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Abstract

In recent years, many studies have been carried out on colloidal particle transfer in the unsatu-
rated zone because they can be a risk to the environment either directly or as a vector of pollut-
ants. A study was conducted on the influence of porous media structure in unsaturated conditions
on colloidal particle transport. Three granular materials were set up in columns to replicate a flu-
vio-glacial soil from the unsaturated zone in the Lyon area (France). It is a sand, a bimodal mixture
in equal proportion by weight of sand and gravel, and a fraction of bimodal mixture. Nanoparticles
of silica (SiO2-Au-FluoNPs), having a hydrodynamic diameter between 50 and 60 nm, labeled by
organic fluorescent molecules were used to simulate the transport of colloidal particles. A non-
reactive tracer, bromide ion (Br-) at a concentration of Cps = 10-2 M was used to determine the hy-
drodispersive properties of porous media. The tests were carried out first, with a solution of nano-
particles (Cop = 0.2 g/L) and secondly, with a solution of nanoparticles and bromine. The transfer
model based on fractionation of water into two phases, mobile and immobile, MIM, correctly fits
the elution curves. The retention of colloidal particles is greater in the two media of bimodal par-
ticle size than that in the sand, which clearly demonstrates the role of textural heterogeneity in the
retention mechanism. The increase in ionic strength produced by alimenting the columns with col-
loidal particle suspension in the presence of bromide, increases retention up to 25% in the sand.
The total concentration profile of nanoparticles collected at the end of the experiment shows that
the colloidal particles are retained primarily at the entrance of the columns. Hydrodispersive cal-
culated parameters indicate that flow is more heterogeneous in bimodal media compared to sand.

Keywords

Colloidal Particle Transport, Microstructure, Modeling, Unsaturated Soil

How to cite this paper: Prédélus, D., et al. (2014) Tracing Water Flow and Colloidal Particles Transfer in an Unsaturated Soil.
Journal of Water Resource and Protection, 6, 696-709. http://dx.doi.org/10.4236/jwarp.2014.67067



http://www.scirp.org/journal/jwarp
http://dx.doi.org/10.4236/jwarp.2014.67067
http://dx.doi.org/10.4236/jwarp.2014.67067
http://www.scirp.org/
mailto:angulo@entpe.fr
http://creativecommons.org/licenses/by/4.0/

D. Prédélus et al.

1. Introduction

Nanoparticles will inevitably proliferate in soil due to the development of nanotechnologies for consumer prod-
ucts, as well as their eventual landfill or incineration. All compartments are then impacted: surface water, soil,
groundwater [1]. These mobile colloidal particles can be a risk to the environment either directly or as a vector
for pollutants [2]. The function of the unsaturated zone occupying a central position between the atmosphere and
subterranean water is to filter groundwater recharge and protect its quality. In depth knowledge of transfer
mechanisms in this area is still quite scarce. It is important to understand better colloidal particle transfer in the
unsaturated zone in order to protect water resources. The transport of colloidal particles in soil is due to convec-
tion, diffusion and dispersion. The heterogeneity of flow velocities in soil creates the phenomenon of mechani-
cal dispersion. This phenomenon of mixing is due to velocity distribution within pore space, the range of pore
size and the tortuosity of the medium [3]. These parameters are related to soil structure; however the medium
structure itself also plays an important role in colloidal particle transfer. In addition, during transfer, interactions
can occur between the colloidal particles themselves and between colloidal particles and the porous medium.
These interactions can cause retention of colloidal particles. The main mechanisms of colloidal particle retention
in soil are: adsorption, attachment at the air-water interface and “straining” (i.e. pore network constriction). Ad-
sorption (physicochemical interactions with porous medium) occurs when colloidal particles approach the sur-
face of soil particles. Interactions on the surface of colloidal particles lead to temporary or permanent attachment
to the solid phase of porous medium. The attachment of colloidal particles at the air-water interface depends on
pH, ionic strength and surface properties of colloidal particles [4] [5]. Constriction (where pores have diameters
inferior to colloidal particles) provides sites for depositing, including areas where local water flow is not zero [6].
This type of deposit called “straining” mainly concerns larger colloidal particles. Furthermore, the straining ef-
fect is greater in unsaturated medium because water flow is towards the smallest pores and drives colloidal par-
ticles to where they are blocked.

Research on synthetic colloidal particle transport in soil reveals that colloidal particles size increases up to
several hundred microns, when the particles are suspended and injected into columns of sand [7]. The aggrega-
tion mechanisms of synthetic colloidal particles indicate that deposition in porous medium depends on interac-
tions between the medium and colloidal particles but also between the colloidal particles themselves [8]. The
chemical properties of the fluid in which colloidal particles are transported, and medium structure are dominant
parameters in determining colloidal particle deposition in porous media. It is often written that an increase in
ionic strength causes an increase in the retention of colloidal particles. Indeed, an increase in ionic strength in-
creases colloidal particle aggregation. The influence of this factor has been extensively studied e.g. [9]-[14].

Porous medium structure is a determining factor for the straining phenomenon. While the geometric criteria
for straining depend on the relative size of soil pores to those of the colloidal particles (dco/dgor). This phenome-
non becomes significant when the ratio between the size of the colloidal particles and the median pore size
(deai/dpor) is greater than 0.05 [15]. It has been shown that straining depends not only on the ratio of sizes but
also on the irregularity of particles [16] [17], the concentration of colloidal particles in solution [18] [19] and
ionic strength [20]. Porous medium structure also plays an important role in the retention process of colloidal
particles in the sense that it can generate areas of low flow where the hydrodynamic effect is less important than
the electrostatic attachment [21].

Much work has been done in recent years to study the effect of porous medium structure on the retention of
colloidal particles, but they are mainly carried out in water saturated homogeneous soil. Nevertheless, in general
in situ flows occur in unsaturated conditions and are in heterogeneous porous media. In this context, the ability
to accurately predict the fate of colloidal particles in a real porous medium is limited by incomplete understand-
ing of the retention mechanisms [18].

The objective of this paper is to study in laboratory conditions the influence of heterogeneous porous media
structure in unsaturated conditions on the retention of colloidal particles using a new nanoparticle fluorescent
tracer (SiO,-Au-FIuoNPs). The materials used reproduce a common lithofacies present in a predominantly gla-
ciofluvial deposit in the region of Lyon (France). The originality of this research lies in the choice of materials
namely porous medium, and the choice of a fluorescent nanotracer specially developed for this study.

2. Theory

The chosen model for colloidal particle transfer was that of non-equilibrium hydrodynamic fractionation of wa-
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ter into two phases mobile and immobile. Transport in the mobile region is described by the convection-disper-
sion equation and the exchange of colloidal particles between mobile and immobile regions by diffusion using a
first order law for kinetics. In this study, diffusion and dispersion in the immobile phase were ignored. For a sta-
tionary hydraulic regime, the colloidal particles transfer equations are written as follows:

oC oC; oS oS, o*C,, oC,
O —2+ 0y — "+ o py —+(1- f = Ag— g 1
m 6t im 6’[ racpd 6t ( rac)pd at q 6*[2 q 6t ( )
0=0,+6, )
oC, oS,
g —m 4 (1 f =im — g(C, -C, 3
im at ( rac)pd 8’[ OC( m |m) ( )

where 6, 0, and 6, are respectively the volumetric water content in the mobile and immobile phases; fy
and f, are fractions of respectively mobile (Hm/ﬁ) and immobile (Him/é’) water; p, (g-cm™) is the dry
bulk density; f,,. the fraction of sites in contact with mobile water; C,, and C;;, are respectively colloidal particles
concentrations in the mobile and immobile aqueous phases (g-L%); S, and S;,, are concentrations of the solid
phase in contact with mobile and immobile water in grams of colloidal particles per gram of dry soil (Geor Gsoil -);
q is the Darcy flow velocity in the mobile phase (cm'min®); 1 is the dispersivity (cm); and « (min™) is the
exchange coefficient of colloidal particles from mobile and immobile phases.
Colloidal particles partition between the liquid and solid phase is described by:

0S
Py ot Ok,C — pgkyS 4

where C refers to total resident concentration of colloidal particles in the liquid phase and S total resident con-
centration of colloidal particles attached to solid phase. Indeed, colloidal particles in solution can attach in solid
phase by first-order kinetics (attachment coefficient k, in g-cm®) and detach also by first-order kinetics (de-
tachment coefficient kq in min?).

3. Materials and Methods

The choice of materials was made to replicate a glaciofluvial type soil similar to that observed in an unsaturated
zone, in the region of Lyon (France) [22] [23]: that is to say, having the same particle size distribution and the
same chemical composition (Table 1). The selected materials are sand (0 - 0.2 cm) and gravel (0.4 - 1.1 cm)
with which a bimodal mixture, which was formed in mass fraction 50% - 50% (Figure 1). These materials are
known not to be chemically reactive in contact with nanoparticles. The pore size distributions were estimated for
the three porous media. For the sand, the sand sieved at 300 um and the gravel, the pore size distributions were
derived from particle size distribution using the Arya and Paris model [24]. Then, for the bimodal porous media,
we considered the total porosity as the combination of two porosities, i.e. the micro-porosity related to fine ma-
terial (sand sieved or not) and the macro-porosity due to the presence of coarse material (gravel). The total pore
size distributions were then derived from the combination of the two pore size distributions (micro- and
macro-porosities) considering that the micro-porosity occupies 50% of the total porosity since the mixture is
made of 50% of sand and 50% of gravel. It must be borne in mind that pore size distributions give pieces of in-
formation about both pore size and number of pores but complementary information is needed regarding the
characterization of pore geometry or connectivity. The different pore size distributions are discussed with re-
gards to colloidal particles retention.

3.1. Bromide Tracer and Colloidal Particle

The flow tracer chosen is an anionic tracer, bromide ion (Br’). This ion was chosen for certain qualities: it is
very soluble, easy to collect, store and analyze and does not degrade. A neutral solution of sodium nitrate
(NaNO;) at a concentration of 10 2 M is used for the percolation test. The tracer solution consisted of the neutral
solution to which is added potassium bromide (KBr) at a concentration of 10 > M. The concentration of bromide
is measured by an ion chromatograph (ICS 1100, Dionex Thermoscientific, Bannockburn, USA) via electric
conductivity detection.

698
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Figure 1. Particle size distribution for the sand and gravel that forms bimodal
material (by mixing 50% by mass of the sand and the gravel). The sand and
the mixture are then used for leaching column experiments.

Table 1. Chemical composition of three soil types under study, the compound is a bimodal mixture of 50% sand and 50%
gravel by mass.

Sand Gravel Bimodal
Element
(gkg Ldry soil) (gkg tdry soil) (gkg Ldry soil)
CaO 121.3 272.6 196.9
K0 4.07 4.40 4.23
Na,O 1.73 1.53 1.63
MgO 1.87 3.80 2.83
Fe,05 6.44 5.18 5.81
MnO 0.45 0.23 0.34

The colloidal particles being studied are nanoparticles (Figure 2) of silica (SiO,-Au-FIuoNPs). They are dis-
persed in aqueous solution, labeled by organic molecules: fluorescein. Each particle is formed of a gold heart
about 10 nm in diameter, coated with a layer of polysiloxane (modified silica matrix), into which are grafted, by
direct covalent grafting, organic fluorophores. The hydrodynamic diameters of the nanoparticles are between 50
and 60 nm. The nanoparticles are surface grafted with specific functional groups of hydroxyl (OH") that make
mono-dispersed solution, that is to say, they retain their single particle nature in pure water. The concentration
of colloidal particles is fixed at 0.2 g-L ™" in NaNOj3 solution (102 M), this concentration is sufficient to have an
analyzable response after dilution in the column. A UV visible fluorimeter (Cary Eclipse BIO, VARIAN, Santa
Clara, USA) is used to determine the concentration of colloidal particles in water. The excitation light is emitted
by a UV-visible flash lamp at 495 + 2.5 nm and emission is around 515 + 2.5 nm.

3.2. Experimental Set-Up and Experiments

Columns of PVC (Poly Vinyl Chloride) were used, measuring 10 cm in diameter and 30 cm in length (Figure 3).
Several columns have been developed: 1) with sand (0 - 0.2 cm), 2) with the bimodal blend (0 - 1.1 cm) and 3)
with the same bimodal mixture without its finer particle fraction (0.03 - 1.1 cm). In this text, the sand will be
designated by (S), the bimodal mixture (B;) and the sieved bimodal (B,). Glass beads of 0.5 cm in diameter are
placed at the bottom and top of the column in a layer of approximately 1.5 cm thick. They provide good distri-
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Figure 2. Image of nanoparticles obtained by transmission electronic mi-
croscopy (TEM), each particle (gray) with a heart of gold that appears black.
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Figure 3. Schematic diagram of leaching experimental set-up.

Neutral solution

bution and homogenization of the solution at the inlet and outlet of the column. A filter of 0.45 microns and
PVC grids surround the glass beads in order to limit leaching of fine soil particles. The interior of the column is
coated with silicone grease before the introduction of materials to limit wall flow. Before use, the materials are
dried for 48 h at 60°C, and then moistened to a mass water content of 7%. The column packing is carried out in
layers of 3 cm thick. Each layer is compacted uniformly using a pestle. Good contact between the layers is en-
sured by roughening a small thickness of the surface prior to deposition of the next layer. The bulk densities of
the three types of dry materials S, bimodal B, and bimodal B, respectively are 1.70 + 0.04 g-cm 3, 1.78 + 0.04
g-cm 2 and 1.79 + 0.04 g-cm 3. The whole pore volume in each column, noted V,, is 510 mL for the sand, 515
mL for the bimodal B; and 512 mL for the bimodal B,. This volume V, includes pore volume between the glass
beads, called dead volume, and the pore volume in the material. To ensure the proper conduct of the test, i.e. the
establishment of a permanent flow regime, the outflow was measured at regular intervals and compared with the
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imposed inflow. The total volume of water in the column was measured before and after each test in order to
ascertain any changes in saturation. A peristaltic pump imposes a rate of 600 mL-h™* (i.e. Darcy velocity 0.13
cm-min™Y) at the input of the column (Figure 3). After the first drops begin to fall, the pump is connected to the
outlet of the column to facilitate the water flow and ensure continuous steady flow in the column. A pulse tracer
either of Br™ solution or colloidal solution is applied once the steady state is reached. A three-way valve allows
the continuous switching from one solution to another. Samples were collected at the exit with an automated
fraction collector (Gilson, FC204, Middleton, USA) every 6 minutes before determination of bromide and col-
loidal particles concentrations.

Three tests were performed for each material with a single Darcy velocity of 0.13 cm'min™". For each test, af-
ter reaching steady state flow, a pulse 2/3 of V, was applied for bromide or colloidal particle solution. Under
these conditions, 9 tests were performed, three for each type of material, namely, one with only the colloidal
particles, one with the bromide and one with the colloidal particles and bromide injected simultaneously.

3.3. Moment Method

The moment method and MIM code were used to analyze elution curves of the tracer and colloidal particles.
The input signal is either a pulse of bromide solution, of concentration Cy or a pulse of colloidal particle solu-
tion, concentration Co, of St duration in both cases.

The moment of order N is defined by:

+00C t
= [ La (5)
0 0
with C(t) the concentration of bromide or colloidal particles at the instant t. The solute mass balance, MB is cal-
culated from the moment of order O:

Ho
BM =~ 6
St (6)
where g, is the moment of order 0 and &t the application time of the inflow pulse. The average residence
time of bromide and colloidal particles is the difference between the centers of gravity of the injected solute or
colloidal particles and the elution curve at the outlet. It is obtained from the first order moment:

ot
t=2-2 W
Hy 2
Two different characteristic times of flow were also estimated. These are the convection time T,,, which is the

time taken by the bromide or nanoparticles to cross the mobile volume of water present in the porous medium,
and the transfer time Ty which is the average exchange time between mobile and immobile phases [25]

T = Lo @®)
q
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where L is column length in cm.
Variance, o7, for assessing spreading magnitude of the elution curve is given by:

2
o’ = %— {%] (10)
0 0

3.4. Determination of Model Transfer Parameters

The transfer of bromide and colloidal particles is modeled using Hydrus 1D [26]. This program allows the nu-
merical solution of Equations (1)-(3) for different initial and boundary conditions of the column experiments: i.e.
concentration known at entry, zero gradient concentration at column outlet and no initial solute or colloidal par-
ticles concentration at time t = 0. Transfer parameters are estimated by the inverse analysis method, by fitting
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calculated data to experimental data and using the method of non-linear least squares optimization based on the
Levenberg-Maquardt algorithm [27].

When adjusting, dispersivity 4 has been considered as an intrinsic hydrodispersive characteristic of soil [28]
on the same order of magnitude as the maximum soil particle size of the porous matrix. These data are fixed into
Hydrus 1D; inverse analysis of experimental data provides other model parameters.

To determine retention coefficients k, and ky, we assimilate retention to a first-order kinetic rate process S:

%:a)(KdC—S) (11)

where  is the first-order rate constant (min?), K is the partition coefficient between liquid and solid phases.
By identification of the terms of Equations (4) and (11) it is easy to establish relation between retention coeffi-
cients k, and kq [29]-[34]:
_ 0py K,
: %
ki =w (13)

k (12)

4. Results and Discussion

The results are discussed successively in terms of the effect of medium structure on the transfer of the bromide
and colloidal particles.

4.1. Tracer Experiments and Flow

The bromide can characterize flow in terms of water fractionation and quantification of hydrodispersive pa-
rameters relative to convection and dispersion. Mass balance of bromide in all tests reveals a total restitution at
column outlet (Table 2). In all cases, bromide mass balance is above 0.96, the difference of 4% can be explained
by the inaccuracy in the determination of bromide concentration. The conservative nature of bromide is fully
respected. The retardation factor of bromide, R, is greater than 0.97 while remaining lower than 1, thus validat-
ing the use of these anionic molecules to trace out water flow. It may be noted that the low percentage of fine
particles (diameter < 0.02 mm) in the materials limits anionic exclusion. Thus, the difference in the retardation
factor of 1 is likely related to the presence of a small fraction of water completely isolated from the flow.

The MIM model can adequately model bromide breakthrough curves (Figure 4). The model fit to experimen-
tal data validates the proposed approach to describe flow in the column. The model fit compared to the solute
breakthrough curves is obtained with a regression coefficient higher than 0.99 and leads to reliable estimations
on hydrodispersive parameters (Table 2). The dispersivity obtained is greater than the mean soil particle diame-
ter, but will remain in the same order of magnitude. In unsaturated conditions and in contrast to the saturated
conditions, the presence of air pockets in the pore space can make the path more tortuous for water and solutes
and thus increase the apparent tortuosity and dispersivity of the medium [35]. The calculated mobile water frac-
tion (Table 2) is larger in the sand than in the bimodal B, and B,. This proves that the flow is more heterogene-
ous in bimodal media than in sand. For example, the fraction of mobile water in the sand is 71%; it was 57% in
the bimodal medium B;.

This means that, in the sand, the pores are more accessible to flow than in the medium B, of bimodal particle
size where a large volume of pores remains inaccessible to the flow. Indeed, flow is dependent on pore size dis-
tribution in the medium. The pore structure of the medium may generate more or less rapid flow areas, small-
pores may represent immobile areas where the bromide exchanges by diffusion but does not allow a convec-

Table 2. Hydrodispersive parameters of bromide for the three porous media.

Materials a (min?) fm (%) A (cm) Ts (min) Tw (mMin) T, (Min) o (min) R ()
Sand 3.72x10™* 71 0.66 44.71 36.50 190 37.31 0.98
Bimodal B, 3.45x 107 57 1 54.62 27.40 249 39.20 0.97
Bimodal B, 3.70x10™* 69 0.69 49.83 34.20 189 37.35 0.98
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Figure 4. Measured (symbols) and fitted (lines) breakthrough curves of
bromide for three media, sand S, bimodal B; and sieved bimodal B,.

tive flow. The estimated exchange coefficient between mobile and immobile phases is lower in the B, bimodal
medium, which leads to a smaller exchange compared to the other two media (Table 2). This means that the
solute takes longer to exchange between the mobile and immobile phases in this medium. Solute exchange time
is then significantly higher than the convection time, which justifies that the spread between mobile and immo-
bile water zones is limited and that the flow is actually fractioned. This effect is observed for all three media.

4.2. Transfer and Retention of Colloidal Particles

Breakthrough curves of colloidal particles are asymmetric considering that distribution of pore space is non-
uniform and hence produces preferential flows. This observation is made for all three media being studied. It is a
characteristic of heterogeneous, dispersive flows [36]. Mass balance of colloidal particles is between 0.69 and
0.96 (Table 3), attesting to irreversible retention of colloidal particles in porous medium.

As conventionally used in transfer modeling [25] [37] [38] and as a first attempt, it was considered that hy-
drodispersive parameters applied to reactive solutes. The model was then fitted to experimental data by opti-
mizing only the reactive parameters. The hydrodispersive bromide parameters have been used for a first ap-
proach to modeling colloidal particle transport and the model fit obtained proved poor. This means that bromide
and colloidal particles do not follow the same path. Indeed, the colloidal particles show a very different behavior
compared to the bromide. In sand, the mobile water fraction for colloidal particles is 96% while in the case of
bromide is 71%. This means that the network of pores visited by colloidal particles is not the same as for bro-
mide. A rapid perception of colloidal particles is observed in the elution curves (Figure 5) Three hypotheses are
proposed in literature to explain this phenomenon: 1) colloidal particles have a molecular diffusion coefficient
lower than bromide which excludes areas of low flow velocity [39] 2) they can be excluded from a part of po-
rosity where pores size is smaller than colloidal particles [40], therefore their path is less tortuous; this phe-
nomenon has already been observed in a sandy soils [41]; and 3), in a pore with a large enough radius, colloidal
particles are transported usually through the center of the pore where the flow rates are highest in contrast to
solutes which may approach the pore walls [42]. This is qualified as the steric exclusion phenomenon, which
explains the rapid flow of colloidal particles. This hydrodynamic effect results in an average velocity of colloi-
dal particles higher than the average carrier fluid velocity [6] [43]; the latest is also the average velocity of the
bromide. These three hypotheses also suggest a reduction of particle hydrodynamic dispersion. However, the tail
of the colloidal particle elution curve is greater than that of bromide. This may be due to the remobilization of
colloidal particles followed by slow exchange from the immabile to the mobile water phase.

4.3. Effect of Pore Structure on the Transfer of Colloidal Particles

Calculated mobile water fractions (Table 3) show a more heterogeneous colloidal particles transfer in bimodal
B, than in the sand. This remark can also be drawn from analyzing breakthrough curves these being more spread
out in the bimodal media B,. The difference in the transfer of the three media can be related to their pore sizes
distribution (Figure 6). Sand is characterized by a narrow particle size distribution (Figure 1) favoring a homo-
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Figure 5. Colloidal particle experimental elutions: (a) Measured (symbols) and fitted (lines) breakthrough curves for three
media, sand S, bimodal B, and sieved bimodal B,, (b) exemple of injection of colloidal particle without C and with the tracer
(C+T).

Table 3. Hydrodispersive and retention parameters of colloidal particles for three porous media; firstly for colloidal particles
(C) alone, and secondly, colloidal particles together with the tracer (T + C).

Sand Bimodal B; Bimodal B,

C T+C C T+C o] T+C

MB 0.96 0.72 0.95 0.76 0.74 0.69

fm 0.96 0.95 0.70 0.92 0.75 0.84

A (cm) 0.33 0.94 1.24 32 0.79 2.3

frac 0.79 0.78 0.52 0.82 0.65 0.83

Kq (cm®g™) 0.008 0.11 16x10° 0.2 0.4 1.25
o (min™) 0.038 9.4x107 9.3x107° 6.2x107 1.97 x 107 21x10°
a (min™) 9.1x10™ 22x107 41x10™ 8.0x10™ 9.6 x10™ 1.90 x 107
ka (Min™) 23x107° 8.2x107 1.43x 1077 1.1%x10°® 58 x 1072 1.90 x 107
kg (min™") 38x107 9.4x10° 93x10° 6.2x107 1.97x10°? 21x10°

T, (min) 57.7 61.2 65.3 735 72.4 85.1

o (min) 338 48.0 43,0 59.0 495 61.5

geneous pore size distribution. Thus, water, solutes and colloidal particles are transferred in a medium consisting
of capillary pores of comparable size. This configuration generates a homogeneous flow. In contrast, for the bi-
modal media, bimodal particle size distribution (Figure 1) favors bimodal pore size distributions with the con-
currence of small and larger pore sizes (Figure 6) as already suggested by previous studies [24]. This configura-
tion can induce a specific heterogeneous flow. Indeed, small pores, due to their large capillary force tend to eas-
ily fill with water while larger pores can drain easily. For B; bimodal medium, only 75% of total water is in-
volved in colloidal particle transport. In this medium, the finest fraction (0 - 0.03 cm) facilitates the creation of
very small pores that promote increased immobile water. In addition, when the pore velocity increases, the mo-
bile fraction of water decreases. This increases the velocity gradient at the interface between mobile and immo-
bile water hampering the exchange of solutes at the immobile/mobile interface. The dependence of flow in rela-
tion to the physical characteristics of the media therefore has an effect on the transfer velocity of the colloidal
particles.

Despite a less homogeneous flow, the retention of colloidal particles is greater in media of bimodal particle
size distribution. Taking for example the tests on colloidal particles without the presence of bromide, mass bal-
ance in sand is 0.96, in bimodal B, is 0.74 and in the bimodal B, is 0.95. Values of K4 (Table 3) found by fitting
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Figure 6. Pore size distributions: cumulative frequencies (FF) for the three porous media (sand S, bimodal B; and sieved
bimodal B,) (a); frequencies (fr) for sand (b) and for the bimodals B, and B, (d) and percetanges of pore radius below the
two thresholds of 0.5 um and 12.5 pm.

the experimental data to the model are increasing going from sand to bimodal medium B, and then to bimodal
medium B;. This is probably due to the trapping capacity resulting from pore size distribution. These results are
consistent with pore size distributions since, in the sand, the pores are larger than in media of bimodal particle
size and therefore the trapping phenomenon is reduced. The Figure 6 presents the cumulative pore size distribu-
tion (Figure 6(a)), pore size frequencies (Figure 6(c) and Figure 6(d)) and links this information with two
thresholds pore sizes regarding colloidal particles retention. Clearly, the sand contains a smaller pore size. The
pore size distribution shows a main mode between 50 and 100 um (Figure 6(c)). The two bimodal porous media
exhibit dual porosities with the first mode corresponding to the sand and the second mode of pore size between
100 um and 1 mm (Figure 6(d)). Sieving the sand at 300 um reduces the fraction of the smallest pores (Figure
6(d), bimodal B, versus B;). We considered that the colloidal particles entrapment was predominant and that in
this case the key factor was the ratio between the colloidal particles radius (27.5 um) and the pore radius (r).
Pores able to entrap the colloidal particles were supposed to be the pores small enough, i.e. with a radius that
was below the threshold ryim With reo/rpiim > Riim. According to a literature review, two thresholds are consid-
ered. Herzig et al. [15] considered that a threshold Ry, of 0.05 was sufficient to retain particles. Bradford et al.
[18] considered that colloidal particles could aggregate and form packs with an apparent the colloidal particle
size larger than the size of the colloidal particles. Then, colloidal particles entrapment could occur even for ra-
tios in pore radius reo/rpim as low as 0.002. Then, we considered the two thresholds leading to two values for
maximum pore size: 0.5 and 12.5 um, respectively for Herzig et al. [15] and Bradford et al. [18] criteria. We
then computed the cumulative frequency of pores with radius below the two thresholds 0.5 and 12.5 um (Figure
6(b)). The comparison of bimodals B; and B, regarding pore size is logical. Bimodal B, has smaller pores and
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colloidal particle entrapment should logically be smaller. This assumption is in full agreement with experimental
data. The sand exhibits the largest fractions of small pores with more than 60% of pores below 12.5 um and
close to 5% of pores smaller than 0.5 um in radius. For the bimodal B; and B,, these frequencies fall to around
30% for 12.5 um and around 3% for 0.5 um. These results suggest that the sand should entrap much more col-
loidal particles than the bimodal porous media. Yet experimental results show that colloidal particles entrapment
is more significant in the porous media B;.

This information shows that pore size distribution is not the sole key parameter to explain colloidal particles
retention. Microstructure is strongly dependent on the geometry of pores and pore connections. This geometrical
aspect must be important regarding colloidal particles entrapment as suggested by [44]. In addition, under un-
saturated conditions, the geometry of water films around particles is strongly affected by the geometry of pores.
Film straining (colloidal particles entrapment by water films and at the interface water-air) must be strongly im-
pacted by the geometry of pores. This suggests that the arrangement of particles in bimodal porous media is fa-
vorable to a specific geometry of microporosity and thereby to colloidal particles entrapment.

Microstructure plays a key role regards flow and thus with regards to the transfer of colloidal particles that
results from the coupling between flow and retention mechanisms [45] [46]. The degree of flow heterogeneity
impacts the access of pollutants to adsorption sites [36] [37] [47] and even the access of colloidal particles to
trapping and adsorption sites [45] [46]. In unsaturated conditions, the small pores have a large capillary force
that pulls out colloidal particles trapped in constrictions. The presence of air-water interfaces in unsaturated
conditions is an additional cause for trapping colloids [34]. Colloidal particles that are weakly attached to the
water-solid interface can be drawn to immobile flow zones by hydrodynamic forces [34] [48]. This effect creates
a more important colloidal particles concentration in the immobile phase. Microstructure plays both on the hy-
drodynamic process and on the retention trapping mechanisms, resulting in very significant differences in elu-
tion and retention colloidal particles.

4.4. Influence of Potassium Bromide on the Retention of Colloidal Particles

Increasing ionic strength between the solution of colloidal particles and the colloidal solution with bromide di-
rectly causes an increase in deposition of colloidal particles (Figure 5(b)). In the sand S, mass balance goes
from 0.96 to 0.72, a 25% increase of retention due to the presence of potassium bromide. Several authors have
shown the influence of this factor on the retention of colloidal particles e.g. [9]-[14] [20]. Attachment due to
ionic strength is partially reversible. When the ionic strength decreases, a part of the colloidal particles can be
released. In bimodal B,, decrease of mass balance due to increased ionic strength of the solution proves that re-
tention by increases 20%. In contrast, in the bimodal medium B;, the retention is increased by only 1%. This
small increase in retention could be explained by the fact that the effect of straining was already strongly influ-
enced by the structure even with the absence of potassium bromide. Indeed, the colloidal particles under the in-
fluence of the ionic strength increase, due to the presence of bromide, can agglomerate. The apparent diameter
of the agglomerate increases and the colloidal particles are more easily retained. The agglomeration effect is
visible to the sand and bimodal B, as their pore size distributions did not allow an optimal retention in the ab-
sence of bromide. When the colloidal particles are agglomerated, they are thus retained in greater quantity in the
sand and in the bimodal B,, reducing the eluted mass at column outlets.

5. Conclusions

In this study, we examined the effect of the structure of three unsaturated porous media on the transport of bro-
mide and colloidal particles. Bromide allows the water flow to be traced and the fluorescent silica nanoparticles
(SiO,-Au-FluoNPs) allow the simulation of colloidal particles to transfer. Bromide and colloidal particles break-
through curves were correctly modeled by considering the hydrodynamic non-equilibrium and split of water in
two regions, mobile and immobile (MIM).

It was observed that bromide flow is closely dependent on medium structure. The hydrodispersive parameters
obtained for bromide show that the flow is more heterogeneous in bimodal media than that in sand. The hetero-
geneous flow in both bimodal media B; and B, is due to their structure. These flows have been linked to the mi-
crostructure of materials. Within a monomodal-pore structure in terms of pore radius a more homogeneous flow
of water was observed into the sand. Another result concerns the application of hydrodispersive parameters on
colloidal transfers. Parameters obtained by tracing water flow do not correctly model colloidal particle transport,
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thus showing that the bromide path in the column is different from that of the colloidal particles.

Colloidal particles undergo irreversible retention during their transportation. Retention increases, going from
sand to bimodal B; and bimodal medium B,. The presence of fine particles favors the presence of very much
smaller pores. Thus, despite a heterogeneous flow, porous media with bimodal particle size offer more capacity
for colloidal particle retention. The model shows that retention is greater in the immobile region relative to the
mobile region particularly for sand and bimodal B; medium. Capillary forces in unsaturated conditions cause
colloidal particles to pass through into the smallest pores because they are more constricted and then promote
their blocking. Working in unsaturated conditions seems to increase chances of colloidal trapping at the air-wa-
ter interface. As these colloidal particles are loosely attached, they are easily mobilized to immobile zones by
hydrodynamic forces. Another factor playing heavily on retention of colloids is the ionic strength of solution.
The modification of the ionic strength of the solution due to the presence of potassium bromide produces a 25%
decrease in sand mass balance. This effect is related to increase in cluster size of particles formed by aggregation
of colloidal particles following the change in ionic strength of particles. They are then more easily trapped in the
pores.

These results show that the structure of unsaturated porous media has a strong influence on the retention of
colloidal particles and validates the use of the nanoparticles as a new colloidal particle tracer. These nanoparti-
cles, owing to their easy detection and stability in water, open a new way forward in the development of mecha-
nistic studies of colloidal transfer in heterogeneous unsaturated porous media.
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