
Journal of Water Resource and Protection, 2011, 3, 67-75 
doi:10.4236/jwarp.2011.31008 Published Online January 2011 (http://www.scirp.org/journal/jwarp) 

Copyright © 2011 SciRes.                                                                               JWARP 

Spectral Geometric Triangle Properties of Chlorophyll-A 
Inversion in Taihu Lake Based on TM Data 

Jun Chen1,2, Zhenhe Wen1,2, Zhengqing Xiao3 
1The Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Qingdao, China 

2Qingdao Institute of Marine Geology, Qingdao, China 

3College of Resources Sciences and Technology, Beijing Normal University, Beijing, China 
E-mail: cjun@cgs.cn 

Received October 24, 2010; revised November 28, 2010; accepted December 27, 2010 

Abstract 
 
The main objective of this study was to develop and validate the applicability of the Area Chlorophyll-a 
Concentration Retrieved Model (ACCRM), Height Chlorophyll-a Concentration Retrieved Model (HCCRM), 
Angle Chlorophyll-a Concentration Retrieved Model (AgCCRM), and Ratio Model of TM2/TM3 (RM) in 
estimating the chlorophyll-a concentration in Case II water bodies, such as Taihu Lake in Jiangsu Province, 
China. Water samples were collected from 23 stations on the 27th and 28th of October, 2003. The four em-
pirical models were calibrated against the calibration dataset (samples from 19 stations) and validated using 
the validation dataset (samples from 4 stations). The regression analysis showed higher correlation coeffi-
cients for the ACCRM and the HCCRM than for the AgCCRM and the Ratio Model; and the HCCRM was 
slightly superior to the ACCRM. The performance of the ACCRM and the HCCRM was validated, and the 
ACCRM underestimated concentration values more than the HCCRM. The distribution of chlorophyll-a 
concentrations in Taihu Lake on October 27, 2003 was estimated based on the Landsat/TM data using the 
ACCRM and the HCCRM. Both models indicated higher chlorophyll-a concentrations in the east, north and 
center of the lake, but lower concentrations in the south. The accuracy of results obtained from the HCCRM 
and the ACCRM were also supported by the validation dataset. The study revealed that the HCCRM and the 
ACCRM had the best potential for accurately assessing the chlorophyll-a concentration in the highly turbid 
water bodies. 
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1. Introduction 
 
In recent years, many coastal and inland waters have 
become enriched with nutrients and now support exces-
sive increases in the chlorophyll-a concentration [1]. 
Remote sensing technology has been proposed as a use-
ful means to improve the capability of estimating the 
chlorophyll-a concentration accurately [2-4]. It is well 
known that the water optical properties can provide 
quantitative information on the optically significant ma-
terials presented in water bodies. The bands ranging from 
400 nm to 750 nm are most commonly used to estimate 
the chlorophyll-a concentration [5-9]. 

A variety of algorithms have been developed for esti-
mating the chlorophyll-a concentration in Case I water, 
including empirical and semi-analytical models [7,10,11]. 

Most of these algorithms were based on the spectral 
properties near the region of 700 nm. Another widely 
applied parameter was the ratio of the near-infrared peak 
reflectance to the reflectance around 675 nm, which 
represents the red absorption peak of the chlorophyll-a 
[12]. For example, Gons et al. [13] first derived the 
backscattering coefficient at 704 nm and 672 nm, and 
then used the reflectance and absorption at these two 
wavelengths to predict the chlorophyll-a concentration; 
and Tiemann & Kaufman [14] used the ratio of 705 nm 
to 678 nm to estimate the chlorophyll-a concentration in 
the Mecklenburg Lake. More complex relationships have 
also been suggested. Gitelson et al. [15] developed the 
three-band model for MERIS spectral bands to estimate 
the chlorophyll-a concentration in turbid waters. Le et al. 
[12] used an improved algorithm of three-band and 
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four-band models to assess the chlorophyll-a concentra-
tion in Taihu Lake. 

The most widely applied models used for the chloro-
phyll-a concentration estimation assume that the optical 
parameters, such as the chlorophyll-a and the specific 
absorption coefficient, are constant. This assumption 
considerably impacts their accuracy [16-18], especially 
in the turbid water bodies like Taihu Lake. Additionally, 
most applied models are not suitable for multi-band re-
mote sensors, such as the Landsat/TM, which prohibits 
their use with widely-available remote sensing resources. 
In this study, empirical models are introduced for the 
chlorophyll-a concentration retrieval based on the TM 
data for the turbid waters of Taihu Lake in China. The 
primary goal of this paper was to develop and validate 
these models and to determine their suitability for esti-
mating the chlorophyll-a concentration distribution in 
Taihu Lake on October 27, 2003. 
 
2. Materials and Methods 
 
2.1. Data Acquisition 
 
Located in east China, the Taihu Lake (Figure 1(a)) is a 
typical inland water body, influenced by river and human 
activity inputs with a low deposition rate. Because the 
water is highly turbid, the Taihu Lake was selected for 
this study. It was difficult to estimate the chlorophyll-a 
concentration of this lake accurately, as the optical prop-
erties of the water show great spatiotemporal variability 
[19]. The absorption signal of the chlorophyll-a from 
phytoplankton is partly overwhelmed by that of the sus-
pended solids and backscattering. As a result, it is diffi-
cult to estimate the chlorophyll-a concentration accu- 

rately using conventional methods, such as the multiple 
bands and single band algorithms. 

In situ measurements were carried out in the Taihu 
Lake on the 27th and 28th of October, 2003, which coin-
cided with acquisition of Landsat-5/TM imagery for the 
lake. During the period of the satellite overpass (about 
±1h) on October 27, 2003, the in situ measurements were 
carried out with the ASD field spectrometer at each sta-
tion. Therefore, it is reasonable to assume that the in situ 
experiment on the ground was approximately synchro-
nized with the satellite observation from space. The dis-
tribution of in situ sampling points is depicted in Figure 
1(a) and the spectral curves of the in situ measurements 
are shown in Figure 1(b). The reflectance measurements 
were performed using a spectroradiometer with 25° 
fore-optic, covering the 350 nm-2500 nm spectral do-
main (Analytic Spectral Devices (ASD), Boulder, CO). 
The ASD had a spectral resolution of 3 nm (full-wi- 
dth-at-half-maximum, FWHM) and a 1.4nm sampling 
interval across the 350 nm-1050 nm spectral range [20]. 
The resulting data were interpolated by the ASD soft-
ware during the collection to produce values at 1nm in-
tervals. The experiments were conducted strictly in com-
pliance with the Ocean Optical Protocols of NASA [21]. 
In order to compute the sub-surface irradiance reflec-
tance, the radiance was measured from a calibrated re-
flectance panel before and after shading. Hyperspectral 
reflectance was calculated as follows [21]: 

0
w

rs
d

L
R

E    (1) 

where w  is the water-leaving radiance, L 0
dE   is the 

total incident radiant flux of the water surface, and rs  
is the remotely sensed reflectance.  and 
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                 (a)                                                     (b) 

Figure 1. The Taihu lake. (a) The location of the Taihu lake, with the blue flags representing the distributions of the in situ 
measurements; (b) in situ measurements of spectral curves corresponding to the sampling points in Figure 1(a). 
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Equation (1) are further calculated as follows [12]: 

w sw skL L rL   (2) 

0 p
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

   (3) 

where sw  denotes the total radiance received from the 
water surface; 

L

sky  represents the diffused radiation of 
the sky, which contains no information on water proper-
ties, and hence has to be eliminated; r refers to the re-
flectance of the skylight at the air-water interface, whose 
value depends upon the solar azimuth, measurement 
geometry, wind speed, and surface roughness; 

L

pL  is the 
radiance of the gray board; and p  is the reflectance of 
the gray board, which is accurately calibrated to 30%. 

The limnological sampling was performed on the same 
day using a rosette sampler or bucket. After sampling, 
bottles with water samples were maintained at a low 
temperature and sent for laboratory analysis in the same 
day they were collected.  

The in situ water sample measurements were divided 
randomly into two sets. One set was used to calculate the 
parameters of retrieving models, and included the dataset 
of 19 stations (called the “calibration data” below). The 
other set was used to validate the accuracy of the re-
trieving models, and included the dataset of 4 stations 
(called the “validation data” below). 
 
2.2. Reflectance Calibration 
 
Among the total signals received by the sensor at satellite 
altitudes, over 80% of that typically in blue spectral re-
gion was from the contribution of light scattering by 
molecules and aerosol particles in the atmosphere 
[22,23]. Thus, the water-leaving radiance, from which 
the phytoplankton concentration was derived, was only a 
portion of the total radiance arriving at the sensor. The 
process of retrieving the water-leaving radiance from the 
total radiance is usually referred to as the atmospheric 
correction. The general atmospheric correction algorithm 
was adopted to make an assessment of the corresponding 
band reflectance of imagery by using the special 
near-infrared spectral bands, whose reflectance is sup-
posed to be zero in Morel’s Case I waters [22-24]. How-
ever, this standard atmospheric correction method is not 
applicable to the turbid water bodies, such as Taihu Lake, 
owing to the scattering at this wavelength by detrital 
material. Additionally, the near-infrared data from TM4 
has been shown to exhibit an almost linear relationship 
with increasing quantities of suspended matter [17]. As a 
result, the atmospheric correction developed for clear 
water bodies by Gordon & Clark [24] is not applicable to 
the Case II water bodies [22,24]. 

In addition to the atmospheric effects, the adjacency 
effects are also highly significant in data acquired by the 
high spatial resolution sensors, such as the Landsat/TM 
[25]. Ouaidrari & Vermote [26] showed that the adja-
cency effects were strongly linearly related with the sur-
face reflectance of imagery pixels. In order to eliminate 
the sensors sensitivity to atmospheric influences and ad-
jacency effects, the water-leaving reflectance ( wR ) from 
in situ measurements were used in this study to calibrate 
the reflectance ( R ) of the Landsat/TM imagery by Line 
Empirical Model for Reflectance Calibration (LEMRC) 
[27-29] as follows: 

w aR k R R      (4) 

where   is the wavelength, k   is the attenuation co-
efficient corresponding to the wavelength  ; aR  is the 
atmospheric contributions to the reflectance; and k   
and aR  are considered as constants at a given wave-
length and are approximated using the regression shown 
in Figure 2. 
 
2.3. Constructions of Four Empirical Models 
 
Various constituents of environmental water samples, 
such as the phytoplankton cells, detrital material, and 
colored dissolved organic matter (CDOM), affected the 
passage of light through the sample by scattering and 
absorption In general, the reflectance at lower wave-
lengths of 400-500 nm was relatively low due to the com-
bined affects of absorption by the CDOM, tripton and 
phytoplankton pigments. A local maximum in reflectance 
around 550 nm-580 nm was caused by a local minimum in 
the combined effects of the low phytoplankton pigment 
absorption efficiency and lower CDOM and tripton ab-
sorption. A clear reflectance minimum was located at 676 
nm, which corresponds to the in vivo chlorophyll-a max-
imum absorption peak. Beyond 680 nm, the reflectance 
increased significantly and reached a maximum at 706 nm 
[17]. This maximum could be used for interpretation of the 
signal due to the natural phytoplankton fluorescence [30], 
however, the Landsat/TM data did not have bands in this 
area.  

The spectral absorption features, such as the height, 
area, and angle (Figure 3), have been widely used in the 
vegetation canopy remote sensing field studies. Shrestha 
et al. [31] used the absorption width, area and depth of 
reflectance curves for mapping land degradation. Walsh 
et al. [32] applied the Hyperion data and QuickBird data 
for the control and management of land use based on the 
analysis of those spectral characteristics due to an inva-
sive plant species. This study explores the geometric 
triangle properties of multiple spectral remote sensing 
data to retrieve the chlorophyll-a concentration. 
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(a) 

    
(b)                                     (c) 

Figure 2. Relationships between the reflectance of TM imagery and in situ measurements at TM1, TM2 and TM3, respectively. 
 

As shown in Figure 3, the lines AB, BC and AC de-
noting the vectors were as follows: 

 2 1 2, 1AB TM TM R R  


 (5) 

 3 1 3, 1AC TM TM R R  



 (6) 

 3 2 3,BC TM TM R R   2  (7) 

The area of triangle ABC, S, was calculated as follows: 

 2 10.175 0.1 0.075

2 2

AB AC R R R
S

  
 

 
3  (8) 

The high of triangle ABC, h, was calculated as follows: 







2 1 3

0.52 2
3 1 3

0.175 0.1 0.075

0.030625 2 1

AB AC R R R
h

AC R R R R
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 

  

 

  (9) 

One angle of triangle ABC, α, was calculated as follows: 
The spectral curves in Figure 1(b) show that the re-

flectance in the blue region (400-500 nm) was relatively 
low owing to high absorption by components of the wa-
ter samples. The reflectances in the green region 
(500-600 nm) and red region (600-700 nm) were the pri-
mary and the secondary reflectance peaks, respectively, 
and result from the scattering of the suspended sediments  

and low absorption coefficients of both CDOM and 
chlorophyll-a pigment. Additionally, the reflectance in 
the blue region of the visible spectrum decreased at a rate 
nearly equivalent to that of the reflectance elevation in 
the green and red regions [33]. Due to the differential 
reflectance of the phytoplankton pigments at different 
wavelengths, the shape of the triangle as shown in Fig-
ure 3 would be deformed, resulting in the variance of the 
height, the area and the angle of the triangle. Accord-
ingly, it was indicated that the geometrical quantities, 
such as the angle, height and area were strongly corre-
lated with the reflectance at the three visible bands of the 
Landsat/TM image. According to these properties and a 
combination of Equation (8), Equation (9) and Equation 
(10), the geometrical quantities, such as the angle, height 
and area, were found to correlate excellently with the 
chlorophyll-a concentration. 
 
3. Results and Discussion  
 
3.1. Empirical Models 
 
3.1.1. Model Calibration 
To match the bandwidth of Landsat/TM, the ASD meas-
urements were aggregated using the Landsat/TM sensor  

  
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2 1 3 1

0.5
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2 1 3 1

0.013125
cos

0.030625 0.005625+
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AC AB R R R R


   
 
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Figure 3. The triangle properties between the three visible 
bands of Landsat; R1, R2 and R3 represent the remote 
sensing reflectance at TM1, TM2 and TM3; h represents 
the height of the triangle when the baseline is AC; α is the 
angle of < BAC. 
 
spectral response functions before model calibration. The 
Landsat/TM sensor spectral response functions used in 
this study were suggested by Vries et al. [34]. All of 
these common empirical models were tested to determine 
the relationship between the chlorophyll-a concentration 
and the triangular geometric quantitative parameters. The 
geometrical variables of height and area were exponen-
tially well correlated with the chlorophyll-a concentra-
tion in Taihu Lake (Figure 4). The regression coeffi-
cients of the HCCRM and ACCRM were 0.8023 and 
0.7985, respectively. The regression coefficients of the 
HCCRM and ACCRM were higher than that of the RM, 
which was 0.3124. Interestingly, the relationship be-
tween the chlorophyll-a concentration and the geometri-
cal variable of angle was not ideal. The correlation coef-
ficient of the AgCCRM was only 0.001. 

Figure 5 illustrates the relationship between the mod-
eled prediction of HCCRM and ACCRM and the calibra-
tion data. Compared with the RM. both algorithms ap-
peared perfectly suitable for estimating the chlorophyll-a 
concentration, though the ACCRM had a slightly supe-
rior performance compared with the HCCRM. Using 
HCCRM to estimate the chlorophyll-a concentration in 
Taihu Lake reduced the correlation coefficient of 0.0038 
from HCCRM, and the Root Mean Square Error (RMSE) 
was decreased from 6.311 g/L for ACCRM to 6.273 
g/L for HCCRM, while the mean measured value of the 
chlorophyll-a concentration of calibration data was 
29.836 g/L. 

The relationship between the predicted chlorophyll-a 
concentration and the calibration data also revealed the 
ability of the two approaches in retrieving the chloro- 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Empirical models. (a), (b) and (c) represent the 
linear empirical model based on the height, area and angle 
of triangle ABC, respectively; (d) represents the linear 
model based on the band ratio of TM2 to TM3. 
 
phyll-a concentration. Figure 5 shows a plot of predicted 
chlorophyll-a concentrations versus in situ measured 
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(a)ACCRM 

 
(b)HCCRM 

Figure 5. Assessment of retrieval results. (a) presents the 
relationship between the chlorophyll-a concentration pre-
dictions of ACCRM and calibration data; (b) presents the 
relationship between the chlorophyll-a concentration pre-
dictions of HCCRM and calibration data. 
 
values. Almost all points converged along the line of 

M P  (where, chl chl Mchl  denotes the in situ meas-
ured chlorophyll-a concentrations and Pchl  denotes the 
chlorophyll-a concentrations predicted by the model). 
Despite minor differences in relative correlation coeffi-
cients and RMSE, the HCCRM and ACCRM were both 
suitable for chlorophyll-a concentration estimation in 
Taihu Lake. An additional operator of 20.175R   

1 3  was included in the HCCRM and 
ACCRM. The coefficient value before term of  
equals the sum of the coefficients before the terms of 1  
and 3 , but the signs are opposite. This operator allows 
the model to eliminate some atmospheric influences, 
such as the linear effects on the bands of TM1, TM2, and 
TM3, which theoretically improves the accuracy of the 
retrieved results. 

0.1 0.07R 

R

5R

2R
R

 
3.1.2. Model Validation 
The performance of the HCCRM and ACCRM was eva-
luated by examining their respective RMSE in estimating 
the chlorophyll-a concentration. Figure 6 shows the rela-
tionship between the modeled prediction of HCCRM and 
ACCRM and the validation data. Both models produced 
accurate chlorophyll-a concentration predictions, but the 

performance of the HCCRM was slightly superior to that 
of the ACCRM. Compared with ACCRM, the uncer-
tainty in estimating the chlorophyll-a concentration in 
Taihu Lake decreased by 2.39% with the use of the 
HCCRM, and the RMSE also decreased from 4.276 g/L 
in ACCRM to 3.858 g/L in HCCRM. The regression 
coefficient was 0.8023 in HCCRM and 0.7985 in 
ACCRM. The performances of HCCRM and ACCRM 
using the calibration data were consistent with those us-
ing the validation data. Additionally, the total errors be-
tween the modeled prediction and the validation data 
were used to estimate the total bias of the retrieved re-
sults. According to Figure 6, the total bias was –4.003 
g/L in ACCRM and –3.570 g/L in HCCRM. There-
fore, it was concluded that the HCCRM and ACCRM 
were both suitable for detecting and mapping the chlo-
rophyll-a concentration in Taihu Lake on October 27, 
2003, yet the HCCRM was slightly more accurate than 
the ACCRM. 
 
3.2. Chlorophyll-A Mapping Based on TM Data 
 
To estimate the water-leaving radiance from the total 
radiance measured at the sensor, the LEMRC (Figure 2) 
was used as the atmospheric correction algorithm to 
eliminate the atmospheric influence of TM1, TM2 and 
TM3 of Landsat images. Then the HCCRM and ACCRM 
were used to map the chlorophyll-a concentration in 
Taihu Lake. 

Figure 7(a) and Figure 7(b) shows the chlorophyll-a 
maps of Taihu Lake on October 27, 2003 calculated from 
the HCCRM (Figure 4(a)) and ACCRM (Figure 4(b)), 
respectively. Overall, the chlorophyll-a concentrations 
throughout Taihu Lake, calculated by either HCCRM or 
ACCRM, were higher in the east, north and center of the 
lake but lower in the south of the lake (Figure 7). How-
ever, some significant differences could be found be-
tween the results from the two algorithms. The concen-
tration range was 0-100 g/L in HCCRM and 0-130 
g/L in ACCRM. The concentrations estimated by  
 

 

Figure 6. Relationship between the modeled prediction of 
HCCRM and ACCRM and validation data. 
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(a) Chlorophyll-a map estimated by ACCRM 

 
(b) Chlorophyll-a map estimated by HCCRM 

Figure 7. Inversion results of the exponential empirical 
model of ACCRM and HCCRM as shown in Figure 3(a). 
 
ACCRM were higher than those by HCCRM, especially 
at the prominent concentration range of 6-10 g/L. The 
total biases of HCCRM and ACCRM given in Figure 6 
reveal that the chlorophyll-a concentrations predicted by 
ACCRM were more underestimated than those by 
HCCRM. 
 
4. Conclusions 
 
Empirical algorithms are easy and straightforward for data 
processing. However, because the empirical coefficients 
contained in the empirical algorithms are derived from the 
data set they may not necessarily account for all natural 
variations. In this study, four experimental models for  

estimating the chlorophyll-a were constructed by specify-
ing the remotely sensed parameters. They are the area, the 
height, the angle of a triangle and band ratio of TM2 to 
TM3. Using the calibration dataset, the evaluation of sam-
ples collected in Taihu Lake, China, on the 27th and the 
28th of October, 2003, ACCRM and HCCRM showed 
better performance than the band ratio algorithms and 
AgCCRM. The HCCRM was slightly superior to the 
ACCRM based on the correlation coefficient and RMSE. 

The performance of ACCRM and HCCRM was vali-
dated by the validation dataset. Both algorithms underes-
timated the chlorophyll-a concentration in Taihu Lake on 
October 27, 2003. The total bias was –4.003 g/L in 
ACCRM and –3.570 g/L in HCCRM, so the ACCRM 
underestimated more than the HCCRM. As a whole, both 
algorithms showed the spatial distribution of chloro-
phyll-a concentration was higher in the east, north and 
center of the lake, but was lower in the south of the lake. 
The concentration estimated by ACCRM was higher than 
that by HCCRM, especially at the prominent concentra-
tion range of 6-10 g/L. 
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