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Abstract 
 
The Purpose of this paper is to investigate the relationship between annual water withdrawal (AWW) and 
income in some countries. To achieve this end, a smooth transition regression (STR) model on cross section 
data of 163 countries in 2006 was used. The findings support the nonlinearity of the link between AWW and 
income. The findings, further, reveal the income elasticity of AWW as a bible-shaped curve. Hence, the 
policies and management processes in water sector including water allocation between activities and reigns 
should take into account the development degree and also focus on income level, water scarcity and the eco-
nomic, social and ecological structure in each country. 
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1. Introduction 
 
Freshwater resources are vital for maintaining human life, 
health, agricultural production, economic activities as 
well as critical ecosystem functions. As populations and 
economies grow, new constraints on freshwater resources 
are appearing, raising problems for limits of water avail- 
ability. Accordingly, the analysis of the national water 
withdrawal intensity measurement becomes an important 
policy issue. To serve these purposes, some water with- 
drawal efficiency indicators have been developed and 
applied to explain differences in performance between 
countries and international benchmarking [1]. It should 
be noted that the income elasticity of water withdrawal is 
one solution used in this paper.  

In recent years, the relationship between income elas- 
ticity of natural resources use and income has attracted 
an increasing attention among academic, non-govern- 
mental organizations, and the media. A notable empirical 
finding of the recent environmental economics literature 
has been the existence of an inverted U-shaped relation-
ship between per capita income and pollution (per capita 
emissions) of many local air pollutants [2]. Since this 
relationship bears a resemblance to the Kuznets rela- 
tionship between income and income inequality, it is 
known as the Environmental Kuznets Curve (EKC) and 
has spawned a vast number of papers in recent years. In 

addition, attempts have been made to estimate EKCs for 
a wide range of environmental indicators, including en- 
ergy use, deforestation and municipal waste [3-7].  

The shape of the EKC, attributed to scale, composition 
and technique effects (SCTE) as discussed below, would 
also seem to apply to (income elasticity of) water con- 
sumption. The main reason to disregard water use in 
EKC studies would appear to be a lack of socioeco- 
nomic-hydrological data, although some recent investi- 
gations and dataset have now resolved somewhat this 
problem [8-12].  

In this paper, we examine the relationship between 
AWW per capita and GDP per capita using Smooth 
Transition Regression (STR) model for 163 countries 
across the world based on cross section data in 2006. The 
following section will provide a brief review of the re- 
lated literature. Section 3 introduces the econometric 
methodology and empirical results, and the final section 
presents the conclusions of the present study.  
 
2. Natural Resources Based on 

Environmental Kuznets Curve 
(NRBEKC) 

 
The majority of EKC literature examines pollution levels 
as a function of income. This has led to the criticism that 
such research ignores the natural resource component of 
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environmental quality [2,13-16]. These studies tend to 
treat resource use identical to pollution as an indicator of 
environmental quality pointing to natural resources based 
on environmental Kuznets curve (NRBEKC). Like pol- 
lution, resource use can provide an economic benefit 
coupled with an undesired environmental impact. Thus, 
many of the theoretical explanations for the existence of 
EKCs for natural resources mirror those for pollution. 

The inverted U relationship between income and pol- 
lution is typically explained in terms of the interaction of 
scale, composition and technique effects (SCTEs). The 
scale effect (SE) implies that as the scale of the economy 
grows (ceteris paribus), AWW will do so. The composi- 
tion effect (CE), however, refers to the fact that as 
economies develop, there is totally a change in emphasis 
from heavy industry to light manufactures and services 
sectors, and also from high water intensity to low water 
intensity in industrial, agriculture and domestic sectors. 
Since the latter are typically less resource intensive than 
the former, the composition effect of growth, ceteris 
paribus, will reduce water use. Finally, there is the tech- 
nique effect (TE). As incomes rise there is likely to be an 
increased demand for environmental regulations [5]. The 
effect of these regulations must be considered to reduce 
water intensity due to improved techniques of production 
and consumption.  
 
3. Methodology 
 
3.1. Smooth Transition Regression (STR) 
 
The smooth transition regression (STR) model is a non- 
linear regression model that may be viewed as a further 
development of the switching regression model intro- 
duced by [17]. The STR model originated as a generali- 
zation of a particular switching regression model in the 
work of [17]. These authors considered two regression 
lines and devised a model in which the transition from 
one line to the other is smooth. The earliest references in 
the econometrics literature are [18,19]. Recent accounts 
include [20-25]. The standard STR model is defined as 
follows: 
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are a vector of exogenous variables. Furthermore, φ = (φ0, 
φ1, ..., φm)  and θ = (θ0, θ1, ..., θm)  are ((m + 1) × 1) 
parameter vectors and ut∼iid(0, σ2) are given. Transition 
function G(γ, c, st) is a bounded function of the continu- 
ous transition variable st, continuous everywhere in the 

parameter space for any value of st, γ is the slope pa- 
rameter and c = (c1, ..., cK)



  which is a vector of location 
parameters, c1 ≤ ... ≤ cK. The last expression in Equation 
(1) indicates that the model can be interpreted as a linear 
model with stochastic time-varying coefficients φ + θG 
(γ, c, st). In this paper it is assumed that the transition 
function is a general logistic function: 
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where γ > 0 is an identifying restriction. Equations (1) 
and (2) jointly define the logistic STR (LSTR) model. 
The most common choices for K are K = 1 and K = 2. 
For K = 1, the parameters φ + θG (γ, c, st) change mono- 
tonically as a function of st from φ to φ + θ. For K = 2, 
they change symmetrically around the midpoint (c1 + c2)/ 
2, where this logistic function attains its minimum value. 
The minimum lies between zero and 1/2. It reaches zero 
when γ → ∞ and equals 1/2 when c1 = c2 and γ < ∞. 
Slope parameter γ controls the slope and c1 and c2 the 
location of the transition function. Transition function (2) 
with K = 1 is also the one that [18] proposed, whereas 
[18] and Chan & Tong (1986) favored the cumulative 
distribution function of a normal random variable. In fact, 
these two functions are close substitutes.  

The LSTR model with K = 1 (LSTR1 model) is capa- 
ble of characterizing asymmetric behavior. As an exam- 
ple, it is supposed that st measures the phase of the busi- 
ness cycle. Then the LSTR1 model can describe proc- 
esses whose dynamic properties are different in expan- 
sions from what they are in recessions, and the transition 
from one extreme regime to the other is smooth. On the 
other hand, the LSTR2 model (K = 2) is appropriate in 
situations in which the local dynamic behavior of the 
process is similar at both large and small values of st and 
different in the middle (For further work on parameter- 
izing the transition in the STR framework, see [18]. 
When γ = 0, the transition function G (γ, c, st) ≡ 1/2, and 
thus the STR model (1) nests the linear model. At the 
other ends, when γ → ∞, the LSTR1 model approaches 
the switching regression model with two regimes that 
have equal variances. When γ → ∞ in the LSTR2 model, 
the result is another switching regression model with 
three regimes in which the outer regimes are identical 
and the mid regime is different from the other two. It is 
noteworthy that an alternative to the LSTR2 model exists, 
the so-called exponential STR (ESTR) model. It is Equa- 
tion (1) with the follow transition function:  

    2*, , expE t t tG c s s c   1        (3) 

This function is symmetric around *
1ts c  and has, at 

low and moderate values of slope parameter γ, approxi- 
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mately the same shape, albeit a different minimum value 
(zero), as (2). Because this function contains one pa- 
rameter less than the LSTR2 model, it can be regarded as 
a useful alternative to the corresponding logistic transi- 
tion function. It has a drawback, however. When γ → ∞, 
(1) becomes practically linear with (3), for the transition 
function equals zero at *

1ts c

1

t j
jj
x


  

 , , sc

 and unity elsewhere. The 
ESTR model is therefore not a good approximation to the 
STR2 model when γ in the latter is large and c2 – c1 is at 
the same time not close to zero. In practice, the transition 
variable st is a stochastic variable and very often an ele- 
ment of zt. It can also be a linear combination of several 
variables. In some cases, it can be a difference of an 
element of zt; see [18] for a univariate example. A spe- 
cial case, st = t, yields a linear model with deterministi- 
cally changing parameters. When xt is absent from (1) 
and st = yt−d or st = yt−d, d > 0, the STR model becomes 
a univariate smooth transition autoregressive model [19] 
for more discussion).  
 
3.2. The Modeling Cycle 
 
In this section we consider modeling nonlinear relation- 
ships using STR model (1) with transition function (2). 
We present a modeling cycle consisting of three stages: 
specification, estimation, and evaluation. The specifica- 
tion stage entails two phases. First, the linear model 
forming the starting point is subjected to linearity tests, 
and then the type of STR model (LSTR1 or LSTR2) is 
selected. Economic theory may give an idea of which 
variables should be included in the linear model but may 
not be particularly helpful in specifying the dynamic 
structure of the model. Linearity is tested against an STR 
model with a predetermined transition variable. If eco- 
nomic theory is not explicit about this variable, the test is 
repeated for each variable in the predetermined set of 
potential transition variables, which is usually a subset of 
the elements in zt. Testing linearity against STAR or 
STR has been discussed, for example, in [20,21]. 

The resulting test is more powerful than both the 
LSTR1 (K = 1) and LSTR2 (K = 2) models. Assume now 
that the transition variable st is an element in zt and let 

t , where t  is an (m × 1) vector. The ap- 
proximation yields, after merging terms and parameter- 
izing, the following auxiliary regression:  

 1,t
z z z

*
0t t t ty x s    t 1, ,t  u T,     (4) 

where 3t t tt
* u Ru     z  with the remainder R3(γ, 

c, st). The null hypothesis is H0: β1= β2= β3= 0 because 
each βj, j = 1, 2, 3, is of the form j , where, 0j   
is a function of θ and c. This is a linear hypothesis in a 
linear (in parameters) model. Because  under the 

null hypothesis, the asymptotic distribution theory is not 
affected if an LM-type test is used. 

*
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(5) 

 
4. Empirical Results 
 
The basis of our empirical approach is exactly the same 
as that used by many authors in literature. The observa- 
tions in this modeling experiment come from AQUSTAT 
FAO and WDI database of the [26,27]. The purpose of 
the study is to investigate the effect of GDP per capita on 
the annual water withdrawal (AWW). The AWW is as-
sumed to be a nonlinear function of the GDP per capita. 
Figure 1 demonstrates a clearly nonlinear relationship 
between the logarithmic values of GDP per capita (x-axis) 
and the AWW (y-axis) as long as kernel fitting curve. 

The sample consisted of annual water withdrawal 
(AWW) per capita in cubic meter and GDP per capita in 
2000 constant dollar for 163 countries of the world. Fit- 
ting a linear model to the data yields: 

   
 

2.356 5.671
( ) 1.644 0.460 tL L Xi     Yi  

1.248y  , 163n  , , 2 0.166R 

 1,160 10.27RESETp             (6) 

An STR model is fitted to the logarithmic data. The 
transition function is defined as a logistic function. 
Where y  equals the residual standard deviation and 

RESETp  is the p-value of the RESET test. The test does 
indicate serious misspecification of (6). On the other 
hand, the residuals arranged according to iLX  in as- 
cending order and graphed in Figure 2 show that the 
linear model is not adequate. It can be seen in RESETp  
large value in Equation (6). 

The results of the linearity tests appearing in Table 1 
p-values are remarkably small. Hypothesis H0 is the gen-  

 

Figure 1. Observations of the logarithmic x-axis, and the 
logarithm of the y-axis. 
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Figure 2. Residuals of (1) (x-axis: the value of ; y-axis: 
residual 

ix

t ). 

Table 1. P-values of the linearity tests of model (6). 

Hypothesis                   p-Value 
H0                       9.2627e−03 
H4                       2.3688e−01 
H3                       6.2594e−01 
H2                       1.6281e−03 

 
eral null hypothesis based on the third-order Taylor ex- 
pansion of the transition function. Hypotheses H04, H03, 
and H02 are the ones discussed in the Section of method- 
ology. Because the p-value of the test of H03 is much 
larger than the ones corresponding to testing H04 and H02. 

The choice of K = 1 in Equation (7) (the LSTR1 model) 
is quite clear. This is also obvious from Figure 1, for 
there appears to be a single transition from one regres- 
sion line to the other. The next step is to estimate the 
LSTR1 model, which yields: 
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T = 163, R2 = 2.7975e−01, σ = 1.11754, σx = 1.2086, 
σ/σL = 0.971              (7) 

where, σlx is the sample standard deviation of Lxi, σ is the 
residual standard deviation of linear model and σL is that 
of non-linear one. It should be noted that there are two 
large standard deviations, which suggests that the full 
model may be somewhat over parameterized. This is 
often the case when the STR model is based on the linear 
model without any restrictions. Model (7) is an example 
of such a situation. It may appear strange that the need to 
reduce the size of the model is obvious in this model 
already because it only has a single explanatory variable. 

The first reaction of the model would perhaps be to 
tighten the specification by removing the nonlinear in- 
tercept, Restriction φ = 0 or G(Lxi, , c) = 0. Another 
possibility would be to restrict the intercepts by imposing 
the other exclusion restriction φ0 = θ0. In fact, the first 
alternative yields a model with a slightly better fit than 

the latter one. The model estimated with this restriction 
is: 
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T = 163, R2 = 2.3839e-01, σ = 1.205, σLx = 1.209, 

0.997
Lx




              (8) 

The estimated standard deviations of all estimates in 
(7) are now appreciably small, and thus further reduction 
of the model size is not necessary. The fit of both (7) and 
(8) is vastly superior to that of (6), whereas there is little 
difference between the two LSTR1 models. The residual 
standard deviation of these models is only about one- 
tenth of the corresponding figure for (2). Such an im- 
provement is unthinkable when economic time series are 
being modeled. The graph of the transition function as a 
function of the observations in Figure 3 shows that the 
transition is indeed smooth. 

The test of no additive nonlinearity [H0: β1 = β2 = β3 = 
0 in (transition function)] has the p-value of 0.0010. In 
testing [H02: β1 = 0 | β2 = β3 = 0, a test based on a first 
order Taylor expansion of H (γ2, c2, x2i)] and thus one 
against another LSTR1component, we find that the p- 
value of the test equals 0.017. These results show that 
nonlinearity in this data set has been adequately charac- 
terized by the LSTR1 model. The tests of no error auto- 
correlation and parameter constancy are not meaningful 
here in the same way as they are in connection with time 
series models, and they have therefore not been applied 
to model (8). 

We modify this approach by using STR model re-
cently developed by Gonzalez et al. [28]. 

 0 1 , ,i i i i iLy Lx Lx G Lx c i          (9) 

where εi is i.i.d (0, 2
x ) and the transition function G is:  

  
1

( , , )
1 exp

i

i

G Lx c
Lx c





  

, 0 ,   (10) 

 
5. Analysis 
 
According on empirical result the relationship between 
water and income is nonlinear model so we can calculate 
the elasticity of water. In STR model, income elasticity 
of AWW per capita  depends on (log GDP per pita) 
level ( i ). So it allows the parameters to change 
smoothly as a function of the threshold or transition 

ariable. Indeed, the elasticity of income is explained by  

(E )i

Lx

v      
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Figure 3. Transition function of model (3) as a function of the transition variable. 

the weighted average of parameters including 0 and 1. 
The income elasticity of  for country ith is:  (E )i

   
0 1

; ;
E , , ii

i i i
i i

g Lx cLy
g Lx c Lx

Lx Lx


   


   
 

, 

(11) 

sible values of the transition variable (GDP per capita). 
Elasticity is increased slightly according to the income 
level. Moreover, there is strong evidence that the rela- 
tionship between per capita income and elasticity of 
AWW is bible-shaped.  
 
6. Conclusions In this specification, a negative value of 1 may also lead 

to the increase of elasticity. The estimated parameters in 
this part could not be interpreted as elasticity. In Equa- 
tion (12), the income elasticity of AWW ( ) has been 
presented. All calculations are computed with Matlab 
and JMULTI software. The equation used to calculate 
elasticity is given as the Equation (12).  

Ei

 
This study reports on the use of a smooth transition re-
gression model based on cross section data to estimate 
the relationship between AWW and income for 163 
countries throughout the world. The findings yielded an 
inverse U-shaped curve for world countries in the sample 
data. These results justify ideas of (NRBEKC), (STCE) 
and (OVW) concepts that are combining ecological and 
social benefits as a whole. The findings further show that 
income and socioeconomic criteria along with water 
scarcity can have an effect on water withdrawal in wa-
ter-scarce countries and water intensity of use. 

On the Figure 4, this elasticity is displayed for all pos-  

 

The results, also, have important implications for the 
models of water use and economic growth developed by 
[29], and the other issues of water-income relationship 
by [1,5,8,11]. This model needs to be modified in a 
number of ways to account for the water savings accom-
panying a rapid structural transformation of an economy. 
This can be accomplished either by estimating the water 
savings attributable to the structural transformation of an 
economy or revising the way we think about water use 
during the transition.  

Figure 4. The relationship between GDP per capita and 
AWW’s elasticity. 
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