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Abstract 
Increasing air temperatures are expected to continue in the future. The rela-
tion between soil moisture and near surface air temperature is significant for 
climate change and climate extremes. Evaluation of the relations between soil 
moisture and temperature was performed by developing a quantile regression 
model, a wavelet coherency model, and a Mann-Kendall correlation model 
from 1950 to 2010 in the Mississippi River Basin. The results indicate that 
first, anomaly air temperature is negatively correlated to anomaly soil mois-
ture in the upper and lower basin, and however, the correlation between them 
are mixed in the middle basin. The correlation is stronger at the higher quan-
tile (90th) of the two variables. Second, anomaly soil moisture and air temper-
ature show strong coherency in annual frequency, indicating that the two va-
riables are interannually correlated. Third, annual air temperature is signifi-
cant negatively related to soil moisture, indicating that dry (wet) soil leads to 
warm (cool) weather in the basin. These results have potential application to 
future climate change research and water resource management. Also, the 
strong relationship between soil moisture and air temperature at annual scale 
could result in improved temperature predictability. 
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1. Introduction 

Increase in temperature has been observed as a consequence of climate change 
over the last century. Air temperature (T) is anticipated to continue increasing 
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in the future, while the mechanisms for the increase remain uncertain [1] [2]. 
Soil moisture (SM) has been shown to have influence on T by controlling the 
partitioning between sensible and latent heat, and interaction between SM and T 
accounts for about two-thirds of the climate change signal in the future climate 
models [2]. A better understanding of the relationship between them might pro-
vide sharper insight into these mechanisms [3] [4] [5] [6]. With this concept in 
mind, in this study, we investigated the relation between SM and T and the re-
sults are essential for understanding the global temperature rises specifically and 
global warming more generally. 

Several studies have pointed to the relation between SM and T to help explain 
projected global warming [3] [5] [7]-[12] and extreme climate events (e.g. 
drought and flood). Many studies show that interaction between SM and T plays 
a significant role in extreme climate condition by land atmosphere interactions 
[6] [8] [13] [14]. Two sets of apparently contradictory results have been pre-
sented, namely that a reduction in SM leads to an increased T [3] [9] [10] [11] 
[12] [15] [16], and while other studies indicate that a SM deficit leads to cold 
weather [3] [12] [16] [17] [18]. For example, positive feedbacks exist over some 
of Northeast Asia, even at a less significant level [3] [18] [19]. However, signifi-
cant negative feedbacks between SM and T exist at wet transition zones in 
Northern China. SM deficit induces higher air T in the plains, well reduces the T 
over mountains in France from 1989 to 2008 in [20]. 

However, due to a lack of sufficient long-term and high-resolution SM data, 
systematically synthesizing the relationship between SM and T remains a signifi-
cant challenge. Here we propose the first exclusive analysis between SM and T, to 
study the relations by a number of factors, including Quantile Regression Model 
(QRM), Wavelet Transform Coherency (WTC) analysis, and Mann-Kendall 
trends in the Mississippi River Basin (MRB). Many studies [10] [17] [21] showed 
that SM is a drought indicator, so, the interaction between SM and T helps both 
understanding the climate change and the climate extremes. The MRB, as the 
largest basin of the United States, spans a wide range of climatic regions with 
snow-dominated, transitional, and rain-dominated regions, the results of the re-
search might provide an indication of the relation between SM and T for the 
whole nation. 

2. Study Area and Model 
2.1. Study Area 

The study area is the MRB, which drains 41 percent (41%) of the water from all 
or part of the 31 states in the United States, and are home to over 100 globally 
important aquatic species such as walleye, sauger and perch. Furthermore, as the 
largest basin in nation, the MRB spans a wide range of climatic regions with 
snow-dominated, transitional, and rain-dominated regions. Climate changes 
have occurred and are anticipated to continue in the future. Many changes indi-
cate this region is also undergoing a system wide response to climate change. 
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Given the importance of the MRB in terms of environmental processes, nature 
resources, and economics, this study provided significant meanings for the 
MRB. 

2.2. Variable Infiltration Capacity (VIC) Model 

In MRB, long-term observation SM data cannot be obtained, therefore, the VIC 
[22] model was utilized to simulate SM for a daily time step at 1/8˚ spatial (about 
12 km) resolution for the period of 1950 to 2010. The methods used to calibra-
tion of the simulation results are reported in more detail in [10] [23]. 

The VIC model is a macroscale, grid-based water and energy balance model, 
which has been successfully applied to many large river basins with good results 
[22]-[28]. Distinguishing features of the VIC model include the sub-grid varia-
bility in SM, land surface vegetation, precipitation, and topography in use of the 
elevation bands. 

In this study, the VIC model is forced with parameter files and meteorological 
forcing. The parameter files include soil parameters, vegetation parameters, and 
elevation bands. The soil parameter files describe the unique soil properties for 
each grid cell, the main parameters include soil texture information, soil bulk 
densities, hydraulic conductivities, and thickness of each soil layer, infiltration 
capacities, and base flow parameters. The VIC model uses a complex and explicit 
conceptual framework in accounting for variations in SM. The soil was divided 
to three layers with depth of each layer specified for each grid cell as derived 
during model calibration in this study. The thin upper layer (~10 cm) simulates 
runoff processes in near surface soil layers, and thicker second layer (50 ~ 80 
cm) and third layer (100 cm ~ 250 cm) represent slower storage and drainage 
processes in this study. Deep layer SM has a longer memory than many other 
land surface variables (such as precipitation and temperature) because SM re-
servoir is a larger storage term (than evapotranspiration and snowpack) in the 
water balance [21]. SM of the third layer was used in details for the analysis be-
cause of its consistency and longer memory in the study. The daily simulated SM 
are aggregated to month SM then converted to anomalies by subtracting the 
mean monthly SM for each model grid cell from 1950 to 2010. 

The vegetation parameters describe different land cover characterization, 
which has a total of 14 different land cover classes. The primary characteristic of 
the land cover that affects the model simulation is Leaf Area Index (LAI). The 
elevation band files define the properties of each elevation band to improve the 
performance of the model in changing topography, especially mountainous re-
gions (upper MRB). Four elevation bands were used in this study. 

The meteorological data include observed precipitation, maximum tempera-
ture, minimum temperature, and wind. Daily precipitation and temperature 
were obtained by interpolating daily observation data from National Weather 
Service Cooperative Observe with scaling for topographic effects using the Pa-
rameter-elevation Regressions on Independent Slope Model (PRISM) precipita-
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tion map [23]. Daily wind speed was obtained from National Centers for Envi-
ronmental Prediction (NCEP) [23]. 

2.3. Model Calibration 

The VIC model was calibrated at six United States Geological Survey (USGS) 
gaging stations for which stream flow observations were available from 1950 to 
2010. 

The VIC model calibration includes calibrating six parameters: a) the infiltra-
tion parameter which controls the partitioning of rainfall (or snowmelt) into in-
filtration and direct runoff; b) the second and third soil layer thicknesses, which 
affect the water available for transpiration and baseflow respectively; c) Dsmax, 
Ds, and Ws, which are baseflow parameters and also are estimated. Dsmax is the 
maximum baseflow velocity, Ds is the fraction of maximum baseflow velocity, 
and Ws is the fraction of maximum soil moisture content of the third soil layer 
at which non-linear baseflow occurs. These three baseflow parameters determine 
how quickly the water stored in the third soil layer is evacuated as baseflow [22]. 

A 30-year period (1950-1979) of the 60-year record was utilized for the cali-
bration process. This 30-year period encompassed a range of extreme climate 
conditions (e.g., flood and drought), and normal years for testing the two mod-
els’ performance. A separate 30-year period (1980-2009) was used for model va-
lidation. That period also encompassed a range of climatic conditions under 
which we evaluated the models’ performance. Two standard statistical tech-
niques, the root meansquare error (RMSE) and the widely used coefficient of 
determination (R2) value, were used to test and evaluate the accuracy of the 
model simulations. 

3. Methods 
3.1. Quantile Regression Model (QRM) 

QRM is a statistical technique intended to estimate, and conduct inference about 
conditional quantile functions. QRM is capable of providing a more complete 
statistical analysis of the stochastic relationships among random variables, which 
may best represent the true relationship between SM and air T. 

The QRM can be expressed as: 

( ) ( ) ( )
0 1

p p p
i i iy xβ β ε= + +  

where, 0 < p < 1 indicates the proportion of the population having scores below 
the quantile at p. where: ix  and iy  are pairs of the data, for based on the sam-
ple of the SM and air T. ( )p

iε  is the error term, which is independent and iden-
tically distributed for i = 1, 2, ···, n. ( )

0
pβ  is the quantile-specific parameter. 

QRM estimates multiple rates of change from the minimum to maximum and 
therefore can provide a more complete picture of the relationship between SM 
and air T. Previous studies have shown that SM is most strongly related to 
maximum temperature [5] [7]. In this study, the 5th, 10th, 25th, 50th, 75th, 90th and 
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95th quantiles with the 50th quantile representing the median response and 5th 
and 95th representing the extreme climate conditions were used. 

3.2. Wavelet Transform Coherency (WTC) 

To furtherer understand the correlation between SM and air T; the WTC [29] 
[30] [31] was utilized. The continues wavelet transforms a one-dimensional time 
series to a two-dimensional time-frequency image simultaneously which shows 
both the amplitude of any periodic signals within the series and how this ampli-
tude varies with time. The continuous wavelets transform Wn of a discrete se-
quence of observations xn is described as following: 

( ) ( )1N
x

n n
n

n n t
W s x

s
δ

ψ
−

′
′

′ −
= ∗  

  
∑                  (1) 

where n is the localized time index, s is the wavelet scale, δt is the sampling pe-
riod, N is the number of points in the time series, and the asterisk indicates the 
complex conjugate. 

The wavelet coherency was used to identify frequency bands and time inter-
vals where two times series were related [29]. The wavelet coherency Rn is de-
fined as: 
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where,  indicates smoothing in both time (using Gaussian function) and 
scale (using Boxcar filter). The statistical significance level of the wavelet cohe-
rence is estimated using Monte Carlo methods [29]. 

3.3. Mann-Kendall Test 

Trends in annual time series of SM and T were estimated and tested at the 5% 
significance level using the non-parametric Mann-Kendall test applied to MRB 
from 1950 to 2010, which is robust and distribution independent. It is a nonpa-
rametric trend test that has been widely used in studies dealing with hy-
dro-climatic analysis [1] [32]. For the trends of the SM and air T, the null and 
alternative hypothesis was used, with the no trend in the null and a significant 
trend in the alternative hypothesis. We not only estimated the trends for SM and 
T, but also intensively quantified the Man-Kendall cross relation value between 
SM and T on a grid by grid basis for over 18,000 grids in the MRB. 

4. Results 
4.1. QRM Results 

Figure 1 shows QRM scatter plots of monthly SM anomalies and monthly air T 
anomalies for the lower, middle, and upper MRB. Some interesting evidences 
which cannot be detected by mean regression are observed. The slopes of the re-
gression lines are negative (drier soil results in higher T) for all the months and  
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Figure 1. Relationships between monthly anomaly soil moisture and anomaly air temperature for the lower, middle, and upper 
MRB. The X-Axis represents the anomaly soil moisture (the 3rd layer) in the lower (SM3L), middle (SM3M), and upper (SM3U); 
the Y-Axis represents the anomaly air T in the lower (TL), middle (TM), and upper (TU). Solid lines denote regression for se-
lected quantiles; dashed lines represent the means. 

 
relationships are statistically significant in lower MRB. The slopes of the regres-
sion lines get steeper as the quantile increase from 10th quantile till 90th quantile, 
and the strongest negative slopes are associated with the 90th quantile slope 
which is nearly twice those of 50th quantile. The result is similar to the relation 
between SM and maximum air T in [7]. However, the most interesting result is 
that the slope of 90th is slightly steeper than 95th, which indicates that increases in 
SM lead to greater declines in air T along the 90th quantile than on the 95th quan-
tile (extreme hot weather). During extreme climate condition, increased air T 
with more evapotranspiration (ET), more moisture in atmosphere and then 
more precipitation, and SM does not typically contribute greatly to air T on av-
erage in 95th quantile. Furthermore, the higher air T results in higher ET, which 
lowers the wetness of soil as well. The slopes for 50th and 75th quantiles are al-
most parallel, suggesting that air T in these quantiles did not vary dramatically 
with SM. 

The most interesting QRM results happened in the middle MRB, the slopes of 
the regression lines are mixed with positive slopes (drier soil results in lower T) 
for lower quantiles (10th and 25th quantiles) and higher quantiles (90th and 95th 
quantiles), and negative slopes (drier soil results in higher T) for middle quan-
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tiles (50th and 75th quantiles). The overall relations are more difficult to interpret 
because different areas of the domain experience different seasonal mixed preci-
pitation (snow-domain transition to rain-domain) in different time periods. 
Slopes of 10th and 95th quantiles are somewhat steeper than for the 25th and 90th 
quantiles, respectively. These results are comparable to those shown in studies of 
[33] and are broadly consistent in their results on SM is most strongly associated 
with the high end of the temperature distribution. Slopes are positive in the areas 
of the domain with higher and lower temperatures. Slopes are negative for 50th 
and 75th quantile and broadly similar. 

The upper MRB is strongly winter dominant, particularly at higher elevations. 
The winter temperature regimes largely determine how much of the winter P is 
typically stored as snow, and also play a strong role in determining the T sensi-
tivity. The slope of 90th quantile is steeper than that of 95th quantile as that in the 
lower MRB. The highest slope happens in 90th quantiles not 95th, which high-
lights the relation between SM and air T is weaker during extreme climate (95th 
quantile). The slopes of the QRM quantiles are negative (drier soils result in 
higher T) for all the quantiles except for the 10th quantile, which might due to 
the frozen soil during lower T in the upper MRB. These impressions are streng-
thened by considering a sequence of density plots based on the QRM estimates. 

4.2. WTC Results 

The relationship between SM and T are further examined by decomposing the 
time series of SM and T in time-frequency space in order to determine both the 
dominant modes of variability and how those modes vary in time (Figure 2) by 
computing the WTC. WTC was also used to identify the phase difference (lag 
time) between variables of SM and T during periods of significant coherence by 
plotting arrows. Arrows point right for time series in-phase and left for 
out-of-phase. Vertical arrows pointing up when SM leads T and down when T 
leads SM. 

The WTC between SM and T in the upper, middle, and lower MRB were 
plotted in Figure 2. The contours represent statistically significant periods (95% 
significant), based on the Monte Carlo experiment. The most notable features 
are that SM and T are very well correlated at statistically significant level, with 
high coefficients in 1-yr period over the entire study period (1950-2010) for the 
middle and lower MRB, which means the two variables are strongly correlated 
on an interannual time scale. Consequently, regression techniques based on pre-
vious year’s SM and T can be used to predict the coming year T with considera-
ble skill. The significant regions in 1-yr band are so extensive that it is very un-
likely simply by chance. Arrows all point to left indicate a very distinct an-
ti-phase relationship for a given wavelength between SM and T (e.g., drier soil is 
associated with higher air T). The average wavelet coherency between SM and T 
is greater than 0.85 and 0.9 for the 1-yr period for the middle and lower MRB, 
respectively. There is higher coherency in the 2 - 4 yr band in the middle MRB,  
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Figure 2. Wavelet coherence between the SM and T in the upper, middle, and lower MRB. The scales of the x-axis are seasons, 
and y-axis are months. The 95% significance level is shown as a thick contour. The thin solid line indicates the cone of influence. 
The relative phase relationship is shown as arrows (with in-phase pointing right, anti-phase pointing left). All significant sections 
show anti-phase behavior. 

 
which h is similar to the frequency of the El Niño Southern Oscillation (ENSO) 
(every 3 - 7 yr). The next best correlation band stands out being significant be-
tween SM and T is the 7 - 10 yr in the lower MRB, which indicates that the SM is 
strongly correlated to T at the similar frequency patterns as the Atlantic Mul-
ti-Decadal Oscillation (AMO) (every 7 - 15 yr). In addition to local climate im-
pacts, large scale climate patterns/oceanic patterns also impact the land-surface 
interaction in MRB. Further investigation of the relationships between AMO, 
ENSO, and SM and T could be used in developing experimental air T forecasting 
applications. 

Similar as the WTC for the middle and lower MRB, the WTC in the upper 
MRB also shows higher coherence in 1-yr band with rather lower coherency 
outside of this period throughout the study period in upper MRB. However, the 
coherency (averaged at 0.70) between SM and T in upper MRB in the 1-yr pe-
riod is not as significant as it in the middle and lower MRB. These differences 
have to do with the air T that determine the precipitation regimes. The upper 
MRB is colder, the precipitation falls as snow and snow accumulation is the do-
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minate driver of the overall SM. The sensitivity of air T to SM becomes relatively 
small and largely associated with snow water equivalent (SWE). The phase beha-
vior out of 1-yr band for the SM and T does not show a strong coherency. 

4.3. Mann-Kendall Test Results 

For each 1/8th degree grid cell, we quantified trends in monthly series of SM and T 
(not shown here) and tested at the 5% significance level using the non-parametric 
Mann-Kendall test applied to MRB from 1950 to 2010. The T trends, although 
shown to be generally positive (warmer) cross the entire MRB, are larger in the 
upper than in the middle and lower MRB. These trends are comparable to those 
shown in study of [4]. These T trends seem to be more strongly controlled by 
precipitation regimes at the regional scale. Contrary to the trends in T, the 
trends of SM are more mixed and difficult to analyze over the study period be-
cause SM has longer memory and not only controlled by short term climate va-
riability in regions, but also by long-term processes like global warming and 
oceanic patterns. The trends of SM toward positive (wet) in upper and negative 
(dry) in lower domain, with no significant trends in part of middle MRB. 

Using the Mann-Kendall test, we quantified the correlation between SM and T 
at annual scale for each grid (18,000 grids) over the study period and shown the 
results in Figure 3. Negative results between SM and T were pervasive the entire 
MRB, in simple terms, increasing in T (warmer condition) is associated with de-
creasing SM (drier condition). The negative relations have a larger expanse and 
magnitude in the lower MRB, this makes sense, because this part of domain get 
relatively less impacts of snowmelt on SM. 

 

 
Figure 3. Mann-Kendall correlation coefficients between SM and T in the upper, middle, 
and lower MRB. 
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The highest negative relation is found at −0.38 in lower MRB, which is due to 
the warmer weather in lower domain compared to the upper area because SM 
has a strong impact on higher air T than lower air T [34]. The values of the neg-
ative relation mainly are relatively small in absolute value over much of the do-
main (in comparison with negative values), well they are generally negatively 
consistent, which is consistence with the results in QRM section. The grids with 
positive correlations are spotted in the upper and mainly in the middle MRB 
with statistically insignificant, which is also agreed with the results in QRM sec-
tion (Section 4.1). SM only positively related to T in small region (7% of the 
MRB) of the study area. 

5. Conclusions and Discussion 

To our knowledge, no similar analysis was performed in the MRB, it is possible 
the first explicit investigation of the correlation between SM and T over an ex-
tended period (1950 to 2010) in the MRB. The results have significant implica-
tions for future water availability and temperature predictability. The major 
findings are: 

1) QRM results show that SM negatively correlated to air T for the low and 
upper MRB, with the higher correlation at 90th quantile. QRM slopes are mixed 
(negative and positive) for the middle MRB, because the middle MRB is the 
transient area with snow dominant to rain dominant. 

2) The T and SM are strongly correlated in 1-yr period over the entire study 
period, indicating that the two variables are interannually correlated. The WTC 
correlations between SM and T in the 2 - 4 yr, 3 - 7 yr, and 7 - 10 yr bands are 
associated with ENSO and AMO, respectively. 

3) The annual T and SM are significantly negatively related in the MRB from 
1950 to 2010, indicating that the dry (wet) soil leads to warm (cool) weather in 
the MRB. 

The QRM results indicated that the T is strongly correlate with SM in the 
study area, especially the high end of SM at 90th quantile, however, the correla-
tion decrease at the extreme climate condition (above 95th quantile). The rela-
tionships between SM and T are also impacted by the regional climate which 
makes quartile slopes mixed in the climate transition zone, e.g., the middle of 
MRB. 

To clearly demonstrate the relationship between SM and T, we muted the im-
pacts of other variables (such as ET and P) by calculating the WTC between 
them. WTC between SM and T yielded values as high as 0.70, 0.85, and 0.9 in 
1-yr band in upper, middle, and lower MRB, respectively, which indicate that a 
correlation between SM and T exists independent of other climate and hydro-
logic variability in the 1-yr band. In general, the WTC results are less convincing 
over the upper MRB than they are over the middle and lower MRB. Reasons for 
this may be due to impacts of snow on SM in the upper MRB. 

We mapped grid cells with statistically significant Mann-Kendall relations 
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between SM and T at annual scale in the MRB. It is likely the first time to quan-
tify the value of the trends relation between SM and T in the MRB. One can infer 
from the map that the negative relation is the much more promising result. T is 
mostly negatively associated with SM. The T trends have been increased (war-
mer) over much of the domain during the study period. 

The most likely and obvious application from the results is that the results 
provide insight for the land and atmosphere models fully coupling for climate 
change. Secondly, SM can sever as a potential predictor for T with a long land 
memory and strong land-atmosphere coupling, which is important for the future 
climate changes, especially global warming. Thirdly, the results help under-
standing the extreme climate because of SM’s drought index function. 

Following this research, we have started land-atmosphere model coupling 
based on the relation between SM and T for historic, current, and climate 
change conditions. 

Acknowledgements 

This publication was supported by 1) Environmental Protection Agency (EPA) 
for the research program of Air, Climate, and Energy (ACE). This publication is 
the product of project of MDST-3 of EPA; 2) The National Science Foundation 
of China (51279192), the ‘‘Hundred Talents Program’’ of the Chinese Academy 
of Science. This manuscript has been subjected to U.S. EPA review and approved 
for publication. The views expressed in this article are those of the authors and 
do not necessarily represent the views or policies of the U.S. Environmental 
Protection Agency. 

References 
[1] Lettenmaier, D.P., Wood, E.F. and Wallis, J.R. (1994) Hydro-Climatological Trends 

in the Continental United-States, 1948-88. Journal of Climate, 7, 586-607.  

[2] Seneviratne, S.I., Luthi, D., Litschi, M. and Schar, C. (2006) Land-Atmosphere 
Coupling and Climate Change in Europe. Nature, 443, 205-209.  
https://doi.org/10.1038/nature05095 

[3] Feng, H. and Liu, Y. (2015) Combined Effects of Precipitation and Air Temperature 
on Soil Moisture in Different Land Covers in a Humid Basin. Journal of Hydrology, 
531, 1129-1140. https://doi.org/10.1016/j.jhydrol.2015.11.016 

[4] Hamlet, A.F., Mote, P.W., Clark, M.P. and Lettenmaier, D.P. (2007) Twen-
tieth-Century Trends in Runoff, Evapotranspiration, and Soil Moisture in the 
Western United States. Journal of Climate, 20, 1468-1486.  
https://doi.org/10.1175/JCLI4051.1 

[5] Hirschi, M., Seneviratne, S.I., Alexandrov, V., Boberg, F., Boroneant, C., Christen-
sen, O.B., Formayer, H., Orlowsky, B. and Stepanek, P. (2011) Observational Evi-
dence for Soil-Moisture Impact on Hot Extremes in Southeastern Europe. Nature 
Geoscience, 4, 17-21. https://doi.org/10.1038/ngeo1032 

[6] Hursh, A., Ballantyne, A., Cooper, L., Maneta, M., Kimball, J. and Watts, J. (2017) 
The Sensitivity of Soil Respiration to Soil Temperature, Moisture, and Carbon 
Supply at the Global Scale. Global Change Biology, 23, 2090-2103.  
https://doi.org/10.1111/gcb.13489 

https://doi.org/10.4236/jwarp.2017.910073
https://doi.org/10.1038/nature05095
https://doi.org/10.1016/j.jhydrol.2015.11.016
https://doi.org/10.1175/JCLI4051.1
https://doi.org/10.1038/ngeo1032
https://doi.org/10.1111/gcb.13489


C. L. Tang, D. Chen 
 

 

DOI: 10.4236/jwarp.2017.910073 1130 Journal of Water Resource and Protection 
 

[7] Huang, J., van den Dool, H.M. and Georgakakos, K.P. (1996) Analysis of Mod-
el-Calculated Soil Moisture over the United States (1931-1993) and Applications to 
Long-Range Temperature Forecasts. Journal of Climate, 9, 1350-1362.  

[8] Jaeger, E.B. and Seneviratne, S.I. (2011) Impact of Soil Moisture-Atmosphere 
Coupling on European Climate Extremes and Trends in a Regional Climate Model. 
Climate Dynamics, 36, 1919-1939. https://doi.org/10.1007/s00382-010-0780-8 

[9] Shinoda, M. and Yamaguchi, Y. (2003) Influence of soil moisture anomaly on tem-
perature in the Sahel: A comparison between wet and dry decades. Journal of Hy-
drometeorology, 4, 437-447.  

[10] Tang, C. and Piechota, T.C. (2009) Spatial and Temporal Soil Moisture and 
Drought Variability in the Upper Colorado River Basin. Journal of Hydrology, 379, 
122-135. https://doi.org/10.1016/j.Journal of Hydrologyrol.2009.09.052 

[11] Van den Hurk, B., Doblas-Reyes, F., Balsamo, G., Koster, R.D., Seneviratne, S.I. and 
Camargo, H. (2012) Soil Moisture Effects on Seasonal Temperature and Precipita-
tion Forecast Scores in Europe. Climate Dynamics, 38, 349-362.  
https://doi.org/10.1007/s00382-010-0956-2 

[12] Wiesner, S., Eschenbach, A. and Ament, F. (2014) Urban Air Temperature Anoma-
lies and Their Relation to Soil Moisture Observed in the City of Hamburg. Meteo-
rologische Zeitschrift, 23, 143-157. https://doi.org/10.1127/0941-2948/2014/0571 

[13] Chen, F. and Dudhia, J. (2001) Coupling an Advanced Land Surface-Hydrology 
Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Imple-
mentation and Sensitivity. Monthly Weather Review, 129, 569-585.  
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 

[14] Miralles, D.G., van den Berg, M.J., Teuling, A.J. and de Jeu, R.A.M. (2012) Soil 
Moisture-Temperature Coupling: A Multiscale Observational Analysis. Geophysical 
Research Letters, 39, L21707. https://doi.org/10.1029/2012GL053703 

[15] Ramarao, M.V.S., Sanjay, J. and Krishnan, R. (2016) Modulation of Summer Mon-
soon Sub-Seasonal Surface Air Temperature over India by Soil Moisture-Temperature 
Coupling. MAUSAM, 67, 53-66. 

[16] Karl, T.R. (1986) The Relationship of Soil-Moisture Parameterizations to Subse-
quent Seasonal and Monthly Mean Temperature in the United-States. Monthly 
Weather Review, 114, 675-686.  
https://doi.org/10.1175/1520-0493(1986)114<0675:TROSMP>2.0.CO;2 

[17] Oglesby, R.J. and Erickson, D.J. (1989) Soil Moisture and the Persistence of North 
American Drought. Journal of Climate, 2, 1362-1380.  
https://doi.org/10.1175/1520-0442(1989)002<1362:SMATPO>2.0.CO;2 

[18] Zhang, J.Y. and Dong, W.J. (2010) Soil Moisture Influence on Summertime Surface 
Air Temperature over East Asia. Theoretical and Applied Climatology, 100, 221-226.  
https://doi.org/10.1007/s00704-009-0236-4 

[19] Zhuo, L., Han, D.W. and Dai, Q. (2016) Soil Moisture Deficit Estimation Using Sa-
tellite Multi-Angle Brightness Temperature. Journal of Hydrology, 539, 392-405. 

[20] Stefanon, M., Schindler, S., Drobinski, P., de Noblet-Ducoudre, N. and D’Andrea, F. 
(2014) Simulating the Effect of Anthropogenic Vegetation Land Cover on Heatwave 
Temperatures over Central France. Climate Research, 60, 133-146.  
https://doi.org/10.3354/cr01230 

[21] Lakshmi, V., Piechota, T., Narayan, U. and Tang, C.L. (2004) Soil Moisture as an 
Indicator of Weather Extremes. Geophysical Research Letters, 31, L11401. 

[22] Liang, X., Lettenmaier, D.P., Wood, E.F. and Burges, S.J. (1994) A Simple Hydro-

https://doi.org/10.4236/jwarp.2017.910073
https://doi.org/10.1007/s00382-010-0780-8
https://doi.org/10.1016/j.jhydrol.2009.09.052
https://doi.org/10.1007/s00382-010-0956-2
https://doi.org/10.1127/0941-2948/2014/0571
https://doi.org/10.1175/1520-0493(2001)129%3C0569:CAALSH%3E2.0.CO;2
https://doi.org/10.1029/2012GL053703
https://doi.org/10.1175/1520-0493(1986)114%3C0675:TROSMP%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1989)002%3C1362:SMATPO%3E2.0.CO;2
https://doi.org/10.1007/s00704-009-0236-4
https://doi.org/10.3354/cr01230


C. L. Tang, D. Chen 
 

 

DOI: 10.4236/jwarp.2017.910073 1131 Journal of Water Resource and Protection 
 

logically Based Model of Land-Surface Water and Energy Fluxes for General-Circulation 
Models. Journal of Geophysical Research-Atmospheres, 99, 14415-14428.  
https://doi.org/10.1029/94JD00483 

[23] Maurer, E.P., O'Donnell, G.M., Lettenmaier, D.P. and Roads, J.O. (2001) Evaluation 
of the Land Surface Water Budget in NCEP/NCAR and NCEP/DOE Reanalyses 
Using an Off-Line Hydrologic Model. Journal of Geophysical Research-Atmospheres, 
106, 17841-17862. https://doi.org/10.1029/2000JD900828 

[24] Abdulla, F.A., Lettenmaier, D.P., Wood, E.F. and Smith, J.A. (1996) Application of a 
Macroscale Hydrologic Model to Estimate the Water Balance of the Arkansas Red 
River basin. Journal of Geophysical Research-Atmospheres, 101, 7449-7459.  
https://doi.org/10.1029/95JD02416 

[25] Adam, J.C., Haddeland, I., Su, F. and Lettenmaier, D.P. (2007) Simulation of Re-
servoir Influences on Annual and Seasonal Streamflow Changes for the Lena, Yeni-
sei, and Ob’ Rivers. Journal of Geophysical Research-Atmospheres, 112, D24114.  
https://doi.org/10.1029/2007JD008525  

[26] Mishra, V. and Cherkauer, K.A. (2011) Influence of Cold Season Climate Variability 
on Lakes and Wetlands in the Great Lakes Region. Journal of Geophysical Re-
search-Atmospheres, 116, D12111. https://doi.org/10.1029/2010JD015063 

[27] Tang, C. and Dennis, R.L. (2014) How Reliable Is the Offline Linkage of Weather 
Research & Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) 
model? Global and Planetary Change, 116, 1-9.  
https://doi.org/10.1016/j.gloplacha.2014.01.014 

[28] Chen, X., Bohn, T.J. and Lettenmaier, D.P. (2015) Model Estimates of Climate Con-
trols on Pan-Arctic Wetland Methane Emissions. Biogeosciences, 12, 6259-6277.  
https://doi.org/10.5194/bg-12-6259-2015  

[29] Torrence, C., and Compo, G.P. (1998) A Practical Guide to Wavelet Analysis. Bulle-
tin of the American Meteorological Society, 79, 61-78.  
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 

[30] Torrence, C., and Webster, P.J. (1999) Interdecadal Changes in the ENSO-Monsoon 
System. Journal of Climate, 12, 2679-2690.  
https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 

[31] Wallace, J.M., Zhang, Y. and Lau, K.H. (1993) Structure and Seasonality of Inte-
rannual and Interdecadal Variability of the Geopotential Height and Temperature-Fields 
in the Northern-Hemisphere Troposphere. Journal of Climate, 6, 2063-2082. 

[32] Sheffield, J. and Wood, E.F. (2008) Global Trends and Variability in Soil Moisture 
and Drought Characteristics, 1950-2000, from Observation-Driven Simulations of 
the Terrestrial Hydrologic Cycle. Journal of Climate, 21, 432-458.  
https://doi.org/10.1175/2007JCLI1822.1 

[33] Ford, T.W. and Quiring, S.M. (2014) In Situ Soil Moisture Coupled with Extreme 
Temperatures: A Study Based on the Oklahoma Mesonet. Geophysical Research 
Letters, 41, 4727-4734. https://doi.org/10.1002/2014GL060949 

[34] Ford, T.W., McRoberts, D.B., Quiring, S.M. and Hall, R.E. (2015) On the Utility of 
In Situ Soil Moisture Observations for Flash Drought Early Warning in Oklahoma, 
USA. Geophysical Research Letters, 42, 9790-9798.  
https://doi.org/10.1002/2015GL066600 

 
 

 

https://doi.org/10.4236/jwarp.2017.910073
https://doi.org/10.1029/94JD00483
https://doi.org/10.1029/2000JD900828
https://doi.org/10.1029/95JD02416
https://doi.org/10.1029/2007JD008525
https://doi.org/10.1029/2010JD015063
https://doi.org/10.1016/j.gloplacha.2014.01.014
https://doi.org/10.5194/bg-12-6259-2015
https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012%3C2679:ICITEM%3E2.0.CO;2
https://doi.org/10.1175/2007JCLI1822.1
https://doi.org/10.1002/2014GL060949
https://doi.org/10.1002/2015GL066600


 
 

 

 
Submit or recommend next manuscript to SCIRP and we will provide best 
service for you:  

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.  
A wide selection of journals (inclusive of 9 subjects, more than 200 journals) 
Providing 24-hour high-quality service 
User-friendly online submission system  
Fair and swift peer-review system  
Efficient typesetting and proofreading procedure 
Display of the result of downloads and visits, as well as the number of cited articles   
Maximum dissemination of your research work 

Submit your manuscript at: http://papersubmission.scirp.org/ 
Or contact jwarp@scirp.org 

http://papersubmission.scirp.org/
mailto:jwarp@scirp.org

	Interaction between Soil Moisture and Air Temperature in the Mississippi River Basin
	Abstract
	Keywords
	1. Introduction
	2. Study Area and Model
	2.1. Study Area
	2.2. Variable Infiltration Capacity (VIC) Model
	2.3. Model Calibration

	3. Methods
	3.1. Quantile Regression Model (QRM)
	3.2. Wavelet Transform Coherency (WTC)
	3.3. Mann-Kendall Test

	4. Results
	4.1. QRM Results
	4.2. WTC Results
	4.3. Mann-Kendall Test Results

	5. Conclusions and Discussion
	Acknowledgements
	References

