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Abstract 
 
Modeling stream flow forms a basis upon which policy makers, watershed planners and managers make ap- 
propriate decisions consistent with sustainable management of land and water resources in the watershed. 
The aim of this research is to provide a preliminary assessment of the performance of a complex watershed 
model in predicting stream flow on the Naro Moru river catchment in Ewaso Ng’iro river basin, Kenya. The 
research involved model input data preparation, model set up and test running, sensitivity analysis and cali- 
bration of the Soil Water Assessment Tool (SWAT) model. Preliminary evaluation of the model performance 
involved the use of known quantitative evaluation statistics that included correlation coefficient, Nash Sut- 
cliffe efficiency (NSE), Deviation Volume (Dv) and a graphical technique for comparing observed and simu- 
lated flows. Initial model runs yielded poor daily flow simulations compared to monthly simulations. Poor 
daily simulation was attributed to differences in the timing of observed and simulated hydrographs. The 
model was calibrated for a three year period followed by a three year validation period based on monthly 
flows. Calibration results indicated an acceptable, but modest, agreement between observed and simulated 
monthly stream flows with a correlation coefficient (r) of about 0.7, NSE = 5%, and Dv = 61.7%. After vali- 
dation, the model performance was satisfactory with the coefficient of determination (R2 ≈ 0.6), Nash-Sut- 
cliffe efficiency (NSE) of 0.51 and a deviation volume (Dv) value of 24.7%. The modest model performance 
was associated with input data deficiencies and model limitations. Even then, the results indicate that the 
model can possibly be adapted to the local conditions in the catchment for which it is being applied but with 
improvements involving better parameter calibration techniques, and collection of better quality data. Such a 
study may be used to predict the effect of climate change on river flows as well as the effect of land use 
changes on the hydrologic response of a catchment. 
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1. Introduction 
 
1.1. Background 
 
Information on stream flow can be used to predict sur- 
face runoff. Reliable prediction of surface runoff from 
rainfall in a catchment is essential for several purposes in 
watershed management. Prediction of both volume and 
rate of runoff from a watershed is vital in the design of 
hydraulic structures including soil and water conserva- 
tion, rainwater harvesting, flood control, and hydro elec- 
tric power generation structures. A number of models 
have been developed to simulate runoff. The transforma- 
tion of rainfall into runoff involves hydrological proc- 
esses that include infiltration, evapotranspiration and 
deep percolation. Factors that influence the hydrological 

processes include land use, soil characteristics, topogra- 
phy, vegetation and management practices. Runoff simu- 
lation models have been developed to estimate runoff 
taking into account the effects of factors that influence 
the runoff process. Studies involving prediction of the 
runoff process based on runoff simulation models are 
useful in examining the effects of land use and manage- 
ment practices on water flow behaviour for natural re- 
sources management in watersheds. Development of 
knowledge on runoff prediction techniques is useful in 
water resources planning through simulation of the ef- 
fects of management strategies on water resources in the 
watershed. Surface runoff is related to soil erosion and 
sedimentation in a watershed. The runoff rate therefore 
indicates how much soil is being lost and resulting sedi- 
mentation of reservoirs used in water supply or for hydro 
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electric power generation. Potential effects of changes in 
climate on surface water hydrology may be studied using 
stream flow simulation models. Such models have been 
developed for selected watersheds to analyze hydrologic 
sensitivity for selected watersheds to climate change 
scenarios. The SWAT model was developed by [1] for a 
watershed for the purposes of regional water supply 
planning efforts through analysis of hydrologic sensitivi- 
ty to climatic change Scenarios. For a model to be ap- 
plied for streamflow prediction in a watershed, it needs 
to be evaluated to establish its performance in the se- 
lected catchment. This involves preliminary assessment 
of model performance, followed by calibration and vali- 
dation. The evaluation process involves the use of ob- 
served data on stream flow which is then compared with 
the model predictions to establish the goodness of fit. 
Performance measures used in model evaluation include 
Coefficient of determination (R2), Nash-Sutcliffe effi- 
ciency (NSE) and deviation volume (Dv). The quantita- 
tive assessment of the degree to which the modeled be- 
havior matches with the observations provides means of 
evaluating a model’s predictive abilities [2]. The correla- 
tion coefficient (r) has been used by [3] to establish cor- 
relation between measured and modeled discharges on 
selected catchments while modeling water balances and 
hydrological processes in lowland river basins. A good 
agreement is associated with the values of r approaching 
unity with a value 1 indicating a perfect correlation. The 
aim of this research is to demonstrate how streamflow 
can be simulated using a watershed model and to assess 
the initial performance of the selected model on a catch- 
ment located in Kenya. 
 
1.2. Objectives 
 
The purpose of this research is to assess the performance 
of a watershed model in simulating stream flow on a 
selected catchment in Kenya.  

The specific objectives of the study are: 
1) To identify and prepare relevant data required as 

input to a hydrologic model.  
2) To set up and run the model for streamflow simula- 

tion. 
3) To assess the preliminary model performance in es- 

timation of stream flow through first model simulation 
run, calibration and validation. 
 
2. Methodology 
 
2.1. Description of the Study Area  
 
The study area is Naro Moru river catchment. This 
catchment lies at the North Western slopes of Mt. Kenya. 

The river originates from the peak of Mount Kenya and 
is tributary to the Ewaso Ng’iro River. The catchment 
lies between latitudes 0˚03’ and 0˚11’ South and longi- 
tudes 36˚55’ and 37˚15’ East. The altitude of the Naro 
Moru catchment ranges from 5200 m at the peak of the 
mountain to 1800 m at its confluence with Ewaso Ng’iro 
river. The catchment lies on the leeward side of Mt 
Kenya and therefore is characterized by low amount of 
rainfall as presented by [4] who also reported that the 
mean annual rainfall within the catchment increases from 
650 mm at the outlet to 1500 mm at 3300 m altitude and 
drops to 500 mm in the moorland. On average the annual 
potential evaporation is above 2500 mm. The climatic 
conditions that prevail in the catchment and Agro-eco- 
logical zones are documented by [5] varying from the 
glaciated peaks of mount Kenya (5200 m) to the semi- 
arid Laikipia plateau (1800 m). The catchment has five 
different ecological zones being peak, moorland, forest 
footzone and savannah and so has diversity of vegeta- 
tion/ land use and soil types. The drainage basin has sev- 
eral river gauging stations from the top of Mount Kenya 
to the point where the river joins the Ewaso N’giro river. 
It is reported by [6] that these stations were installed in 
1982 and had been maintained by the Laikipia Research 
Programme since then. Some of these are shown in Fig- 
ure 1 alongside the river drainage network. The Kenya 
Meteorological Department and the Ministry of Water 
and Irrigation, Kenya also has collected hydrological 
data from some gauging stations in the catchment. 

The catchment covers an area of 172 km2. The land- 
use types in the drainage basin are shown on Figure 2. 
 
2.2. Model Selection 
 
The Soil Water Assessment Tool (SWAT) was chosen 
for hydrological modeling in the watershed under study 
using the Arc-view SWAT (AVSWAT2003). SWAT is a 
watershed scale model developed to predict the impact of 
land management practices on water, sediment and 
agricultural chemical yields with varying soils, land use 
and management conditions over long periods of time [7]. 
One basis for model selection was due to it’s worldwide 
use for variety of applications. The model has in the 
recent past gained significant publicity having been used 
widely for various applications world over with notable 
success [8] with recent applications in the Nilotic catch- 
ments that include Kenya, Tanzania, Ethiopia, Uganda, 
among others. SWAT has gained international acceptance 
as a robust interdisciplinary watershed modeling tool as 
evidenced by international SWAT conferences, hundreds 
of SWAT related papers presented at numerous scientific 
meetings, and many articles articles published in peer 
reviewed journals. The model has been used for a wide  
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Figure 1. Drainage network and gauging stations in the 
Naro Moru catchment. 
 

 

Figure 2. Land use types covering the study area. 
 
range of applications for reasons that include its com- 
putational efficiency and flexibility on input data require- 
ments [9]. The available data for the catchment under 
study could be used in hydrological modeling using 
SWAT. SWAT is capable of modeling changes in land 
use and management practices, can model variety of 
catchment areas ranging from a few hectares to thou- 
sands of square kilometers and performs long term 
simulations. Besides, the model is freely available and 
can be downloaded from the internet. The model website 
has a well developed system for support to model users. 
The model is in the public domain and therefore avail- 
able without many restrictions. The model has options 
for daily, monthly and yearly time step simulations that 
can be carried out without altering the input data. Model 
predictions are spatially distributed thereby providing 
spatial information regarding upstream sources of model- 
ed quantities [10]. 

2.3. The SWAT Model Review 
 
2.3.1. Brief Description of the SWAT Model 
SWAT model is a process based, continuous physically 
based distributed parameter river basin model that simu- 
lates water, sediment and pollutant yields developed in 
the early 1990’s to assist water resources managers asses 
impact of land use management on water, and diffuse 
pollution for large ungauged catchments with different 
soil types, land use and management practices [11]. 
Model components include weather, hydrology, erosion, 
soil temperature, plant growth, nutrients pesticides, land 
management, channel and reservoir routing [12]. The 
first step in creating a SWAT model involves delineation 
of the sub-watersheds in the basin each of which is 
treated as an individual unit. The sub basins are further 
divided into hydrologic response units (HRU’s). These 
units are composed of homogeneous land use, soil cha- 
racteristics and management practices. Relevant hydro- 
logic components like surface runoff, ground water flow 
and sediment yield are estimated for each HRU’s unit. 
Two methods are used for surface runoff estimation in 
SWAT i.e. the SCS curve number and Green-Ampt 
infiltration. This study is based on the use of curve 
number for surface runoff and hence stream flow simu- 
lation. A SWAT model can be built using the Arc-View 
interface called AVSWAT which provides suitable 
means to enter data into the SWAT code.  
 
2.3.2. Swat Model Origin and Applications 
The historical development and applications of the 
SWAT model is well documented in [13] in which it is 
reported that early origins of SWAT is traced to models 
previously developed by the United States Department of 
Agriculture, Agricultural Research Service (USDA-ARS) 
models that included the Chemicals, Runoff and Erosion 
from Agricultural Management Systems (CREAMS) 
model, Ground Water Loading Effects on Agricultural 
Management Systems (GLEAMS) model and the Envi- 
ronmental Impact Policy Climate (EPIC) model origi- 
nally called Erosion Productivity Impact Calculator. The 
authors further note that the current SWAT model 
evolved from the Simulator for Water Resources in Rural 
Basins (SWRRB) model whose development commenced 
in the early 1980’s and through modifications that in- 
corporated inputs from other models, the SWAT model 
finally developed when SWRRB was eventually merged 
with Routing Outputs Outlet (ROTO) model to overcome 
their limitations. Since its creation in the early 1990’s, 
the model has undergone continuous review and expan- 
sion of its capabilities. 

The model has been applied worldwide for purposes 
that include simulation of sediment flow [14], modeling 
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hydrologic balance [15], Evaluation of the impact of land 
use and land cover changes on the hydrology of catch- 
ments [16]. It has also been used to assess the effect of 
certain interventions on river and sediment flows [17]. 
The model has registered good performance as well as 
limited success. Limited success has been reported in 
SWAT simulation for stream flow in South African 
catchments [18]. Over estimation of flows between 1 and 
3 mm was reported while flows between 4 and 7 mm 
were overestimated. The model performance was notably 
better in the dry than in the wet years. Discrepancies 
between the observed and predicted flow for the two 
catchments considered was attributed to their small 
drainage basins. The model was developed to simulate 
large catchments, a limitation which may affect model 
performance. 
 
2.4. Model Evaluation 
 
Graphical and statistical techniques were used for eva- 
luating model performance. One of the evaluation statis- 
tics used was the Nash-Sutcliffe efficieny (NSE) being 
the most widely used evaluation criterion for testing the 
goodness of fit between the observed and simulated 
values. It indicates how well the plots of observed and 
simulated data fits the 1:1 line. The Pearson’s correlation 
coefficient (r) and coefficient of determination (R2) is 
another goodness of fit criterion used in this model 
evaluation to describe the degree of collinearity between 
simulated and observed data. The deviation of volume 
(DV) was also used in the model evaluation to asses over 
estimation or underestimation of the streamflow.  
 
2.5. Data Preparation for Hydrological  

Modelling Using SWAT 
 
2.5.1. Summary of Model Input Data 
The input parameters required to run the model included; 
 Daily precipitation 
 Digital elevation Model (DEM) 
 Weather data (e.g. solar radiation, wind speed, maxi- 

mum and minimum temperature, and relative humi- 
dity). 

 Soils information. 
 Land use data. 
 Drainage data  

Digital elevation model (DEM) 
DEM was created from contours and converted to a 

shape file covering the area under study. Figure 3 shows 
the DEM derived from the contours.  

Land use input data preparation 
The shape file land use map was compiled from the 

Kenya Soil Survey. These land use types were re-classi-  

 

Figure 3. Digital elevation model (DEM) derived from con-
tour network. 
 
fied to the corresponding SWAT land uses for the model 
to load data. The land uses and abbreviations are shown 
in Table 1. 

Soils input data preparation 
Data for soil included the shape file soil map extracted 

from the soil map of Kenya available from Kenya Soil 
Survey (KSS). For each of the soil units in the study area, 
the soil physical and chemical properties were deter- 
mined from the corresponding soil unit identified from 
the table of the soil properties (KENSOTER table). These 
properties included the proportions of sand, silt, clay and 
coarse fragments (i.e. % sand, % clay, % silt), bulk den- 
sity (BD), Cation Exchange Capacity (CEC), Electrical 
conductivity (ELCO), Total Carbon (TOTC), etc. Some 
soil properties are shown in Table 2. Figure 4 shows the 
major soil units in the area. The use of KENSOTER soils 
data base to estimate the soil properties is well docu- 
mented in [19]. 

Weather data input preparation 
The location of the meteorological station with the 

weather data based on its UTM co-ordinates and eleva- 
tion was required. The X-cordinate (Easting) and Y-cor- 
dinate (Northing) based on the Universal Transfer Mer- 
cator (UTM) co-ordinate system for the Nyeri meteoro- 
logical station which was chosen to provide weather in- 
put data were 273695 and 992078 respectively. The sta- 
tion elevation was 1817 m above sea level. 

The weather input variables required included; Solar 
radiation, wind speed, relative humidity, precipitation, 
dew point temperature, minimum and maximum tem- 
peratures. Based on the data available at the Kenya Me-  
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Table 1. Reclassification of observed land uses to SWAT 
land-use types. 

Kenya Land use Swat Land Use Swat Land use code

Plantation Mixed forest land FRST 

Agriculture (Sparse) Cropland and pasture AGRL 

Woodland Evergreen forest Land FRSE 

Forest Deciduous forest land FRSD 

Barren Land Strip Mines SWRN 

 
Table 2. Soil properties for soil units in the study catch-
ment. 

Soil % sand % silt % clay BD CEC Ksat

HSs 30 56 14 0.36 15 7.8 

LVf 26 22 52 1.48 18 0.3 

VRe 30 30 40 1.49 40 0.11 

PHI 24 17 59 1.10 14 0.02 

ANm 59 20 21 1.13 33 0.84 

 

Soil O.M CFAG ELCO TAWC TOTC USLE_K

HSs 138 0 0 35.0 80.0 0.28 

LVf 16 0 0 12.3 9.3 0.15 

VRe 25.8 1 0 12.0 15 0.17 

PHI 25.5 0 0 11.0 14.8 0.19 

ANm 40.5 0 0 17.0 23.5 0.05 

 

 

Figure 4. Major soil units in the study area. 
 
teorological Station, it was possible to acquire the data 
for all the above weather variables for 9 years daily data 
during the period 1992-2000 based on three rainfall sta- 
tions in the vicinity of the study catchment.  

The weather generator 
The weather generator provides input data to SWAT 

being statistical parameters derived from the weather 
information. The weather generator data was derived 
from the nine years daily data (1992-2000) on rainfall, 
minimum temperature, maximum temperature, relative 
humidity, wind speed, solar radiation and dewpoint tem- 
perature. The data output included the following for pre- 
cipitation: 
 Average monthly precipitation (PCP_MM). 
 Standard deviation for precipitation (PCPSTD). 
 Skew coefficient (PCPSKW). 
 Probability of a wet day following a dry day (PR_ 

W1). 
 Probability of a wet day following a wet day (PR_ 

W2) 
 Average number of days of precipitation in month 

(PCPD). 
Similar information was also determined for other 

weather variables. The above indicated model weather 
input data was determined using a programme known as 
pcpSTAT based on the daily weather data. 

Drainage Data 
Drainage data input into SWAT was provided in the 

form of digitized stream network. The digitized stream 
network was made available as shape file. The stream 
network used as input to SWAT together with the DEM 
was used in the catchment delineation using a selected 
watershed outlet.  
 
2.5.2. Model Simulation Run 
Having successfully loaded the indicated data, the model 
was able to run and produce the necessary output infor- 
mation on streamflow on a daily, monthly or yearly ba- 
sis.  
 
3. Results and Discussion 
 
3.1. Preliminary Assessment of Model  

Performance 
 
3.1.1. Daily Simulations 
The model was initially run for a warm period of six 
months in which a daily simulation was carried out dur- 
ing the period 1/1/92 to 30/6/92. Daily and monthly 
stream flow simulations were then performed in the pe- 
riod 1/7/92 to 30/6/95 representing three years. Model 
evaluation was begun with simulation based on a daily 
time step. Figure 5 show the trend of stream flow hy- 
drographs for the observed and simulated flows (m3/s) 
during the three year period based on the first modeling 
run.  

The model over predicted flow during certain periods  
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Figure 5. Hydrographs of observed and simulated daily 
flows during the period 1/7/92-30/6/95. 
 
and under predicted in others while in some periods, the 
observed and simulated flows were in agreement. In 
general, the model under predicted high flows while 
simulating low flows fairly.  

Comparisons based on daily time step are likely to be 
misleading due to the manner in which the model com- 
putes the daily flows which differs from that used in re- 
cording observed flows and this affects the values of 
peak flows. The observed flows are based on instanta- 
neous readings taken at a certain time of day (e.g 9.00 
am) in the morning while the simulated flows are based 
on the daily average. If heavy rainfall occurs close to the 
time when the observation is about to be read say 7 am in 
the morning the resulting peak flow is likely to be re- 
flected in the observed record. However if the rainfall 
occurs much earlier e.g. the previous day, then it’s is 
likely that the resulting runoff will have passed the 
catchment outlet before a reading is taken so the peak 
flow would not be reflected in the daily flow reading. 
The surface runoff may, however, be captured by the 
flow simulation especially if the daily flow is reasonably 
high so that the daily average of the runoff will have a 
high value. For storm events that occur closer to the time 
of observation, the peak flows are captured by both the 
observed and simulated flows. Figure 6 shows a com- 
parison of observed and simulated flows based on linear 
regression with values of the y-intercept and coefficient 
of determination (R2) also indicated.  

The value of R2 was found to be 0.144 while Nash- 
Sutcliffe efficiency (NSE) 0.01 relecting a poor linear 
relationship between the observed and predicted values 
based on daily simulation. This poor performance, which 
is often misleading, may be attributed to small differ- 
ences in the timing of observed and simulated hydro- 
graphs likely to occur when using daily rainfall data. Daily 

 

Figure 6. A Comparison of simulated and observed daily 
flow during the period 1/7/92-30/6/95. 
 
simulations do not provide values that are expected to 
compare reasonably well with the predicted ones. This is 
partly due to the poor prediction procedure for peak 
flows. As a result therefore, detailed evaluation of the 
model performance including model calibration was 
done based on monthy time step. This is in consideration 
of the fact that monthly values are likely to be more rep- 
resentative than the daily values since with daily values 
cummulated over the month, the daily errors are likely to 
be cancelled out. Hence the subsequent calibration pro- 
cess was considered on the basis of monthly simulations. 
 
3.1.2. Monthly Simulations 
Simulation was done based on monthly basis to observe 
the perfomance of the model based on a montly time step. 
Figure 7 shows the hydrographs of the average daily 
flows for each month for observed and predicted flows 
during the period 1/7/92 to 30/6/95 during the first mod- 
elling run. From the figure, it can be observed that the 
model performance has improved compared to that based 
on a daily time step. 

A Similar observation was made by [20] while evalu- 
ating performance of SWAT model in the Nzoia catch- 
ment in western Kenya in which the author noted that the 
agreement between observed and simulated flows was 
stronger with monthly than with daily flows during cali- 
bration. During the period July 1992 to around April 
1994, the model predictions of stream flow seem to agree 
with the observed values except for a few instances 
where there was over prediction of flow like in Decem- 
ber 1994. For the period April 1994 to June 1995, the 
model generally under predicted the flows. The model is 
a therefore a poor simulator of high flows but fairly 
simulates low flows. Figure 8 shows a plot of observed 
and predicted flows based on the linear regression. The 
values of the coefficient of determination and regression  
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Figure 7. Hydrographs of simulated and observed mean 
daily flows in month for the period July 1992 to June 
1995. 
 

 

Figure 8. Comparison of observed and predicted mean 
daily flows in the month for the period 1/7/1992 to 
30/6/1995. 
 
equation expressing the linear relationship are as well 
indicated.  

The value of the coefficient of determination (R2) of 
about 0.5 indicates acceptable performance. The correla- 
tion coefficient r = 0.7 showing that the predicted and 
observed flows exhibit linear relationship. The Nash- 
Sutcliffe efficiency, however registered a low value of 
5% indicating poor simulation performance. The low 
value of NSE can be attributed to a strong deviation 
volume (Dv) of 61.7% as noted by [11]. The high posi- 
tive value of Dv indicates the average tendency of the 
simulated flows to under estimate the flows. The process 
of model calibration was carried out to further assess 
model performance and to examine possibilities of do- 
mesticating the model for application in the local catch- 
ment.  

3.2. Sensitivity Analysis and Model Calibration 
 
Sensitivity analysis was carried out to find the order of 
sensitivity of stream flow to the input parameters. The 
sensitivity analysis process was carried out automatically 
by the model. The model produced the output indicating 
the order of sensitivity of the model input parameters. 
Table 3 shows an extract of the summary of the output 
format from sensitivity analysis. Interpretation of the 
results indicate that the curve number (CN2) is the most 
sensitive parameter. The ranking of the parameters is 
indicated in the row labeled “out”. 

An auto calibration process was the carried out based 
on a selection of the three most sensitive parameters. 
These were the Curve number (CN2), Soil Evaporation 
compensation factor (ESCO), and the Threshold water 
depth in the shallow aquifer for “revap” (QWQMN). 
After the auto calibration process, the best values of the 
selected parameters for which the model prediction 
closely agreed with the observed were determined and 
produced in the auto calibration results. 

The model was again rerun based on these values. Not 
much change was noted in the hydrographs of observed 
and simulated flows after the auto calibration process. A 
comparison of observed and predicted monthly flows 
yield a coefficient of determination slightly above 0.50 
with minimal change in the value of NSE which still 
remained low at 6% and a small reduction in deviation 
volume to 61.3%. This indicated acceptable but modest 
performance of the model for the catchment in question. 
An attempt was made to perform a manual calibration of 
the model. This was done by varying each of the three 
most sensitive parameters by 10% from their default 
values, but within the allowable range, and selecting the 
value that provides the best possible agreement between 
observed and simulated flows. The parameters were var- 
ied one at a time while keeping the others constant until 
an optimal value is obtained. A slight, but insignificant 
improvement was observed in the values of the evalua- 
tion statistics with r = 0.72 (R2 = 0.51) and NSE of 5%, 
with the deviation volume rising to 64%. Table 4 shows 
the calibration results. The seemingly poor performance 
performance of the model could be associated with input 
data deficiencies also observed by [21]. Daily rainfall 
data in the vicinity of the catchment was available from 
three rainfall stations in which only two were located 
within the catchment and near the outlet. The third sta- 
tion was located outside the catchment near the upstream 
end. Hence the rainfall may not have been representative. 
Only one full meteorological station was available with 
adequate weather data for use in the modeling but was 
located well outside the catchment. The weather data 
may therefore, also not have been adequately representa-  
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Table 3. Sensitivity analysis results showing the order of sensitivity of input parameters. 

 SFMX SMFMN ALPHA_BF GWQMN GW_ REAP 

Of 1 28 28 3 1 28 

Out 1 28 28 12 3 28 

 
 REVAPMN ESCO SLOPE SLSUBBSN TLAPS CH_K2 

Of 1 28 5 8 28 12 2 

Out 1 28 2 6 19 28 15 

 
 CN2 SOL_AW surlag SFTMP SMTMP CH_K2 

Of 1 2 4 11 28 28 28 

Out 1 1 4 14 28 28 28 

 
 GW_DELAY Rchrg_dp canmx sol_k sol_z 

Of 1 13 6 28 7 9 

Out 1 18 18 8 7 5 

 
 Sol_alb epco ch_n blai BIOMIX 

Of   1 28 10 28 28 14 

Out  1 16 13 17 11 19 

 
Table 4. Evaluation of model results for first simulation runs, calibration and validation. 

 First Simulation Run Calibration Validation 

Evaluation Statistic Daily monthly Monthly Monthly 

Nash-Sutcliffe efficiency (NSE) 0.01 0.05 0.05 0.51 

Coefficient (r)Correlation 0.30 0.69 0.72 0.76 

Coefficient of Determination (R2) 0.09 0.48 0.51 0.58 

Deviation Volume (Dv) 22.57 61.7 64.06 24.66 
 
tive. Besides, there were also cases of missing data dur- 
ing certain periods for thestations used. 
 
3.3. Model Validation 
 
Based on the optimized parameters obtained during the 
calibration period, a further simulation was carried out to 
assess the model performance during the period 1/1/98 to 
31/12/2000 which is outside the period when the model 
was calibrated. Figure 9 shows the graphical represen- 
tation of the observed and simulated flows during this 
validation period. The hydrographs of stream flow 
during the period of validation show that the simulated 
and observed flows show a nearly close fit, an indication 
of improved model performance. 

Figure 10 shows a plot of simulated against observed 
monthly flows. 

There is evidently improved performance of the model 
with the coefficient of determination, R2 = 0.58 (r = 0.76). 
The NSE value significantly improved to 0.51 while the 
deviation volume reduced to 24.7%. This reflects accept- 
able model performance [22] which is can be considered 
satisfactory and therefore promising for applicability in 
the catchment. A summary of calibration and validation 
results are indicated in Table 4. 
 
3.4. General Assesment of Model Performance 
 
The results obtained in this study are not unique. Appli- 
cations of SWAT worldwide has yielded diverse results  
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Figure 9. Hydrographs of simulated and observed mean 
daily flows in month for the validation period 1/1/98 to 
31/12/2000. 
 

 

Figure 10. Comparison of observed and predicted mean 
daily flows in the month for the period 1/1/1998 to 31/12/ 
2000. 
 
some encouraging while in some instances, the success 
in the use of the model has been limited. This may be 
attributed to strengths and weaknesses associated with 
the use of SWAT across the world spectrum. A few 
studies involving SWAT supports this observation. Good 
model performance has been reported by [23] while 
modelling water balance with SWAT on three catchment 
areas in northern Germany. However, the first model 
runs failed to represent the streamflow correctly (also 
observed in this study) showing underestimation of ob- 
served high winter discharge peak and over estimation of 
baseflow. Success in model prediction was attributed to 
repeated attempts to improve the model performance. 
The challenges of modeling with SWAT in lowland ar- 
eas are mentioned and which had to be taken into ac-
count in model parameterization. [9] evaluated the per-

formance of the SWAT model in several sub basins in 
Chile. The model performance was not uniform in all the 
sub catchments studied. The NSE index ranged from 
good to satisfactory for the calibration period depending 
on the sub basin. The model was observed to have under 
estimated peak flows, a similar observation to this study. 
An explanation for this was given as inadequate descrip-
tion of rainfall input field due to the limited number of 
available meteorological stations and poor representation 
in higher areas due to orographic effects. This scenario is 
similar to this study. Only one rainfall station was avail-
able to represent the rainfall near the higher elevations of 
Naro Moru catchment. The station was also outside of 
the catchment but was the nearest available for use. The 
standard interpolation method used in AVSWAT for 
estimating rainfall (Thiesen polygons) was notably a 
limitation as its reliability is yet to be tested if discrete 
improvements in model performance is to be expected.  
 
4. Conclusion and Recommendations 
 
The model predictions of streamflow based on monthly 
simulations compared fairly well with the observations in 
the preliminary assessment and even after calibration 
yielding a coefficient of determination (R2) of about 0.50 
reflecting acceptable performance. Better results were 
obtained during the validation period yielding a value of 
R2 ≈ 0.6, NSE = 0.51, and Deviation Volume (Dv) of 
24.7%. This indicated satisfactory performance of the 
model. Modest model performance was attributed to in- 
put data deficiencies partly associated with unrepresenta- 
tive rainfall input data. Better results can be obtained 
through the use of more detailed, complete and more 
accurate data. Preliminary model assessment based of 
ordinary simulation and auto calibration does not give a 
adequate evaluation of model performance, however it 
gives an indication on the possibility of model applica- 
bility for local conditions. Improved simulations can be 
achieved by the use of better and more detailed data and 
better parameter calibration efforts. 
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