and pass close to the tool tip before being returned 
to the closed loop coolant supply. The insert was made 
by taking a standard SPUN type insert and using the 
EDM process to remove material to form the hollow. It 
should be noted that the inserts also have a TiN coating. 
The work piece was a cylindrical bar nominally 62 mm 
diameter and 300 mm long manufactured from AA6082- 
T6 aluminium. A tailstock was used to provide rigid 
support of the work piece for all trials. As the internal 
cooling circuit made it difficult to locate a thermocouple 
close enough to the tool tip to record a temperature rep- 
resentative of the cutting process an optical pyrometer, 
µ-Epsilon, model CTLM3- H1 CF2, was used to measure 
chip temperature. The pyrometer was mounted to the tool 
turret within the machine tool to maintain a minimum 
spot size of 0.45 mm at a constant working distance of 
150 mm. It should be noted that any relevant parameter 
can be used to control tool temperature utilizing artificial 
neural networks. Even with a direct tool temperature 
measurement a transfer function will still be required to 
 

 

Figure 15. The effect of reduced parameter range and re- 
optimised ANN on tool temperature predictions for 1.5, 0.8, 
0.4, 0.2 and 0.1 mm depths of cut. 
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relate the actual measurement to the cutting edge tem- 
perature. Thus in principle it doesn’t matter what the pa- 
rameter is. 

Of primary interest in this assessment was to find out 
whether a relatively low number of experimental data 
points could be used to train the artificial neural network 
for controlling tool (chip) temperature over a relatively 
low range of cutting conditions. Depth of cut was limited 
to between 0.2 and 0.5 mm; feed/rev to between 0.1 and 
0.2 mm and cutting speed to between 250 and 350 m/min. 
Experiments were performed with zero (dry cutting) and 
0.3 l/min coolant flow rates. For each of these cooling 

conditions 27 data points were used to optimize and train 
the neural network. To minimize experimental scatter 
machining trials at each cutting condition were perfor- 
med 3 times and the recorded temperature checked for 
consistency. Extraneous measurements were discarded 
and the trial repeated. A network with a single hidden 
layer of 7 neurons and a TanH activation function was 
found to provide convergence errors of less than 5%. The 
accuracy to which predicted tool (chip) temperatures fit 
the experimental data is shown in Table 3. The maxi- 
mum error is less than 5˚C and is generally within 2˚C 
for temperatures in the range 188˚C to 258˚C. 

 
Table 3. Experimental and predicted temperature measurements for an internally cooled tool. 

Depth (mm) Feed/rev (mm) Speed (m/min) 
Dry, measured tool 

temp (˚C) 
Dry, predicted tool 

temp (˚C) 
Cooled, measured 

tool temp (˚C) 
Cooled, predicted 

tool temp (˚C) 

0.2 0.1 250 196.534 196.534 188.82 188.82 

0.35 0.1 250 226.082 2.26E+02 210.259 2.15E+02 

0.5 0.1 250 242.292 2.44E+02 231.105 2.31E+02 

0.2 0.15 250 198.149 1.99E+02 192.339 1.92E+02 

0.35 0.15 250 221.73 2.17E+02 213.102 2.13E+02 

0.5 0.15 250 248.478 2.47E+02 233.475 2.31E+02 

0.2 0.2 250 195.293 1.95E+02 195.095 1.95E+02 

0.35 0.2 250 223.057 2.23E+02 212.855 2.13E+02 

0.5 0.2 250 251.009 2.53E+02 237.298 2.37E+02 

0.2 0.1 300 199.432 1.99E+02 187.38 1.87E+02 

0.35 0.1 300 226.508 2.27E+02 214.404 2.14E+02 

0.5 0.1 300 252.825 2.52E+02 235.152 2.35E+02 

0.2 0.15 300 196.736 1.97E+02 195.558 1.95E+02 

0.35 0.15 300 224.859 2.24E+02 212.698 2.12E+02 

0.5 0.15 300 249.534 2.49E+02 235.678 2.36E+02 

0.2 0.2 300 202.805 2.03E+02 192.973 1.93E+02 

0.35 0.2 300 221.057 2.23E+02 216.401 2.17E+02 

0.5 0.2 300 252.234 2.54E+02 243.27 2.40E+02 

0.2 0.1 350 200.974 2.01E+02 190.412 1.90E+02 

0.35 0.1 350 226.092 2.26E+02 218.679 2.19E+02 

0.5 0.1 350 248.943 2.49E+02 238.244 2.38E+02 

0.2 0.15 350 199.605 2.00E+02 196.86 1.97E+02 

0.35 0.15 350 232.5 2.33E+02 220.509 2.21E+02 

0.5 0.15 350 254.621 2.56E+02 241.981 2.38E+02 

0.2 0.2 350 203.033 2.03E+02 199.573 2.00E+02 

0.35 0.2 350 225.27 2.26E+02 226.115 2.26E+02 

0.5 0.2 350 258.422 2.57E+02 243.1 2.44E+02 
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4. Discussion 

In practice tool temperature measurements for given ma- 
chining conditions are prone to variation due to a number 
of extraneous effects. For the experiments performed in 
this investigation the lack of a chip breaker was a pri-
mary cause of apparently random tool temperature varia-
tions that are broadly referred to as experimental scatter. 
In using such data for training and optimizing ANN’s it 
was found that minimum RMS convergence errors were 
large, in excess of 11%, and that the convergence process 
was inconsistent, exhibiting large variations in minimum 
convergence error. Nonetheless, the experimental data 
enabled an optimum design of ANN to be determined 
and this successfully predicted the underlying trends 
within the data as shown in Figure 10. 

For the 3 input variables: cutting speed, depth and 
feed/rev and the parameter range investigated the opti-
mum design of ANN had a single layer of 12 neurons 
and a TanH activation function. The latter was found to 
produce marginally lower convergence errors than a 
Sigmoidal activation function for less than 14 hidden 
neurons whereas for 16 - 20 hidden neurons the Sigmoi-
dal function produced the lower convergence errors. 
Only a single hidden layer of neurons was considered as 
prior investigations, [17] have shown that it is the total 
number of hidden neurons that determine convergence 
error and not the number of hidden layers that they may 
be distributed within. 

With the presence of experimental scatter and for the 
parameter range investigated, the 96 experimental data 
points were found to be sufficient for training and opti-
mizing ANN design. In this case, there were enough data 
points to enable the ANN to average out experimental 
scatter and find the underlying trends. However, if it is 
required to minimize the number of data points used for 
training then scatter must be reduced to a negligible level 
to give a high degree of confidence in the data’s integrity. 
This may be achieved by attention to experimental detail 
but in this investigation the experimental data was effec-
tively filtered by using best fit curves. Using 78 filtered 
data points for optimizing and training the ANN also 
resulted in a network with 12 hidden neurons and a TanH 
activation function and this gave good agreement be-
tween ANN predictions and the filtered data as shown in 
Figure 12. Furthermore the convergence process was 
found to be more consistent. 

Maintaining the parameter range and further reducing 
the number of data points used for training the ANN 
steadily increased the minimum convergence error that 
could be achieved. Figures 12 and 13 show that for the 
same data, maximum errors between ANN predictions 
and filtered experimental data increased from 2˚C to 8˚C 
when the number of points used for training decreased 
from 78 to 36. 

Reducing the parameter range together with the num-
ber of data points used for training but maintaining the 
optimized 12 hidden neuron network produced lower 
RMS convergence errors. However the errors tended to 
be localized so that although the RMS error was low for 
all data points, individual errors were high. The effect 
was that ANN predictions did not accurately reproduce 
the underling trends in the data as shown in Figure 14. 

Reducing the parameter range together with the num-
ber of data points and re-optimizing the ANN design 
produced good agreement between ANN predictions and 
the filtered data as shown in Figure 15. For 27 data 
points tool temperature predictions were within 1˚C of 
the filtered data, albeit for cutting speeds limited to be-
tween 1 and 2 m/s and depths to between 0.2 and 0.8 mm. 
The optimum ANN had only 5 neurons in a single hidden 
layer and produced rapid convergence. 27 data points 
was the minimum used in this investigation as it allowed 
each of the 3 input parameters to have 3 independent 
values—the minimum necessary to characterize non lin- 
ear data. 

The above findings were verified using an internally 
cooled tool and measuring chip temperature with an op-
tical pyrometer. 27 experimental data points were used to 
train and optimize an ANN for a limited range of cutting 
conditions, depth: 0.2 - 0.5 mm, feed/rev: 0.1 - 0.2 mm 
and speed: 250 - 350 m/min. The optimum ANN had a 
single hidden layer of 7 neurons and predicted tempera-
tures to within 5˚C for measured temperatures in the 
range 188˚C - 258˚C. 

5. Conclusions 

1) ANN’s can be used to predict the underlying non- 
linear trends in tool temperature data obtained over a 
range of machining conditions, even when experimental 
scatter is present.  

2) However ANN predictions are more accurate and 
fewer data points are required for training if experimental 
scatter is reduced or eliminated. 

3) The optimum ANN design, the number of experi-
mental data points required for training and the range of 
the data are interrelated. Wide ranging data requires an 
ANN with a relatively large number of hidden neurons 
and many experimental data points whereas for data ob-
tained over a narrow range of conditions an ANN with a 
low number of hidden neurons and few experimental 
data points can provide accurate predictions. 

4) The findings based on dry machining with conven- 
tional tool designs apply to internally cooled tool de- 
signs. 
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