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Abstract 

The application of multivariate statistical methods to high mountain lakes monitoring data has offered some 
important conclusions about the importance of environmetric approaches in lake water quality assessment. 
Various methods like cluster analysis and principal components analysis were used for classification and 
projection of the data set from a big number of lakes from Pirin Mountain in Bulgaria. Additionally, 
self-organizing maps of Kohonen were constructed in order to solve some classification tasks. An effort was 
made to relate the maps with the input data in order to detect classification patterns in the data set. Thus, dis-
crimination chemical parameters for each pattern (cluster) identified was found, which enables better inter-
pretation of the ecological state of the system. A methodology for application of combination of different 
environmetric methods was suggested as a pathway to interpret high mountain lake waters monitoring data. 
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1. Introduction 

The careful monitoring of natural water systems like 
river streams, lakes, wells, and underground sources is a 
very responsible task. Usually, a set of chemical and 
physicochemical parameters reflecting the surface or 
underground water quality are carefully analysed and the 
results obtained are compared to certain threshold values 
in order to decide if the water quality meets the quality 
desired. The choice of quality parameters is normally 
standardized and described in various instructions and 
directives for individual countries or unions like EU 
[1-4]. Recently, a very specific attention requires a dif-
ferent type of water quality parameter called “toxicity” 
(“ecotoxicity”) [5-7]. It is also important to note that lake 
waters are important element of the aquatic ecosystems. 
They constitute ecological niches (especially in combi-
nation with the lake bottom sediments) supporting not 
only fish but also benthic organisms, i.e. animals and 
plants living on the bottom of bodies of water, and are a 
source of nutrients for aquatic organisms such as small 
invertebrates and protozoans. An assessment of the effect 
of pollution on life in lake water bodies requires also 

monitoring of bottom sediment samples both for chemi-
cal, physicochemical, and toxicity parameters. They are 
very useful material for various environmental studies 
because they act as sorption column and provide a clear 
image of all events taking place in the overlying water 
layer. 

Very often, however, the monitoring data are consid-
ered in a “univariate” way—each parameter separately. 
In the reality the state of an ecosystem is depending si-
multaneously on many factors and parameters. Therefore, 
these systems are multivariate in nature. That is why the 
classification, modeling and interpretation of the moni-
toring data sets have to be performed by the use of the 
chemometrics and environmetrics [8-14], where the ref-
erences given are only a tiny part of many environmetric 
studies. The specific point in the studies of lake waters is 
that there is lack of intelligent data analysis of the moni-
toring sets comprising of different water quality parame-
ters simultaneously interpreted. 

The aim of the present chapter is to demonstrate the 
role of environmetric classification, modeling, and inter-
pretation of monitoring data from the lake systems of 
Pirin Mountain, Bulgaria. 
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2. Chemometric Methods 

The modern chemometrics is a branch of chemistry (very 
often related to analytical chemistry) which deals with 
the application of mathematical and statistical methods in 
order to evaluate, classify, model, and interpret chemical 
and analytical data, to optimize and model chemical and 
analytical processes and experiments and to extract a 
maximum of chemical and analytical information from 
experimental data. When the methods of chemometrics 
are applied to data sets obtained by monitoring of various 
environmental compartments (surface water, atmosphere, 
soil, sediments, biota etc) the term environmetrics is used 
to stress the information ability of the methods to gain 
specific information from samples of the total environ-
ment. 

Very important methods of multivariate statistics em-
ployed in environmetrics are cluster analysis, principal 
components analysis and self-organizing maps of Koho-
nen which will be briefly presented and applied. 

Cluster analysis (CA) is an exploratory data analysis 
tool for solving classification problems [15]. CA enables 
objects stepwise aggregation according to the similarity 
of their features. As a result hierarchically or 
non-hierarchically ordered clusters are formed. Primary 
standardization of features becomes necessary to avoid 
effects of dimensionality on the classification results. 
There are a variety of different measures of inter-cases 
distances and inter-cluster similarities and distances to 
use as criteria when merging nearest clusters into broader 
groups or when considering the relation of an object to a 
cluster. The most applied is the Euclidean distance (after 
the standardization of the raw data). 

In case of CA one task is related with determination of 
similarity between measured objects as well as similari-
ties between the features describing the objects. As in 
case of distance measure various algorithms (linkage 
techniques) are available to decide on the number of 
clusters. Very popular linkage algorithm in hierarchical 
clustering problems is Ward’s method [15]. 

In hierarchical agglomerative clustering the graphical 
output of the analysis is usually a dendrogram—a 
tree-like graphics, which indicates the linkage between 
the clustered objects with respect to their similarity (dis-
tance measure). For practical reasons the Sneath index of 
cluster significance is widely used. It represents this sig-
nificance on two levels of distance measure D/Dmax rela-
tion: 1/3Dmax and 2/3Dmax. Only clusters remaining com-
pact after breaking the linkage at these two distances are 
considered significant and are object of interpretation. 

Principal Component Analysis (PCA) seems to be the 
most widespread multivariate chemometric technique 
and is a typical display method (also known as eigen-
vector analysis, eigenvector decomposition or Kar-
hunen-Loéve expansion). It enables revealing the “hid-

den” structure of the data set and helps to explain the 
influence of latent factors on the data distribution [16,17]. 
PCA transforms the original data matrix into a product of 
two matrices, one of which contains the information 
about the objects and the other about the features. The 
matrix characterizing objects contains the scores (under-
stood as projection) of objects on principal components 
(PCs). The other one, characterizing features is a square 
matrix and contains the set of eigenvectors (understood 
as weights, in PCA terminology called “loadings”) of the 
original features in each PC. 

Some important features of PCA could be summarized 
as follows. The principal components axes (the axes of 
the hidden variables) are orthogonal to each other. Most 
of the variance of the data is contained in the first prin-
cipal component. In the second component there is more 
information than in the third one etc. For interpretation 
of the projected data both the score and the loading vec-
tors are plotted. In the score plots, the grouping of ob-
jects can be recognized. A loading plot reveals the im-
portance of the individual variables with respect to the 
principal component model. 

A very important task in PCA is the estimating the 
number of principal components necessary for a particu-
lar PC model. Several criteria exist in determining the 
number of components in the PCA model: percentage of 
explained variance, eigenvalue—one criterion, Scree— 
test, cross validation [16,17]. 

Interpretation of the results of PCA is usually carried 
out by visualization of the component scores and load-
ings. 

Self Organizing Map (SOM) algorithm has been pro-
posed by Kohonen in 1980 [18]. It is a neural-network 
based model which shares, with the conventional ordina-
tion methods, the basic idea of displaying a high-dimen-
sional signal manifold onto a much lower dimensional 
network in an orderly fashion (usually 2D space). The 
most common shape of the Kohonen map is a rectangular 
grid with the number of hexagonal nodes. 

When a plenty of features is considered it is difficult 
to compare all maps for all features and thus becomes 
necessary to find similarity between them, and simulta-
neously, in the cases’ space and classify them into clus-
ters. Input features’ planes (e.g. variables) could be visu-
alized on a summary SOM map (called also as unified 
distance matrix or U-matrix) to show the contribution of 
each feature in the self-organization of the map. U-matrix 
visualizes distances between neighboring map units, and 
helps to identify cluster structure of the map. The 
U-matrix joined with features’ planes can be effectively 
applied for assessment of inter-features and inter-cases 
relations. Finally, the best classification with the lowest 
Davies-Bouldwin index should be chosen (it is a function 
of the ratio of the sum of within-cluster scatter and be-
tween-cluster separation). 

Copyright © 2010 SciRes.                                                                               JWARP 



V. SIMEONOV  ET  AL. 355                                    
 

Main advantages of SOM algorithm application are: 
Semi-quantitative information about the distribution of a 
given feature in the space of the cases; visualization of 
similarity between positive as well as negative correlated 
features; visualization and classification of “outliers” i.e. 
those features or cases which do not belong to a well- 
organized, homogeneous populations; SOM is noise tol-
erant (this property is highly desirable when site-meas-
ured data are used). 

3. Results and Discussion 

The application of the multivariate statistical methods 
described above as one of the most important tool in as-
sessment of lake water quality can be illustrated by spe-
cific case studies. Thus, the classification, data projection, 
modeling and interpretation of lake water monitoring 
data sets becomes understandable and turns to be a pat-
tern to follow in lake pollution research.  

The data was collected during expeditions in 2001 and 
2002 for big number of lakes located in Pirin Mountain, 
which is one of the highest mountains in Bulgaria. The 
sampling sites and their heights are indicated in Table 1. 
The sampling period was between May and October. The 
sampling itself was performed on the lake surface ap-
proximately 2 m from the costal line. The water samples 
(about 100 mL) were placed in polyethylene flasks. The 
chemical analysis was carried out within 4 days after 
sampling at Faculty of Chemistry, University of Sofia. 
Altogether eleven chemical parameters (major cations 
and anions like sodium, potassium, calcium, magnesium, 
chloride, sulfate, nitrate, hydrogen carbonate) were ana-
lysed by electrothermal atomic absorption spectrometry 
and ion chromatography as well as pH (potentiometri-
cally), conductivity (conductometrically), water tem-
perature, and dissolved matter (by summing up of che- 
mical concentrations). Due to the rapid changes of some 
parameters like pH, temperature, conductivity their de-
termination was done directly at the sampling site by the 
use of portable instruments. The number of lakes in-
volved in this study was over forty. It is worth to men-
tion that water samples were taken not only from the 
lakes but also from rivers and springs in the vicinity of 
the lakes in order to obtain a more realistic estimation of 
the water quality and of the various natural and anthro-
pogenic impacts. 

The data sets from the lakes from the two mountains 
were classified, modeled and interpreted by the use of 
cluster analysis, principal components analysis and 
self-organizing maps of Kohonen. The goal of the envi-
ronmetric interpretation was to identify groups of simi-
larity between the lakes, to find relationship between the 
chemical parameters for the lake water quality, to detect 
hidden factors responsible for the data structure as well 
as to reveal discriminating chemical parameters, which 

Table 1. Short description of the lakes in Pirin subject to 
assessment. 

Code Sampling site Height a.s.l.[m] 

P1 Lake Suhodolsko 2311 

P3 Lake Dolno Todorino 2510 

P4 Lake Gorno Todorino 2536 

P5 Lake Dalgo Banrerishko 2310 

P6 Lake Djabeshko Banderishko 2322 

P7 Lake Banderishko 2312 

P8 Lake Muratovo 2230 

P9 Lake Spanopolsko 2302 

P10 Lake Dolno Georgiisko 2304 

P11 LakeGorno Georgiisko 2392 

P12 Sinanitsa River  

P13 Lake Sinanitsa 2181 

P14 Sarchaliiska River  

P15 Lake Chairsko 2355 

P16 Lake Prevalsko 2305 

P17 Lake Prevalsko 2312 

P18 Lake Tevno Belmetsko 2512 

P19 Lake Samnodivsko 2 2375 

P20 Snow from Samodivski circus  

P21 Lake Samnodivsko 3 2372 

P22 Lake Popovo 2234 

P23 Lake Kremensko 2356 

P24 Lake Gorno Kremensko 2352 

P25 Lake Dolno Kremensko 2304 

P26, P27 Lake Bezbog 2239 

P28 Lake Popovo 6 2185 

P29 Lake Popovo 3 2208 

P30 Lake Valiavishko 2419 

P31 Lake Goliamo Valiavishko 2280 

P32 Lake Dolno Valiavishko 2254 

P33 Spring Moiseeva cheshma 2370 

P34 Lake Gorno Vasilashko 2154 

P35 Lake Ribno Vasilashko 2162 

P36 Lake Dolno Vasilashko 2325 

P37 Lake Gorno Tipitsko 2445 

P38 Lake Bashliisko 2450 

P39 Lake Bashliisko 6 2430 

P40 Lake Bashliisko 3 2461 

P41 Lake Bashliisko 4 2313 

P42 Lake Begovishko 2392 
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quality for all lakes is found. There is a tiny group of out- 
liers (for the more strict Sneath’s criterion of 2/3Dmax) 
mostly from the region of Lake Sinanitsa and Sinanitsa 
River characterized by quite specific lithoral composition. 

determine the separation of the lakes in different groups 
of similarity (or dissimilarity). 

The initial data set for the samples from Pirin lakes in-
cludes 74 objects (sampling locations and sampling pe-
riods). No normal distribution of data (for each of the 
variables) is found, which means that the input data were 
subject of standardization before applying multivariate 
statistics (Table 2). 

In Figure 2 the hierarchical dendrogram for linkage of 
water quality parameters is presented. Four clusters are 
formed as follows: (nitrate, chloride, sulfate), (potassium, 
sodium), (calcium, magnesium, conductivity), (hydrogen 
carbonate, dissolved matter) and pH as an outlier. It 
could be concluded from the cluster analysis results that 
factors like water hardness, water acidity, salt content 
and turbidity are responsible for the relative separation of 
the sampling events. However, this information is not 
convincing enough to make final decisions on the lake 
water quality. 

The first step in the classification of the monitoring 
data was clustering of the sampling sites (Ward’s method 
of linkage, squared Euclidean distance as similarity mea- 
sure, z-transformation of data and check of the cluster 
significance by the Sneath index). The hierarchical den-
drogram is shown in Figure 1. 

It is readily seen that a good homogeneity of the water  
 

Table 2. Basic statistics for all Pirin lakes. 

Variable N mean min max S.D. skewness 

pH 74 6.7 0.50 17.0 3.0 0.8 

DM 74 10.0 0.61 50.9 7.9 2.4 

Conductivity 74 18.9 3.00 108.3 19.1 2.8 

Ca2+ 74 28.8 6.00 234.0 44.3 3.7 

Mg2+ 74 8.1 2.60 45.6 8.3 3.5 

Na+ 74 23.2 5.60 65.9 11.4 1.2 

K+ 74 2.2 0.00 16.0 2.2 3.7 

3HCO



 74 76.0 0.80 623.6 95.0 3.0 
2
4SO  74 23.7 1.90 104.1 17.6 1.3 

Cl



 74 7.1 0.30 39.7 7.4 1.8 

3NO  74 1.8 0.01 16.1 3.5 2.4 

 

 

Figure 1. Hierarchical dendrogram for sampling locations. 
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In order to gain additional information from the data 
set PCA was performed on the normalized input data. 
Firstly, the factor scores plot will be considered (Figure 
3). 

The homogeneity of the data (very close levels of most 
of the chemical parameters characterizing the lake water 
quality) is indicated again by the big cloud of similar 
objects. The outliers marked are from the specific dolo-
mite circus where the lakes Sinanitsa, Suhodolsko and 
Gorno Kremensko are located. Again, the separation is 
due to a geographical (natural) rather than anthropogenic 

impact. 
Figure 4 (PC1 vs. PC2) for the factor loadings (nor-

malized data, Varimax rotation mode) indicates the 
grouping of the chemical variables with respect to the 
identified latent factors. It is seen that high correlation 
along PC1 axis is found for chloride, sulfate and hydro-
gen carbonate and along PC2 axis—for calcium, magne-
sium, conductivity and dissolved matter. These results 
slightly contradict those found by the classification with 
cluster analysis and that is why a more careful inspection 
of the PCA results is needed. 

 

 

Figure 2. Hierarchical dendrogram for variables. 

 

 

Figure 3. Factor scores plot (PC1 vs. PC 2). 
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In Table 3 the factor loadings for the identified four 
latent factors are presented. These four factors explain 
over 75% of the total variance of the system. The first 
one could be conditionally named “water hardness” fac- 
tor since it indicated high correlation between calcium, 
magnesium, conductivity, and dissolved matter. The 
second latent factor is related to hydrogen carbonate, 
sulfate and chloride and, logically, its conditional name 
might be “anthropogenic impact” since it indicates pos-
sible pollution by atmospheric transfer of secondary 
emissions. The third factor should be attributed to proc-
esses of lake water acidification by the negative correla-
tion between pH and nitrate. 

The fourth and the last latent factor is characterized by 
high (statistically significant loadings) for sodium and 
potassium and could be conditionally named “salt” factor. 

The separation of several outliers by CA and PCA and 
the identification of the latent factors responsible for the 
data structure could be improved and completed by data 
classification using SOM. In Figure 5 the 
self-organizing maps for all variables and all sampling 
events are shown. Similarities detected by Ca and PCA 
are also obvious on some of the maps—e.g. conductivity, 
calcium, magnesium, and dissolved matter maps reveal 
one and the same pattern—the highest concentration lev-
els are grouped in the upper part of the maps. 

In Figure 6 the SOM grouping of the variables is pre-
sented. The grouping is slightly different as compared to 
the PCA results or CA classification. Very stable (the 
same for all classification approaches) is the group con-
sisting of calcium, magnesium, dissolved matter, and 
conductivity. This is an important indication for the role 
of this relationship for the lake water quality assessment 
of Pirin region. In Figure 6 one could detect similarity 
between hydrogen carbonate and sodium (not with sul- 

fate and chloride), which is rather an indication for 
lithoral impact than acidification one. Thus, the different 
types of classification of the monitoring data indicate 
possibly different pathways in correlation between the 
water quality parameters and, parallel to it, the stable for 
all classification patterns. 

Very important step is to divide the data set into sig-
nificant clusters with their spatial vicinity (possible only 
by SOM classification) and, further, to detect the dis-
criminate parameters for each one of the clusters formed. 
In Figure 7 the optimal number of clusters and the re-
spective hit diagram are shown. 

For all monitoring data from Pirin lakes three clusters 
are formed. Their content can be easily determined along 
with the discriminating tracers for each one of them 
(Figure 8). 

 

 

Figure 4. Factor loadings plot (PC1 vs. PC 2). 
 

Table 3. Factor loadings(normalized Varimax Rotation). 

Variable PC1 PC2 PC3 PC4 

pH 0.093 0.119 0.737 -0.160 

DM 0.805 -0.378 0.292 0.079 

Conductivity 0.915 0.078 -0.161 0.117 

Ca2+ 0.909 0.017 0.122 -0.039 

Mg2+ 0.961 0.003 -0.002 -0.037 

Na+ -0.030 -0.252 0.139 0.820 

K+ 0.072 0.184 -0.212 0.756 

3HCO  0.348 -0.778 0.100 0.050 
2
4SO   0.059 -0.707 -0.313 0.385 

Cl  -0.295 -0.730 -0.115 -0.199 

3NO  0.004 -0.018 -0.818 -0.076 

Variance explained % 31.5 17.3 13.9 13.5 

Copyright © 2010 SciRes.                                                                               JWARP 



V. SIMEONOV  ET  AL. 359                                    
 

 

Figure 5. SOM classification for each variable at all sampling locations. 

 

 

Figure 6. SOM of grouping of variables. 
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Figure 7. Groups of clusters by SOM. 

 

 

Figure 8. Discrimination diagram for all 6 SOM clusters. 

 
Cluster III is mixed and very large. This is an indica-

tion for the homogeneity of the water quality stated be-
fore. The group of more than 60 cases is characterized by 
lowest levels of the concentrations of all water quality 
parameters. 

Cluster I includes dominantly lakes from the southern 
part of Pirin Mountain (the group of Vasilashki lakes, 
which is located at relatively lower levels a.s.l. as com-
pared to the other lakes). All objects are samples from 
the summer season (lowest water level) and are charac-
terized by highest concentrations of hydrogen carbonate, 
sulfate, sodium, and chloride. This is an indication for 
high salt impact but it should be attributed to natural and 
not to anthropogenic reasons. 

In conclusion, it can be stated that the quality of the 
lake water in the high-mountain lakes in southern Bul-
garia is very high and is mostly subject to natural impa- 
cts. The different environmetric data interpretations ap-
plied prove convincingly this statement. Cluster II comprises a small group of lakes from the 

Lake Sinanitsa and Sinanitsa River vicinity. They are the 
outliers discussed by the interpretation of results from 
CA and PCA of the monitoring data. The discriminating 
variables in this situation are the parameters of the water 
hardness – calcium, magnesium, conductivity, and dis-
solved matter. Obviously, the specific local crustal com-
position is the natural reason for finding similarity be-
tween this group of Pirin lakes. 

4. Conclusions 

In this study we have tried to prove that the lake water 
monitoring data assessment could use an extremely use-
ful tool—the methods of chemometrics and environmet-
rics. If one decides to use the multivariate statistical 
methods for classification, projection, modeling, and 
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interpretation of lake water monitoring data in order to 
gain specific (often hidden, non-available from the raw 
data) information, then the pathway to reach it should 
follow several major steps: proving the data quality by 
means of metrological criteria (uncertainty, limits of de-
tection of the monitoring methods, precision, reliability 
of signal etc.); checking the data distribution (often 
non-normal) by statistical tests; data normalization in 
order to avoid problems with non-normal distribution or 
data dimensionality; classification of the monitoring data 
by different environmetric approaches like cluster analy-
sis, principal components analysis, neuron net classifica-
tion (self-organizing maps of Kohonen as an option of 
classification without training procedures); careful inter-
pretation of the classification results and finding the rea-
sons for the similarity groups; modeling the data in order 
to identify latent factors responsible for the data structure 
and the factor contribution to the formation of the total 
concentration of each of the lake water quality parame-
ters; determination of seasonal patterns in lake water 
quality; comparison of the models with the real monitor-
ing data. 

Following this mode of data interpretation we have 
reached to the important conclusion that reliable classi-
fication for high-mountain lakes in Pirin Mountain is 
performed, which makes it possible to find patterns of 
similarity between the lakes and to explain this similarity 
(or dissimilarity) by discriminating water quality pa-
rameters; it could be stated that most of the Pirin 
high-mountain lakes are clean with background levels of 
chemicals. 
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