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Abstract 

The indicators of flood damage assessment in the flood classification are often incompatible, and it is very 
difficult to use those indicators value directly for classification assessment. Projection pursuit technology can 
project higher dimensional incompatible data into lower dimensional sub-space, and find the projection val-
ues for optimal projection index function to get the higher dimensional data structure features, which has 
been improved to be reasonable and effective for flood disaster classification assessment. However, it is a bit 
difficult to optimize the parameters of projection index functions, as a result, that limits the applications of 
this method. As an emerging heuristic global optimization algorithm based on swarm intelligence, particle 
swarm optimization algorithm has the ability of solving complex optimization problem, but it still be easily 
convergent early, and can not search the global optimal solution. In this paper, a flood disaster classification 
assessment method based on multi-swarm cooperative particle swarm optimization is proposed, which 
adopts a tri-parameter Logistic curve to construct the flood disaster projection pursuit model, and uses 
multi-swarm system particle swarm optimization method to optimize the parameters of the projection index 
functions. The typical test function experiment shows that this optimization method can solve the early con-
vergence commonly found in standard particle swarm optimization algorithm, which global optimized ability 
is improved greatly. Applied in flood disaster assessment in Henan Province, the results using this method 
comparing with others indicates that it can assess effectively the flood disaster, and has better assessment 
accuracy and disaster resolution. 
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1. Introduction  
 
Flood disaster is one of the natural calamities which have 
the greatest effect, the highest frequency and the most 
severe loss [1]. Because of the high dimension and com-
plexity of the flood disaster system, there are no uniform 
flood disaster assessment indices and technical methods, 
and flood disaster assessment is still one of the difficult 
and hot spots in flood disaster research. Flood disaster 
assessment is to search the non-linear relationship be-
tween flood disaster assessment indices and flood disas-
ter grads on the basis of having obtained some disaster 
assessment indices, so that it can assess the loss degree 
caused by the flood disaster, which is a pattern recogni-

tion problem essentially. In order to estimate the flood 
disaster objectively and accurately, multi-factor assess-
ment model need to be built. In terms of the flood disas-
ter classification assessment, several methods, such as 
matter-element analysis method, fuzzy synthetic evalua-
tion method, gray cluster, artificial neural network, and 
immune genetic algorithm, have been proposed [2-6]. 
However, the results estimated by those models are dis-
crete disaster degrees, and the disaster resolution is low. 
The flood disaster assessment model based on projection 
pursuit technology solves the incompatible problem of 
flood disaster assessment indices, and the calculative 
process is simple, while the assessment results are intui-
tive, steady without artificial random. So this model at-
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taches more and more importance in flood disaster clas-
sification [7-8]. Projection pursuit is to project higher 
dimensional data into lower dimensional sub-space, then, 
it analyzes the structure characteristic of higher dimen-
sional data and predicts the system output, thus, parame-
ter optimization of projection index function is the key 
factors whether projection pursuit technology can be 
applied successfully. However, parameter optimization 
of projection index function is generally complex which 
limits the application of this technology. As an emerging 
heuristic global optimization algorithm based on swarm 
intelligence, particle swarm optimization algorithm has 
advantages of simple principle, low controlled parame-
ters, fast convergent rate, which applied widely in fields 
such as function optimization, PID control, and it be-
comes one of the fastest developing intelligent optimiza-
tion algorithm[9-11]. Particle swarm optimization algo-
rithm has the ability of solving complex optimization 
problem, but for some complex optimization problem, 
this algorithm is easily convergent early, and can not find 
out the global optimal solution. 

This paper proposes a flood disaster classification as-
sessment method based on multi-swarm cooperative par-
ticle swarm optimization. Multi-swarm cooperative par-
ticle swarm optimization algorithm has the advantage of 
information sharing between principal swarm and subor-
dinate swarm, subordinate swarm and subordinate swarm. 
This algorithm conquers the early convergency problem 
of ordinary particle swarm optimization algorithm, which 
improves the global optimizing ability, the optimization 
effect of projection index function parameters and flood 
disaster classification assessment precision. In order to 
validate the rationality and effectiveness, this paper 
simulates the instance combining flood disaster grades 
sample data set of Henan Province. 
 
2. Materials and Methods 
 
2.1. Flood Disaster Classification Model Based 

on Projection Pursuit 
 
Projection pursuit is one kind of statistic method dealing 
with multi-factor complex problem, by projecting higher 
dimensional data into lower dimensional (1D to 3D) 
sub-space [12]. For projected configurations, projection 
index function (objective function) is adopted to weigh 
the possibility of some structures exposed by projection, 
and finds out the projection value for optimal projection 
index function, which can reflect higher dimensional 
data structure or character. Then, the structure character 
of higher dimensional data is analyzed with this projec-
tion value, or the mathematical model is built to predict 
the system output using the scatter diagram, where, the 

structure of the projection index function and its optimi-
zation problem are the key factors whether project pur-
suit method can be applied successfully. 

The modeling procedure of projection pursuit flood 
disaster classification model as following: 

1) The normalization process of flood disaster index 
In this paper, we assume that flood sample set is 
 ( , ) 1,2, , ; 1,2, ,x i j i n j p   , where, ( , )x i j  is 
the th flood and the th flood disaster index value, 

 and  is the numbers of flood times and flood dis-
aster index respectively. In order to eliminate dimension 
of each index value and unify the range of each index 
value, the below formula is applied for extremal nor-
malization processing: 

i j
n p

     * , ( , ) ( )x i j x i j Ex j Sx j         （1） 

Where,  and  is the mean value and the 
mean square value of the th dimension flood disaster 
index value, 

( )Ex j

* ( ,

( )Sx j
j

)x i j  is the sequence of index eigen-
value normalization. 

2) Construction of projection index function  
The essential of projection pursuit method is to syn-

thesize -dimensional data p  * ( , ) 1,2, ,x i j j p   to 
one-dimensional value  of projection direction. iz

 *
1 , 1,2, ,

p

ji jz a x i j i  n    1,1ja     （2） 

when synthesizing projection value, the distribution 
characteristics of projection value zi should be (as fol-
lows): local projection points are as closer as possible, 
and agglomerated to several clouds, but global projection 
points are scattering. Thus, projection index function can 
be constructed as follows: 

a aQ s da                  (3) 

where, a  is the distance function between clusters, 
which equars the standard deviation of projection 
value i . a  is the density function in clusters, which 
means the local density of projection value . 

S

dz

iz

   
1 2

2

1 1
n

a i is z z n
             (4) 

   1 1

n n

a i j ij ijd R r f   R r         (5) 

where,  1 , , 1, 2
n

i i ij i jz z n r z z i j    , n … , 

R = 0.1 Sa 
R  is the window radius of density function in classes, 

which is related to data characteristics, while the selec-
tion of average number of window projection points 
should not be too small, and the average deviation of 
glide should not be too large. ( ij )f R r

ijr (f R
 is monotonic 

density function, when , , vice 
versa, 

R  )ijr 1
0( )ijf R r  . 

3) Projection index function optimization 
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Once flood disaster samples are determined,  can 
only vary with projection direction . 
Different projection directions reflect different data 
structure features; the best projection direction is the 
projection direction that can expose certain feature 
structure of higher dimensional data. Therefore, the best 
projection direction can be determined by solving the 
maximum problem of projection index function, and the 
flood disaster classification can be obtained by corre-
sponding . Thus, the flood disaster clas-
sification problem evolves to an optimal problem solving 
the best projection direction . 

aQ
2, ,( 1, )ja j p

2, , )p

( 1, 2, , )iz i n 

( 1,a j j

This optimal model is described as follows: 

2

max

. . 1

a a a

p
j

Q s d

s t a




  j=1

             (6) 

Because the model optimization is a complex 
non-linear optimal problem, it is a bit difficult to deal 
with. In this paper, we will propose a new type of 
multi-swarm cooperative particle swarm optimization 
algorithm to solve the flood disaster classification prob-
lem. 

4) Flood disaster classification 
The best projection direction obtained by above steps 

is inserted into projection value i  corresponding to the 
th flood disaster, and the mathematical model is created 

according to the scatter diagram of i  and flood disaster 
criteria i . On the basis of considering the effect of in-
creasing index of  to , the flood disaster assessm- 

z
i

z
y

i i

ent model building by a Logistic curve of tri-parameter 
achieves a good results [13]. 

z y

 
     3

1 2

*

* ** *

1

C

C C Sgn z i z i

N
y i

e






        (7) 

Where,  is the computational value of flood 
grades of the th flood disaster, the largest grade  is 
the upper limit value, c1, c2 and c3 are undecided pa-
rameters, which denotes integrated constant number and 
increasing rate respectively, and their values are deter-
mined by solving the minimum problem below. 

* ( )y i
i N

    2

1 2 3 1
*min ( , , ) n

iF c c c y i y i       (8) 

Likewise, the minimum problem also can be deter-
mined by particle swarm optimization algorithm. In this 
paper, a multi-swarm cooperative particle swarm opti-
mization algorithm is proposed. 
 
2.2. Multi-swarm Cooperative Particle Swarm 

Optimization Algorithm  
 
The particle swarm optimization (PSO) algorithm is an 

optimal method based on swarm evolution proposed by 
Kennedy et al. in 1995, which has the following advan-
tages: simple principle, little controlled parameters, fast 
convergent rate and so on [14]. This algorithm is applied 
in the fields such as function optimization, neural net-
work training, PID control, etc., which gets good optimal 
affects, and becomes a research hotspot of international 
evolution computational field. Compared to other algo-
rithms using evolution operators to individuals, PSO 
algorithm is a kind of swarm intelligent evolution algo-
rithm, which regards each individual as a non-volume 
particle in D-dimensional searching space, according to 
the fitness to the environment, individuals in swarm are 
moved to good fields that flying in a certain velocity in 
searching space, where the velocity is dynamically ad-
justed by flying experiences of itself and companions. 
The location of the th particle in D-dimensional space 
is denoted as 

i
 1 2, , ,y y i iY y i iD , and the best location 

experienced (i.e., the best fitness) is denoted as 
 1 2i i i iD , which is also called best . The 

best location experienced by all the particles in swarm is 
recorded as

, ,P p p , p P

gP

(1 )d D

, which is also named as . The veloc-
ity of the particle  is denoted by i iDV v . 
For the particles of each generation, the  dimension 

bestG
( ,i i

d
i 1 2 ,v , )v

   varies with the equation below: 

    2
1

max min
max

max

10cos 2 10d
i i if x x x

k
k



 
 

  


 


     (9) 

1k k k
id id idy y v 1               (10） 

Where, c1 and c2 are accelerated factors,  is 
the random number in [0, 1],  is current iteration time, 

()rand
k

 min max,id i iv v v  , ω is the inertial weighed coefficient. 
Particle swarm algorithm solves the problem by updating 
iteration of Equation (9) and (10) until getting the satis-
factory solution or the largest iteration time. 

As a random global optimal algorithm, PSO algorithm 
has its own limitation [15]. In the initial optimal stage, 
PSO algorithm has a fast convergent rate, but with the 
continuing optimal steps, it easily gets into local optimi-
zation in later searching stage. The scholars proposed 
many improved methods for this problem. This paper 
adopts a new type of particle swarm optimal algorithm 
based on symbiosis in biology, which is multi-swarm 
cooperative particle swarm optimizer (MCPSO) [16-17]. 
This algorithm divides swarm into several sub-swarms, 
which uses a master-slave structure to simulate symbio-
sis in sub-swarms and communicates messages in mas-
ter-slave swarms. Therefore, it avoids the danger of get-
ting into local optimization caused by miscarriage of 
justice of individuals’ information. At the same time, all 
of the swarms’ information communicateons, which re-
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)

alized by the central particle’s guidance determined by 
the best particle’s average location in the whole swarms, 
communicate information between main swarm and sub-
ordinate swarm, meanwhile, the information communi-
cations existing in subordinate swarms improve the algo-
rithm’s optimal effect. Comparing with the basic PSO 
algo-rithm, the velocity upgrading equation of MCPSO 
is 

1
1 2

3

( ) (

( )

k
id ip id ig id

k
ic id id

v c rand p y c rand p y

c rand p y v

        

     
  (11)  

Where, pip and pig denotes the best location of the par-
ticle found by itself and the swarm, pic is the central lo-
cation in the whole sub-swarms. When N sub-swarms 
independently upgrade their velocities and locations, the 
best location in each sub-swarm is determined, and the 
equation is as following: 

( 1)

1

1t n t
ip i tgp

N


  P            (12) 

Where, n = 1, 2, , N, and central particle has no 
velocity compared with others. 



In order to test the optimal performance of MCPSO 
proposed in this paper, two classical functions (Sphere 
and Rastrigin) are calculated. Function Sphere is a sim-
ple unimodal function, which is used to research the ef-
fect of optimal algorithm in problem dimensionality, and 
its expression is  

  2
1

n
i if x   x





             (13) 

The global optimal point of the function locates in 
, and the function value of global optimal 

point is . Function  is a classical 
multi-modal function, and is one of the standard prob-
lems optimizing algorithm performance test. The expres-
sion of  function is 

0,0, ,0x  
( )f x 

Rastrigin

0 Rastrigin

    2
1 10cos 2π 10d

i i if x x x        (14) 

This function has innumerable minimal points, and the 
global optimal point is hard to find out, where, there is 
only one minimal point, i.e., when x = {0,0}, and the 
global optimal point is . ( ) 0f x 

In order to prove the effectiveness of the proposed al-
gorithm, it is compared with the results of standard parti-
cle swarm optimal algorithm. The algorithm parameters 
are set as follows: The dimensionality of test function is 
30, the swarm scale is 80, where the swarm number in 
MCPSO algorithm is 4, and each size of the swarms is 
20, c1 = c2 = 2.0, ω is self-adaptively adjusted:  

max min
max

max

k
k

 
 


  , where, ωmax = 0.9, ωmin = 0.1,  

kmax is the maximal iteration times which equals to 1000. 
The two algorithms is repeatedly calculated for 50 times, 
and the results of the two algorithms in the two classical 
function tests are shown in Table 1. 

The Table1 above indicates that the MCPSO algorithm 
can avoid early convergence effectively, and after 50-time 
repeated experiments, the average best adaptive value 
obtained by MCPSO is better than that of SPSO algo-
rithm, while the standard deviation is small, which mean 
the algorithm has better abilities of global optimizing and 
robust. 
 
3. Results and Discussion 
 
This paper studies the case of flood disaster grades sam-
ple dataset of HeNan Province in China provided in the 
reference [18], where the flood disaster grades standard 
of HeNan Province is shown in Table 2, and the flood 
disaster index data is shown in Table 3. MCPSO-CC 
parameters are set as follows: the number of sub-swarm 
is 4, the size of each sub-swarm is 20, kmax = 1000, and  
c1 = c2= c3 = 1.367  

The data in Table 3 is normalized to get * ( , )x i j

iy
C C

 
which is inserted into equations (2) to (5), then, projec-
tion index functions are obtained which are optimized by 
MCPSO to get eigenvector =（0.8362,0.5619）. By 
inserting  into equation (2), the flood disaster projec-
tion value i  can be got, and the details are shown in 
Table 3. The relationship between values of i  and  
is expressed by Equation (7), where , 1 , 2  
and 3  can be obtained from optimal equation (8) of 
MCPSO. At last, the projection pursuit model of flood 
disaster grades assessment of HeNan Province is shown 
as follows: 

*a
*a
z

z
4N 

C

Table 1. Two different algorithms for related test results of 
the test functions. 

Sphere  Rastrigin  
Algorithm

Mean Std Mean Std 

SPSO 7.3E - 28 E 7.0E-28 3.4 1.5 

MCPSO 1.5E - 196 E 0 2.7E - 15 E 8.8E - 15 E

Table 2. The flood disaster grades standard of HeNan 
Province. 

Disaster 
Index 

Normal Medium Large Huge 

Disaster area
(km2) 

< 46.7 46.7 - 136.7 136.7 - 283.3 > 283.3 

Direct  
economic loss 

(Billion US 
Dollar) 

< 0.13 0.13 - 0.44 0.44 - 1.21 > 1.21 
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e
 
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       (14) 

In order to verify the rationality and the effect of the 
proposed method, the flood disaster grades assessment of 
actual 9-time flood from 1950 to 1990 of HeNan Prov-
ince is evaluated, and the results are shown in Table 3. 
The same case is simulated by standard particle swarm 
algorithm (SPSO) and the CCPSO method [13], while 
the error analysis of calculated results got by the method 
proposed in this paper are done, and the results of dif-
ferent methods are shown in Table 4. 

From Table 4, comparing with method SPSO and 
CCPSO, the assessment results of proposed MCPSO 
method has the optimal disaster grade accuracy, high 
disaster grade resolution. It provides a new way for flood 
disaster classification. 
 
4. Conclusions 
 
Flood disaster classification is used for evaluating the 
destroyed degree, which based on flood disaster assess-
ment index value and disaster assessment index archi-
tecture. Each flood disaster assessment index is incom-
patible, so it is very difficult to evaluate disaster using 
the index values. Projection pursuit technology has 
advantages that projecting higher dimensional incompati- 
ble data into lower dimensional sub-space, then obtain-
ing higher dimensional data structure characteristics by 
searching the optimal projection value of projection in-
dex function, which have been improved to be rational 
and effective in flood disaster classification assessment. 
However, the complexity of parameter optimal problem 
of projection index function has become the bottleneck 
of its development. Although particle swarm optimal 
algorithm has the ability of solving the parameter opti-
mal problem, it still has the disadvantage of early con-
vergence and can not find the global optimization. This 
paper proposes a new flood disaster assessment method 
based on multi-swarm cooperative particle swarm opti-
mization, which constructs a flood disaster assessment 
projection pursuit model using a tri-parameter Logistic 
curve, and optimizes the parameters of projection index 
function using multi-swarm system particle swarm opti-
mization method. The classical test function experiment 
indicates that this optimization method can effectively 
overcome early convergence problem existing commonly 
in standard particle swarm optimization method, and 
improve the global optimizing ability. The method is 
applied in case study and compared with others, which 
indicates this proposed method has better assessment 
accuracy and disaster grade resolution, meanwhile, it has 
better application prospect in flood disaster assessment 
models. 

Table 3. Flood disaster index and its assessment results. 

NO Disaster index Projection Flood disaster grade 

i  X(i, 1) X(i, 1) iz  
Experien-ce 

grade 
Calculat-ed 

value 

1 38.7 7.9 –1.168 1 1.1588 

2 38.5 7.8 –1.170 1 1.1544 

3 32.10 6.5 –1.205 1 1.0601 

4 24.2 4.9 –1.249 1 0.9477 

5 36.4 7.4 –1.181 1 1.1238 

6 46.7 9.5 –1.124 1.5 1.279 

7 97.6 21.7 –0.827 2 2.0733 

8 60.4 12.8 –1.044 2 1.5014 

9 112.6 25.2 –0.740 2 2.2703 

10 56.2 11.8 –1.042 2 1.5058 

11 80.6 17.6 –0.926 2 1.8219 

12 136.7 31 –0.599 2.5 2.5384 

13 259.1 76.1 0.245 3 3.0914 

14 200.1 54.4 –0.161 3 2.9808 

15 280.1 83.8 0.390 3 3.1906 

16 236.1 67.6 0.086 3 3.0266 

17 157.3 38.6 –0.457 3 2.7433 

18 283.3 85 0.413 3.5 3.2085 

19 556.9 167.1 2.147 4 3.9979 

20 649.9 194.9 2.736 4 3.9999 

21 602.3 180.7 2.435 4 3.9996 

22 446.5 134 1.448 4 3.938 

23 694.9 208.5 3.022 4 4 

1950 72.92 9.9 –1.020 2 1.5678 

1954 148.13 20.65 –0.642 2 2.5458 

1956 203.92 27.52 –0.370 3 2.8818 

1957 179.1 24.85 –0.488 3 2.764 

1963 375.46 94.92 0.849 4 3.5847 

1964 301.24 47.83 0.172 3 3.0611 

1975 141.97 116.43 0.132 3 3.0487 

1982 279.84 121.12 0.700 4 3.4475 

1984 172.06 51.61 – 0.292 3 2.9398 

Table 4. Error analysis of disaster grade assessment value of 
different assessment methods 

         Method 
Data 

PSO CCPSO MCPSO

[0,0.1] 39.13 43.48 52.17 

[0,0.2] 60.87 69.57 73.9 

[0,0.3] 91.30 86.96 91.30 

[0,0.4] 91.30 91.30 91.30 

The ratio of 
absolute disaster 

grade error 
falling onto 

intervals (%)

[0,0.5] 100 100 100 

Absolute error average value 
of disaster grade 

0.153 0.148 0.145 

Relative error average value of 
disaster grade (%) 

8.86 8.44 7.8 

Copyright © 2011 SciRes.                                                                               JWARP 



W. HUANG  ET  AL 
 

Copyright © 2011 SciRes.                                                                               JWARP 

420 

Although the constructed model has been simulated 
and verified, due to many impact factors of flood disaster 
assessment, non-unique flood disaster grade standards, it 
should be improved and validated in the future actual 
applications.  
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