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Abstract 
We present a probe factor for a simple measurement device, which can be 
used to determine in-situ electrical resistivity in soils or other penetrable bo-
dies. The probe is primarily sensitive to the material immediately surrounding 
it and therefore is ideal for determining localized conductivities. The geome-
try of the probe can be scaled to effectively adjust the region of interest. The 
calibration, or “probe factor” is a function of the geometry, as well as the elec-
trode configuration. Results are presented assuming a Wenner array configu-
ration, however they can easily be extended to other geometries, such as the 
Schlumberger or dipole-dipole array. 
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1. Introduction 

Measurements of a materials electrical resistivity can provide useful information 
for, indirectly determining soil moisture [1], assisting in the design of cathodic 
protection systems to prevent corrosion in buried metal structures [2], deter- 
mining electrical substation grounding characteristics [3], measuring subsurface 
hydrological properties [4], and the extent of sub-seafloor sediment [5] [6] in 
oceanographic studies, to name but a few. Electrical Resistivity Tomography 
(ERT) also provides a useful geophysical tool in imaging resistivity variations in 
the subsurface [7]. 

This paper describes a simple probe to be used for in-situ resistivity mea- 
surements. We derive a probe factor based on the geometry of our device, which 
is given by an exact analytic solution of the boundary value problem. Our moti- 
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vation for developing this probe was the need for an in-situ device to measure 
soil moisture over time within a free-draining lysimeter. Since the probe mea- 
sures electrical resistivity directly, it is also necessary to relate this value to soil 
moisture through experimental measurements [1]. 

Analysis of this probe is similar to those used in bore-hole boundary value 
problems, specifically those employing an integral equation approach (see for 
example, Zhang [8]; Tsang [9]; Gianzero [10]). The current application is inte- 
rested in material properties near the probe, and hence a more accurate 
representation of the probe current source(s) is required. The associated bo- 
undary value problem for the probe is solved in Appendix A, using an integral 
equation approach and assuming a homogeneous media where the conducting 
rings are placed over an insulated rod. The derivation in Appendix B includes 
the effect of a planar ground surface. 

The mathematical formulation of our probe is based on a Wenner [11] style 
four point electrode configuration, however the results can easily be extended to 
other array geometries, such as a Schlumberger or a dipole-dipole [12]. For the 
Wenner method current is sourced through the outside points and the voltage is 
measured at the inside points, as shown Figure 1. The Wenner method has been 
adapted to very thin ring conductors around an insulating rod by Won [6]. In 
the case where the probe is to be driven into a soil mixture rather than a wet en- 
vironment, it is necessary to expand the conducting rings to have finite thickness 
to ensure a good electrical connection of the probe and the surrounding 
material. The conducting bands having a thickness requires a new derivation for 
the probe factor to relate the apparent resistivity to actual resistivity of the 
material. 

 

 
(a)                          (b) 

Figure 1. A sketch of the resistivity probe (a) with the associated 
equipotential lines shown as solid and the electric field/current density 
lines shown as dashes shown in (b).  
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Experimental results are presented for comparison of the derived, simulated, 
and measured probe factor. 

2. Mathematical Formulation 

The probe, shown in Figure 1, consists of insulating rod of radius a, with four 
conducting rings of width z∆  with the outer and inner rings separated by a 
mean distance 1  and 2 , respectively. Placing a known current across the two 
outer conducting rings and measuring the resulting potential across the two 
inner rings, the resistivity/conductivity of the surrounding material can be deter- 
mined. This is achieved by first solving the associated boundary value problem, 
as derived in Appendix A. 

In this derivation it is assumed that the electrical conductivity σ  is constant 
in the vicinity surrounding the probe so that in cylindrical coordinates ( ), , zρ φ  
the electric potential is given by,  

( ) ( )
( ) ( )0

2 20
1

1, sin d
π

K kIV z G k kz k
K kaa z k

ρ
ρ

σ
+∞−

=
∆ ∫              (1) 

where the probe is centered at 0z = , I  is the measured current and  

( ) cos cos ,G k k kδ δ+ −≡ −                        (2) 

with ( )1 2zδ + ≡ + ∆ , ( )1 2zδ − ≡ − ∆ , and ( )2 2 2δ − ≡  . Here the ground 
surface effect is neglected, however it is include later. Based on (1), a sketch of 
the potential as well as the current density J , given by  

,J Vσ= − ∇                              (3) 

is shown in Figure 1. Notable in the figure is the localization of the fields near 
the probe electrodes. 

The relationship between the apparent resistivity aρ , the applied current I  
and measured voltage abV  is given by,  

a
R
pf

ρ =                               (4) 

where abR V I≡ , with pf  the “probe factor” defined as the quantity,  
( )
( ) ( )0

22 20
1

2 1 sin d .
π

K ka
pf G k k k

K kaa z k
δ

+∞ −≡
∆ ∫              (5) 

The integral given in (5) cannot be solved in closed form, and must therefore 
evaluated numerically. However, since the probe factor is solely a function of 
geometry, that is ( )1 2, , ,pf pf a z= ∆  , it need only be calculated once for a 
given probe. 

Figure 2 shows variations in the calculated probe factor for a probe radius a  
and conductor thickness dz  are independently varied from 0.5 cm to 2.0 cm, 
with the electrode spacing 10.0 cm=  (a sensitivity analysis also indicated that 
the probe factor was generally less sensitive to variations in  ). 

With the ground interface included the expression for the probe factor is 
modified slightly and is given by,  

( )
( ) ( )0 2

22 20
1

4 1 sin d ,sin
πg

K ka
pf G k kd k k

K kaa z k
δ

+∞ −=
∆ ∫         (6) 
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where d  is the depth to the center of the probe from the ground surface, and 
the subscript g  indicates that the air-earth interface is included. As expected 
the surface interface modifies gpf  only slightly when the probe is very near the 
surface. This is indicated in Figure 3, which shows the calculated gpf  as a fun- 
ction of probe depth d  for 1.0 cma = , 1.5 cmz∆ =  and 10.0 cm= . Not- 
ing the scale used for Figure 3, it is likely that the ground interface can be negle- 
cted in most applications. 
 

 
Figure 2. Resistivity probe factor, pf , as a function of probe radius a  and 
conductor thickness dz , with 1 20.0 cm= , and 2 1 3= 

. 

 

 
Figure 3. Resistivity probe factor, pf , as a function probe depth d  for 

1.0a =  cm, 1.5z∆ =  cm, and 1 20.0 cm= . 
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3. Results 

An experiment was conducted by submerging a custom built probe in a barrel of 
a salt water solution. Salt was incrementally added to the solution increasing its 
conductivity. The conductivity of the water was then measured and verified with 
a VWR Symphony conductivity probe (model number 11388 - 382). Once a 
voltage was applied to the outer rings of the probe, the electrical current through 
the outer rings and the voltage on the inner rings were measured with an Agilent 
Digital Multimeter (model number 34410a). The probe was submerged to app- 
roximately the same depth and readings were recorded for current and voltage. 
Next, the probe was then extracted, dried, and the process repeated for five 
measurements at each solution conductivity. 

The probe constructed for experimental verification of (5) was designed and 
built in units of inches. Converted to centimeters they are; 0.9525 cma = , 

1.27 cmz∆ = , 1 15.24 cm= , and 2 5.08 cm= . Surface to probe center depth 
was 21.59 cm. Simulations of this probe were also conducted in COMSOL Mul- 
tiphysics with a set material conductivity taken from one of the experimental 
measured levels. 
 

 
Figure 4. Graph of experimentally measured probe resistance versus verified 
fluid resistivity. Experimentally derived probe factor at each known resistivity 
for each set of measurements along with a linear curve fit and average probe 
factor are also presented.  

 
Table 1. Analytical, numerical, and experimentally derived probe factors for the as-built 
probe 

Method Probe factor 

Analytical pf  1.365 m−1 

Analytical w/ grounding gpf  1.382 m−1 

COMSOL Multiphysics pf  1.379 m−1 

Experimental Meas. pf  1.42 ± 0.677 m−1 
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Analytical, numerical, and experimentally derived probe factors for the as-built 
probe are presented in Table 1. The plot of the experimental measurements in 
Figure 4 shows that there is greater uncertainty in the measurements at higher 
resistances. The derived probe factor at each conductivity level is shown along 
with its uncertainty. The experimental pf  differs from the computed value 
with the grounding effects by less than the standard deviation of the measure- 
ments. Simulations performed in COMSOL are also in agreement with the ana- 
lytical and experimentally derived values for the probe factor. 

4. Conclusion 

We derive a mathematical expression for the probe-factor of a simple device for 
use in it-situ resistivity measurements. Our derivation is based on a Wenner 
array configuration, however our results are easily extended to include other 
geometries, such as the Schlumberger and the dipole-dipole arrays. Comparisons 
of our mathematically derived probe-factor with measured, and numerically 
derived results show excellent agreement. 
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Appendix 

A. Uniform Ground 

Beginning with the equation of continuity for the current density J , which for 
the static case is given by,  

0.J∇⋅ =                              (7) 

The current density at a point is related to the electric field through J Eσ= , 
where σ  is the electrical conductivity and E V= −∇ , with V  the static 
electric potential. 

Since the probe is sensitive only to the local region surrounding it we assume 
that σ  is approximately constant so that the potential satisfies Laplace’s equa- 
tion, namely  

2 0.Vσ∇ =                             (8) 

Employing a cylindrical coordinate system, specified by ( ), , zρ φ , with the 
length of the probe is along the z -axis it is clear that our solution must be 
independent of φ . Then the Laplacian reduces to,  

2
2

2

1 0V VV
z

ρ
ρ ρ ρ

 ∂ ∂ ∂
∇ = + = ∂ ∂ ∂ 

                  (9) 

with ( ),V V zρ= . Assuming a solution of the form, ( ) ( ) ( ),V z R Z zρ ρ= . 
Subject to the boundary condition that the potential vanish at ρ →∞  the 

general solution for the potential is then given by,  

( ) ( ) ( )0, e djkzV z F k K k kρ ρ
+∞ −

−∞
= ∫                (10) 

where ( )F k  (referred to as the “kernel function” [13]) is an unknown function 
of k  to be determined from the boundary conditions. Equation (10) is a Fou- 
rier integral wherein by the inverse Fourier transformation ( )F k  can be deter- 
mined via,  

( ) ( ) ( )0
1 , e d .

2π
jkzF k K k V z zρ ρ

+∞

−∞
= ∫               (11) 

Next boundary conditions are established on the surface of the probe, where it 
is assumed that the probe is insulated, except for the conducting bands, which 
are also assumed to be ideal conductors. Thus the surface of the probe represent 
a no--flow boundary, except at the two conducting bands where the current den- 
sity has only a radially directed component. Since the current density is given by  

( ) ˆ ˆ, V VJ z z
z

ρ σ ρ
ρ

 ∂ ∂
= − + ∂ ∂ 

                   (12) 

We obtain for the radially directed component at the surface of the probe 
( )aρ = ,  

( ) ( ) ( )1, e djkzJ a z F k kK ka kσ
+∞ −

−∞
= ∫               (13) 

where we have used that Watson [14]  

( ) ( )0 1 .K k kK kρ ρ
ρ
∂

= −
∂
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Since the conducting rings constitute equipotential boundaries the current 
densities must also be constant on along their surface. We can therefore express 
the current density at the surface of the probe as,  

( ) ( ) ( ) ( ) ( ){ }2 1 4 3,
2π
IJ a z u z u z u z u z

z aρ  = − − −    ∆
      (14) 

where  

1 2 3 4, ,   , ,z z z z z z z zδ δ δ δ+ − − += − = − = + = +  

I  is the measured current, 1  is the mean separation between the two outer 
conducting rings, z∆  the ring width, as shown in Figure 1(a), with  

( ) ( )1 12,   2.z zδ δ+ −≡ + ∆ ≡ − ∆   

Equation (13) is solved making use of the inverse Fourier transform. This 
gives,  

( ) ( ) ( )

( )

1

2

1 , e d
2π

1
2π

jkzF k kK ka J a z z

I G k
jka z

ρσ
+∞

−∞
=

=
∆

∫
             (15) 

where  
( ) cos cosG k k kδ δ+ −≡ −                    (16) 

Solving for ( )F k  in equation yields,  

( ) ( ) ( )2 2
1

1 1
2π

jIF k G k
K kaa z kσ

−
=

∆
                (17) 

so that the electrical potential can be expressed as,  

( ) ( )
( ) ( ) ( )0

2 20
1

1, sin d
π

K kIV z G k kz k
K kaa z k

ρ
ρ

σ
+∞−

=
∆ ∫          (18) 

given that the term  
( )
( ) ( )0

2
1

1 K k
G k

K kak
ρ

 

within the integrand is odd with respect to the variable of integration k . 
Hence only the term sinj kz−  associated with e jkz−  contributes to the integral 
when evaluated over our limits of integration. The expression for V  given in 
(18) is preferable since it does not contain any imaginary terms, indicating that 
the potential is purely real, as it must be. 

The final task is to relate the measured potential abV  to the known current, 
I  applied across the two outer conducting rings. First define the term,  

( )2 2 2δ − =                              (19) 

then by definition,  

( ) ( )2 2, ,abV V a V bδ δ− −= − −                     (20) 

( )
( ) ( ) ( )0

22 20
1

2 1 sin d .
π

K kaI G k k k
K kaa z k

δ
σ

+∞ −=
∆ ∫               (21) 

Hence, the ratio between the measured voltage and applied current abV I  is 
given by,  
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( )
( ) ( ) ( )0

22 20
1

2 1 sin d
π

ab K kaV
G k k k

I K kaa z k
δ

σ
+∞ −=

∆ ∫             (22) 

Define abR V I≡ , then the apparent resistivity aρ  is given by  

1 ,a
R
pf

ρ
σ

= =                             (23) 

with the probe factor given by,  

( )
( ) ( ) ( )0

22 20
1

2 1 sin d
π

K ka
pf G k k k

K kaa z k
δ

+∞ −=
∆ ∫              (24) 

B. Uniform Half-Space 

To include the effect of the ground surface, image theory is used to enforce the 
no-flow boundary at the ground-air interface. Assuming the probe is buried a 
depth d  as measured from the center of the probe to the ground surface,and 
assuming the z -axis to be centered at the probe (as previously), then  

( ) ( )( )2= 1 e j kd
gF k F k −−                     (25) 

with gF  the modified kernel function with the ground effect included. In 
obtaining (25) the method of images was used as was the shifting property of the 
Fourier transform. Then, the potential in the lower half-space is given by,  

( ) ( ) ( )0, e djkz
gV z F k K k kρ ρ

+∞ −

−∞
= ∫                 (26) 

where again the even/odd symmetry in our integrand was used to simplify the 
resulting integral. Following the same general procedure as in the previous case 
gives the modified probe factor,  

( )
( ) ( ) ( ) ( )0 2

22 20
1

4 1 sin d ,sin
πg

K ka
pf G k kd k k

K kaa z k
δ

+∞ −=
∆ ∫      (27) 

with the subscript g  indicating the ground effect. 
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