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Abstract 

The process involved in the local scour below pipelines is so complex as to make it difficult to es-
tablish a general empirical model to provide accurate estimation for scour. This paper describes 
the use of an adaptive neuro-fuzzy inference system (ANFIS) and a Gamma Test (GT) to estimate 
the submerged pipeline scour depth. The data sets of laboratory measurements were collected 
from published literature and used to train the network or evolve the program. The developed 
networks were validated by using the observations that were not involved in training. The per-
formance of ANFIS was found to be more effective when compared with the results of regression 
equations and GT Network modelling in predicting the scour depth of pipelines. 
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1. Introduction 

Scour is a major cause for the failure of underwater pipeline. Interactions between the pipeline and its erodible 
bed under strong current and/or wave conditions may cause scouring around the pipelines. This process involves 
the complexities of both the three-dimensional flow pattern and the sediment movement. Scouring underneath 
the pipeline may expose a section of the pipe, causing it to become unsupported in the stream. If the free span of 
the pipe is long enough, the pipe may experience resonant flow-induced oscillations, leading to settlement and 
subsequently structural failure. Accurate estimate of the scour depth is important in the design of submarine 
pipelines [1]. The estimation of the scour characteristics of underwater pipelines continues to be a concern for 
hydraulic engineers. 

A number of empirical formulas have been developed in the past to estimate equilibrium scour depth below 
pipeline, including [1]-[6]. A summary of these equations is shown in Table 1. 

Predictive approaches such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems 
(ANFIS) have been recently shown to yield effective estimates of scour around hydraulic structures. ANNs have 
been reported to provide reasonably good solutions for hydraulic engineering problems, in cases of highly non-
linear and complex relationship among the input-output pairs in corresponding data. 

The objective of this study is to develop a predictive model for scour depth, and in particular 1) to develop an 
ANFIS model with the aid of  Gamma Test, 2) to evaluate the uncertainty inherent by using ANFIS and Gam-
ma Test models for scour depth estimation in clear-water condition and (3) to compare the results obtained the 
ANFIS model with the empirical methods. 

2. Local Scour below Underwater Pipelines 

The variables influencing the equilibrium scour depth sd  below a pipeline in a steady flow over a bed of uni-
form, spherical and cohesion less sediment as shown in Figure 1 are: flow condition, sediment characteristics, 
and pipe geometry. The scour depth can be represented by the following general functional relationship: 

( )50 0, , , , , , , ,s sd f V Y g d S Dρ ρ ν=                             (1) 

where ρ  = fluid density, sρ  = sediment density, ν = fluid kinematic viscosity, V  = Average velocity, Y =  
 
Table 1. Empirical formulae for estimate pipeline scour depth.                                                    
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Figure 1. Local scour below pipeline in river crossing.                     

 
flow depth, g  = gravitational acceleration, 50d  = particle mean diameter, 0S  = slope of the energy line, D = 
diameter of the pipe, and sd  = equilibrium scour depth. 

The nine independent variables in Equation (1) can be reduced to a set of six non-dimensional parameters. 
The Buckingham theorem applied to Equation (1), selecting ρ , V  and D as repeating variables, leads to: 

 * 0
50

, , , , ,s
p

d Y D R S F
D D d

φ τ
 

=  
 

                            (2) 

where *τ  = dimensionless Shields parameter related to sediment transport; 
50

D
d

 = dimensionless soil charac-

teristics, Reynolds numberp
VDR
ν

= = , VF
gY

= , Froude number, and V = Average velocity, the influence of  

Reynolds number is considered negligible under a fully turbulent flow over a rough bed ([7] [8]). The data were 
collected from a number of references namely [6] [9]. The whole collected data consists of 215 data set. Table 2 
shows the range of variation of collected data and its parameters.  

3. Development of ANFIS  

During the last two decades, researchers have noticed that the use of soft computing techniques as an alternative 
to conventional statistical methods based on controlled laboratory or field data has provided significantly better 
results. Neural network (NN) and ANFIS are the most widely used branches of soft computing in hydraulic en-
gineering. Within the larger field of hydraulics, a few researchers have dealt with the scour around and down-
stream of hydraulic structures using NN [10] [11]. This study presents ANFIS and Gamma Test (GT) as an al-
ternative tool in the prediction of scour below pipeline scour.  

Therefore, the present study is based on a new soft computing technique, combined neural and fuzzy net-
works. 

3.1. Neuro-Fuzzy System 

The most important characteristics of these methods are the ability to implement human knowledge by tongue 
labels and fuzzy rules, nonlinearity of these systems and their adaptability [12]. It utilizes human expertise. In 
fuzzy systems, relationships are represented explicitly in the form of the if-then rules. In neural networks, the 
relations are not explicitly given, but are encoded in the designated networks and parameters. Neuro-fuzzy sys-
tems combine semantic transparency of rule-based fuzzy systems with the learning capability of neural networks. 
Depending on the structure of the if-then rules, two main types of fuzzy models are distinguished as mamdani 
(or linguistic) and Takagi-Sugeno models. The mamdani model is typically used in knowledge-based (expert) 
systems while the Takagi-Sugeno model is used in data-driven systems.  
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Table 2. Data variation.                                                                                  

Parameters Unit Data Rang Mean Std Dev 

a) Range of different input-output parameters used for the estimation of scour depth 

Velocity (u) cm/s 21.8 - 73.6 44.67 12.46 

Flow depth (Y) cm 3.8 - 28 13.43 6.21 

Particle mean diameter (d50) mm 0.48 - 7.6 1.92 1.61 

Diameter of the pier (D) cm 2.34 - 7 4.37 1.44 

Equilibrium scour depth (ds) cm 0.02 - 11.3 4.75 2.39 

b) Range of different non-dimensional input-output parameters used for the estimation of scour depth 

dimensionless Shields parameter (τ*) 0.038 - 0.70 0.23 0.17 

normalized flow depth (Y/D) 1.06 - 7 3.14 1.2 

pipeline diameter cross section of sediment size (D/d50) 3.28 - 145.8 38.17 31.41 

Froude number (Fr) 0.2 - 0.83 0.46 0.15 

Non-dimensional equilibrium scour depth (ds/D) 0.008 - 1.66 1.04 0.32 

 
Based on the above statements, combining of fuzzy systems, which work on logical rules, with artificial neur-

al networks, which extract knowledge from numerical information, we can develop models that simultaneously 
use numerical formation and tongue statements to model any phenomenon. This combined method of artificial 
neural network and fuzzy systems is named the adaptive neuro-fuzzy inference system ([13]-[16]). A fuzzy sys-
tem is one based on logical rules of if-then statements. The most common type of fuzzy systems is the Sugeno 
fuzzy system in which fuzzy rules are stored in a rule base station. The rules in this system are 

( )1 1 2 2 1 2if is and is is then , , ,n n nx A x A x A y f x x x=                   (3) 

where A1 , A2 and ⋅⋅⋅ An are the fuzzy sets. In this system, if the section of the rule is a fuzzy value and the result 
section of the rule is a real function of the input values and usually is a linear statement such as: [17]. ANFIS 
network architecture is shown in Figure 2. 

1 1 2 2 n na x a x a x+ + +                               (4) 

3.2. Training of the ANFIS Model Using Genfis2 and Genfis3 

In order to begin the training an FIS structure is needed first. The FIS structure specifies the parameters of FIS 
system for learning. Genfis2 function meets these requirements because it generates a Sugeno-type FIS structure 
using subtractive clustering and requires separate sets of input and output data as input arguments. When there is 
only one output, Genfis2 may be used to generate an initial FIS for ANFIS training. Genfis2 accomplishes this 
by extracting a set of rules that models the data behavior. In order to find optimum cluster centers, several clus-
ter radii were examined and the radius of 0.5 for clusters, proved to yield the best results [18]. Since clustering is 
sensitive to the range of elements in the input vector, the data set was normalized within the unit hypercube. The 
rule extraction method first uses the subclust function to determine the number of rules and antecedent mem-
bership functions and then uses linear least squares estimation to determine each rule’s consequent equations. 
This function returns a FIS structure that contains a set of fuzzy rules to cover the feature space. The numbers of 
rules were 9 and 18 for dimensional and non-dimensional combinations, respectively (Figure 3(a) and Figure 
3(b)). 

Another Fuzzy interface system using for training of the ANFIS model is Genfis3. It generates an FIS using 
fuzzy c-means (FCM) clustering by extracting a set of rules that models the data behavior. The function requires 
separate sets of input and output data as input arguments. When there is only one output, you can use genfis3 to 
generate an initial FIS for ANFIS training. The rule extraction method first uses the FCM function to determine 
the number of rules and membership functions for the antecedents and consequents. The functional set and op- 

jar:file:///C:/Program%20Files/MATLAB/R2009a/help/toolbox/fuzzy/help.jar%21/fcm.html
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Figure 2. ANFIS network architecture.                             

 

 
(a) 

 
(b) 

Figure 3. ANFIS models: (a) Genfis2 model; (b) Genfis3 model.      
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erational parameters for dimensional analysis in best combination used in the ANFIS modeling in this study are 
listed in Table 3. 

In this study, attempts were made to improve the GT to illustrate the best combination of nonlinear model in-
puts prior to model construction and evaluation for selection of the best input parameter for ANFIS network and 
to yield a better prediction of scour depth below an underwater pipeline. 

3.3. Development of ANFIS Model 

How the data are presented for training is one of the most important aspects of ANN and ANFIS models. Often 
this can be done in more than one way [19]. The authors collected such data from several references such as [6], 
[9]. The whole data set consists 215 data points. The ANFIS model was developed using the same input va-
riables. 

A code was developed in MATLAB to perform the analysis. Before applying the ANFIS algorithm, all data 
must be normalized. In order to normalize the data, they are transformed into the range of [0.05, 0.95]. The fol-
lowing formula is used for the normalization of data: 

min

max min
0.05 0.9 r

n
X XX

X X
−

= +
−

                                  (5) 

where Xn and Xr are the normalized and the original inputs; and Xmin and Xmax are the minimum and maximum of 
input ranges, respectively. 

Out of the total of 215 input-output pairs, about 75% (161 sets), are randomly selected, were used for training, 
whereas the remaining 25% (54 sets) were employed for testing. Five of nine parameters in (1) namely fluid 
density, the buoyant sediment density, fluid dynamic viscosity, gravitational acceleration and the slope of energy 
line are constant in all experiments. Therefore, the first combination involves just four of the nine parameters in 
Equation (1) as the input pattern and the equilibrium scour depth ( )sd  as the output pattern. The second com-
bination includes four non-dimensional parameters of Equation (2), the normalized equilibrium scour depth 

sd
D

 
 
 

 as the input and output patterns respectively. Both of the combinations mentioned above of inputs have 

been used for the ANFIS model. 

4. New Input Selection Model: Gamma Test 

The selection of model input variables is a complex issue, even for linear multivariable regression analysis and 
nonlinear models such as ANN. Choosing the optimum inputs to arrive at good predictions is important in non-
linear modeling. This paper demonstrates a new model “Gamma Test” to identify the best combination and number 
of input data to make a prediction with the best possible accuracy. The Gamma Test is a non-linear analysis tool 
which allows quantification of the extent to which a smooth relationship exists within a numerical input/output 
 
Table 3. Parameters of ANFIS models for dimensional analysis in best combination.                                  

Rule Parameters ANFIS 

Training of the ANFIS model using Genfis2 
(subtractive clustering) 

Training of the ANFIS model using Genfis3 
(fuzzy c-means clustering) 

Rule 1 
Rule 2 
Rule 3 
Rule 4 
Rule 5 
Rule 6 
Rule 7 
Rule 8 
Rule 9 

[0.1255 −0.6761 0.5241 −0.7729 0.4106] 
[0.2284 −0.3918 0.9777 0.173 0.1064] 
[1.13 0.1192 0.4859 −1.985 0.1239] 

[−0.3304 0.6991 −0.1687 1.279 0.09621] 
[0.6013 0.9184 0.3647 −0.2692 −0.4788] 
[1.124 0.2302 0.256 −0.2427 −0.01926] 
[−0.8196 0.3539 0.8058 0.332 0.4059] 
[2.059 0.257 −0.05244 −3.504 0.3668] 
[−0.1408 −1.259 0.7326 −121.7 116.1] 

[0.07086 0.3199 0 0] 
[0.06754 0.4445 0 0] 
[0.06815 0.353 0 0] 

[0.08313 0.5967 0 0] 
[0.09327 0.2105 0 0] 
[0.06589 0.4481 0 0] 
[0.1432 0.7998 0 0] 

[0.08337 0.5635 0 0] 
[0.07432 0.2955 0 0] 
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data set. The Gamma Test was first reported by [20]-[21], and later enhanced and discussed in detail by many 
researchers [22]-[27]. There is very limited work published using the Gamma Test in hydrology (examples in-
clude water level and flow modeling in the River Thames by [26], daily solar radiation prediction by [28], Daily 
pan evaporation modeling in a hot and dry climate by [29] and comparison of LLR, MLP, Elman, NNARX and 
ANFIS Models in solar radiation estimation by [30].  

The Gamma Test estimates the minimum mean square error (MSE) that can be achieved when modeling the 
unseen data with any continuous nonlinear models. The basic idea is quite distinct from the earlier attempts with 
nonlinear analysis. Suppose we have a set of data observations of the form  

( ){ } input
, ,1 where

output

m
i

i i m
i

x R
x y i M

y R

 ∈≤ ≤ 
∈

                          (6) 

in which input vectors are confined to some closed bounded set mc R∈ , and the corresponding outputs are scalars. 
The vectors x contain predicatively useful factors influencing the output y. The relationship between an input x 
and its corresponding output y can be expressed as: 

( )y f x r= +                                         (7) 

f  is some smooth unknown function representing the system and r is a random variable having expectation 
zero representing noise. Without loss of generality it can be assumed that the mean of the r distribution is zero 
(since any constant bias can be subsumed into the unknown function f) and that the variance of the noise Var. (r) 
is bounded. 

The domain of a possible model is now restricted to the class of smooth functions which have bounded first 
partial derivatives. The Gamma statistic is an estimate of the model’s output variance that cannot be accounted 
for by a smooth data model. 

The Gamma Test can estimate Var. (r) directly from the data, even though function f is unknown. This esti-
mate is calculated by computing the following equations called a delta function: 

( ) [ ]
2

,
1

1 1
M

M iN i k
i

k x x k p
M

δ
=

= − ≤ ≤∑                              (8) 

( ) [ ]
2

,
1

1 1
2

M

M iN i k
i

k y y k p
M

γ
=

= − ≤ ≤∑                              (9) 

where |…| denotes Euclidean distance, ( ),N i k  denotes the index of the kth nearest neighbor to ix  and iy , p  
is the number of near neighbors. Thus ( )M kδ  is the mean square distance to the kth nearest neighbor and 

[ ],N i ky  is the corresponding output of [ ],N i kx . Γ is the intercept of the linear regression line of  ( )M kγ  versus 
( )M kδ  for 1 ≤ k ≤ p, estimates Var(r) and is known as the Gamma statistic. In order to compute Γ a least 

squares regression line is constructed for the p points ( ) ( )( ),M Mk kδ γ   
Aγ δ= + Γ                                      (10) 

It can be shown that 

( ) ( ) ( )yields in probability as 0M Mk Var r kγ δ→ →                       (11) 

Calculating the regression line gradient can also provide helpful information on the complexity of the system 
under investigation. First, it is remarkable that the vertical intercept Γ of the y- (or Gamma) axis offers an esti-
mate of the best MSE achievable, utilizing a modeling technique for unknown smooth functions of continuous 
variables [31]. Second, the gradient offers an indication of model’s complexity (a steeper gradient indicates a 
model of greater complexity). 

The Gamma Test is a non-parametric method and the results apply regardless of the particular techniques 
used to subsequently build a model of f . We can standardize the result by considering another term Vratio, which 
returns a scale invariant noise estimate between zero and one. Vratio is defined as: 

( )ratio 2V
yσ

Γ
=                                   (12) 

where, ( )2 yσ  is the variance of y. Vratio close to zero indicates that there is a high degree of predictability of 
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the given output y. The reliability of Γ statistic can be determined by running a series of Gamma Tests for a de-
finite number of unique data points (M), to establish the size of data set required to produce a stable asymptote. 
This is known as an M-test. The M-test also helps us to decide how much data we are likely to need to obtain a 
model of a given quality, in the sense of predicting with mean square error around the noise level. The M-test 
result would avoid the over fitting of a model beyond the stage where the MSE on the training data is smaller 
than Var(r) and help us to decide the required data length to build a meaningful model. For model identification 
is used from full embedding section to determine which combination yields the smallest absolute Gamma value. 
The Gamma Test analysis can be performed using winGammaTM software implementation [26]. 

5. Uncertainty Analysis 

In order to measure and compare the uncertainty related to the results of ANFIS models, there needs to compare 
some objective criteria. In this study we used coefficient of determination (R2), root mean squared error (RMSE) 
and mean absolute error (MAE): 

( )
( )

2
2 1

2
1

1
N

i ii
N

i ii

o t
R

o o
=

=

−
= −

−

∑
∑

                                    (13) 

( )2
1RMSE

N
i ii o t

N
=

−
= ∑                                    (14) 

1

1MAE N
i ii o t

N =
= −∑                                     (15) 

where it  denotes the target values of equilibrium scour depth (cm), while io  and io  denotes the observed 
and average observed values of equilibrium scour depth (cm), respectively, and N is the data point number. The 
sensitivity analysis of independent Parameters for the Validation set of ANFIS model type Genfis2 are given in 
Table 4. 

Gamma Test is used to measure uncertainty by Gamma value, gradient and Vratio .This paper demonstrates all 
combinations of input data that affect the pipeline scour depth by using full embedding. A full embedding tries 
every combination of inputs to determine which combination yields the smallest absolute Gamma value. It re-
turns the number of results requested. If there are m scalar inputs then there are 2 1m −  meaningful combina-
tions of inputs (15 in this study). The best one of these different combinations can be determined by observing 
that with the minimum Gamma value, which indicates a measure of the best MSE. Thus, we performed the 
Gamma Tests in different dimensions varying the number of inputs to the model and minimum value of Γ was 
observed when we used every fourth input for two data sets. The gradient (A) is considered as an indicator of  
 
Table 4. The sensitivity analysis for Independent Parameters for the Validation set (Genfis2).                          

Parameter type Model RMSE MAE R2 ANFIS Rule 

di
m

en
sio

na
l 

ds = f(u, Y, D, d50) 0.0742 0.39 0.96 9 

ds = f(u, Y, D) 0.1013 0.473 0.91 6 

ds = f(Y, D, d50) 0.0803 0.394 0.95 7 

ds = f(u, D, d50) 0.116 0.5124 0.89 4 

N
on

-d
im

en
sio

na
l ds/D= f(τ*, Y/D, D/d50 , Fr) 0.0137 0.0711 0.83 18 

ds/D= f(τ*, D/d50, Fr) 0.0212 0.1128 0.72 8 

ds/D= f(τ*, Y/D, D/d50) 0.0159 0.790 0.82 14 

ds/D= f(τ*, Y/D, Fr) 0.0179 0.0903 0.77 19 
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model complexity. Vratio is the measure of predictability of given outputs using available inputs. An input data 
set with low values of MSE, gradient and Vratio is considered as the best scenario for the modeling. Four repre-
sentative combinations for each data set (include the best one) are tabulated in Table 3. From Table 3 we can 
deduce that the combination of four parameters in two data sets can make a good model compared with other 
options. The relative importance of inputs are D > Y > u > d50 and τ* > D/d50 > Fr > Y/D for first and second 
combinations, respectively. 

The quantity of sufficient input data to predict the desirable output was analyzed using the Gamma Test. 

6. Result and Discussion 

In this study, different combinations of input data (non-dimensional data sets) were explored to assess their in-
fluence on the scour depth modeling (Table 3). The ANFIS model was developed and tested for predicting the 
pipeline scour depth. The dimensional parameter combinations included the flow velocity; flow depth; particle 
mean diameter; diameter of the pipe; and the equilibrium scour depth. A dimensional analysis was used to de-
termine the parameter for underwater pipeline scour. The Combination of non-dimensional parameters include 
the dimensionless Shields parameter related to sediment transport; pipeline diameter cross section of grain size 
(d50); and the Froude number. Each parameter (except energy slope) in Equations (1) and (2) was considered in 
turn in the ANFIS for the sensitivity analysis. The results show that, of the parameters in Equation (1), the mean 
particle size (d50) has the most significant effect on the scour depth and the flow discharge has the least effect on it.  

Similarly, for non-dimensional parameters in Equation (2), sensitivity analysis shows that dimensionless 
Shields parameter (τ*) and Y/D have respectively the most and the least effect on normalized scour depth. The 
quantity of input data required to predict the desirable output was analyzed using the M-Test with various data 
lengths for two combinations. This shows that a training data length of 173 and 158 is sufficient for the Gamma 
statistics to become stable and low respectively for dimensional (original data) and non-dimensional combina-
tions. Statistical results of different combination are in Table 5. For simulation with the ANFIS model, we gen-
erate an FIS structure from data using subtractive clustering with 9 rules. To assess the performance of the 
ANFIS model, observed equilibrium scour depth values are plotted against the predicted ones. Figure 4 and 
Figure 5 illustrate the results with the performance indices between predicted and observed data for the validat-
ing (testing) data sets, for dimensional and non-dimensional respectively. As can be seen from Table 6, the first  

 
Table 5. Comparison of performance of the ANFIS model used based on statistical criteria.                             

Parameter 
combination Training Model 

R2 RMSE MAE 

Training Validation Training Validation Training Validation 

Dimensional 
subtractive Clustring 0.95 0.96 0.0365 0.0742 0.38 0.39 

Fuzzy C means 0.63 0.81 0.1139 0.1567 0.89 0.72 

Non-dimensional 
subtractive Clustring 0.87 0.83 0.008 0.013 0.083 0.071 

Fuzzy C means 0.70 0.53 0.0136 0.0318 0.123 0.176 

 
Table 6. The Gamma Test results on the pipeline depth scour data set.                                              

Parameter 
Dimensional Non-dimensional 

u, Y, D, d50 U, Y, D Y, D, d50 u, D, d50 τ*, Y/D, D/d50, Fr τ*, D/d50, Fr τ*, Y/D, D/d50 τ*, Y/D, Fr 

Gamma (Γ) 
Gradient (A) 

Standard error 
V-ratio 

Near neighbors 
M 

Mask 

0.013 
0.124 

0.0027 
0.053 

10 
215 

1111 

0.011 
0.215 
0.0027 
0.043 

10 
215 
1110 

0.014 
0.227 
0.0035 
0.057 

10 
215 
0111 

0.039 
0.147 
0.0133 
0.158 

10 
215 
1011 

0.047 
0.54 

0.0089 
0.191 

10 
215 

1111 

0.057 
1.105 
0.0099 
0.231 

10 
215 
1011 

0.063 
0.56 

0.014 
0.254 

10 
215 
1110 

0.076 
0.78 
0.016 
0.304 

10 
215 

1101 



N. Niknia et al. 
 

 
523 

 
Figure 4. Observed versus predicted scour depth for dimensional parame-
ter-validation (testing).                                                

 

 
Figure 5. Observed versus predicted scour depth for non dimensional para-
meter-validation (testing).                                           

 
combination (original data) has better ability to predict scour depth. The result for the original data show a high 
coefficient of determination (R2), also the RMSE in the second combination is better than the first combination 
in both training and validation periods but this variation is low compare with R2 variation. This study is useful 
for applications of pipeline scour for field conditions because the ANFIS model was developed with wide range 
of data, which could be deemed as the closest to field conditions, particularly helping to identify parameters that 
most likely define scour processes and explain scour variability, and ANFIS model is shown to agree well with 
actual measurements. 
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7. Conclusion 

The application of a relatively new soft computing approach of ANFIS to predict the local pipeline scour depth 
was described. An ANFIS and GT model was developed to predict the values of the relative scour depth from 
laboratory measurements. A new approach was presented to estimate the equilibrium depth scour below under-
water pipelines from optimum data sets with the ANFIS and GT modeling techniques. The application of the 
ANFIS in this study is another important contribution to scour depth estimation methodologies for pipes. The 
present study indicates that employing the original data set yielded a network that can predict measured pipeline 
scour depth more accurately than standard regression analysis based formulas [1] [3]-[6] that under- and over 
predict scour depths. Further work is required to collect field data of scour at pipeline to train the GP approach 
and validate its usefulness. 
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