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Abstract 
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the 
Advanced Driver Assistance System (ADAS) devices in modern cars. To con-
cern the most important issues, which are real-time and resource efficiency, 
we propose a high efficiency hardware implementation for TSR. We divide 
the TSR procedure into two stages, detection and recognition. In the detection 
stage, under the assumption that most German traffic signs have red or blue 
colors with circle, triangle or rectangle shapes, we use Normalized RGB color 
transform and Single-Pass Connected Component Labeling (CCL) to find the 
potential traffic signs efficiently. For Single-Pass CCL, our contribution is to 
eliminate the “merge-stack” operations by recording connected relations of 
region in the scan phase and updating the labels in the iterating phase. In the 
recognition stage, the Histogram of Oriented Gradient (HOG) is used to gen-
erate the descriptor of the signs, and we classify the signs with Support Vector 
Machine (SVM). In the HOG module, we analyze the required minimum bits 
under different recognition rate. The proposed method achieves 96.61% de-
tection rate and 90.85% recognition rate while testing with the GTSDB data-
set. Our hardware implementation reduces the storage of CCL and simplifies 
the HOG computation. Main CCL storage size is reduced by 20% comparing 
to the most advanced design under typical condition. By using TSMC 90 nm 
technology, the proposed design operates at 105 MHz clock rate and processes 
in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and 
the power consumption is close to 8 mW. Therefore, this work is resource ef-
ficient and achieves real-time requirement.  
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1. Introduction 

Driver Assistance System (ADAS) is a common device in modern cars. ADAS is 
designed to enhance car safety and driving comfort. ADAS often includes auto-
motive navigation, autonomous cruise control, collision avoidance, lane depar-
ture warning, and so on. The Traffic Sign Recognition (TSR, or Road Sign Rec-
ognition, RSR) can help driver notice the fast passed signs, thus avoiding traffic 
violations or accidents. The TSR must be fast enough to react to the changing 
traffic conditions. The recognition rate of TSR should be high enough to detect 
most signs and prevent false information. The method should be fast as well as 
easy to implement with hardware, which is able to process in real-time. Besides, 
a well-designed hardware implementation should be energy saving as well as low 
cost, which means resource efficiency. 

There are many researches for TSR proposed. Mammeri et al. [1] classify the 
most traffic sign recognition methods into three categories, which are im-
age-processing (traditional computer-vision) based, machine learning based and 
hybrid method. The image-processing based methods use various ComputerVi-
sion techniques to find traffic signs in the source image. Gomez-Moreno et al. 
[2] make a comparison of several color segmentation methods for TSR, and 
shows that the RGB Normalized method performs the best result. Khan et al. [3] 
use the Gabor filter and the K-mean clustering to segment the signs. Ming Liang 
et al. [4] perform a SVM-based color transform. Liang et al. [4] use the template 
matching method with templates of different orientations. The shape analysis 
proposed by Khan et al. [3] verifies the basic polygon properties of the signs. 
Gonzalez et al. [5] propose a VISUALISE system, which implements the con-
strained Hough transform to extract the edge of signs in the luminance image. 
Most image-processing based methods are simple to implement and the compu-
ting speed is fast. However, the recognition rate is relatively low.  

The machine learning (ML) based method has been used in the traffic sign 
recognition recently. The descriptor and classifier method is one of the ML 
techniques. Overett et al. [6] propose a LiteHOG+ descriptor that extended the 
HOG feature [7] by a centre-surround statistics, and classify with a cascade FDA 
classifier. Seo et al. [8] present a color-based feature with AdaBoost classifier to 
detect the signs. Besides, they construct a log-polar transform and the SVM me-
thod to classify the signs. Another common ML technique is the artificial neural 
network. Zhang et al. [9] propose the probabilistic neural network to recognize 
traffic signs. Jin et al. [10] construct the convolutional neural networks and train 
with a hinge loss stochastic gradient descent method. The ML based method 
achieves high recognition rate. However, the massive computational complexity 
makes it difficult to process in real-time with appropriate computing resources.  

The hybrid method divides the TSR procedure into two stages, detection and 
recognition. The detection stage use the image-processing based method to detect 
the potential signs in the source image. The recognition stage uses the machine 
learning based method to recognize the detected signs. Thus, the hybrid method 
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takes both advantages of fast computation and high recognition rate. There are 
various techniques in the detection stage. A specialized color transform with 
thresholding, followed by the Connected Component Labeling (CCL) procedure, 
is an effective way to extract traffic signs [11] [12] [13]. Some researches [14] 
[15] [16] use the maximally stable extremal region (MSER) to extract the stable 
regions. Liu et al. [17] propose the High-Contrast Region Extraction to extract 
the regions by a possibility map. In the recognition stage, the descriptor and 
classifier method is often used. The common descriptor choices are the Histo-
gram of Oriented Gradient (HOG) [4] [12] [13] [14] [16] or modified HOG [6], 
[15]. The classifier can be support vector machine (SVM) [5] [12] [13] [14] [15], 
neural networks [16] or SRC-based classifier [17]. Most of the recently propose 
researches implement the hybrid method, so does this work. 

We propose a high efficient TSR method, which reaches high recognition rate 
and processes in real-time. Our contribution is to propose an efficient two-phase 
method to eliminate the “merge-stack” operations so the operation speed and 
memory cost in the CCL module is significantly improved. The method achieves 
96.61% detection rate and 90.85% recognition rate while testing with GTSDB 
dataset. The proposed TSR method is further implemented on hardware. The 
hardware implementation aims to reduce the storage and simplify the computa-
tion of software implementation. By using TSMC 90 nm process, the proposed 
hardware operates at 105 MHz clock frequency and processes 135 fps with the 
image size of 1360 × 800. The proposed TSR method is illustrated in Section 2. 
Section 3 shows the performance evaluation results and the testing method we 
used. Section 4 introduces the hardware architecture of the proposed method 
and shows the tap-out results. A brief conclusion is given in Section 5. 

2. Proposed TSR Method 

We propose the hybrid traffic sign recognition method. The method contains 
two main stages, detection and recognition. In the detection stage, we use Nor-
malized RGB color transform and Single-Pass Connected Component Labeling 
(CCL) to find the potential traffic signs. In the recognition stage, Histogram of 
Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we 
classify the signs with Support Vector Machine (SVM). The overall flow chart of 
main TSR procedures is shown in Figure 1. We describe the procedures in detail 
in the following subsections. 

2.1. Detection Procedure 

The detection procedure is used to detect the potential traffic signs form the 
source image. It is the most time consumption part of the whole TSR procedure. 
Because we have to scan the whole source image to find the potential traffic signs 
Figure 2. Results of each step in the detection procedure (or Region-of-Interest, 
ROI) before recognizing every found ROIs. Figure 2 shows the results of each 
step in the detection procedure. 
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Figure 1. Flow chart of the proposed TSR method. The left side shows the detection pro-
cedure, and the right side shows the recognition. 
 

 
Figure 2. Result of each step in the detection procedure. (a) Example extracted from the 
source image (full color); (b) NRB color transform (gray-scale image produced); (c) Mul-
tiple thresholding (3 binary images produced); (d) Single-pass connected component 
labeling (ROIs extracted). 
 

1) Reducing the Searching Space: Fortunately, the traffic signs do not appear 
at any location of the source image. For example, the signs do not appear at the 
sky and surface. Therefore, we are able to reduce the searching space by remov-
ing the top and the bottom of source images. In addition, we split a source image 
into left-frame and right-frame, then process two frames independently. Figure 3 
shows the layout of the frames. Our experiment shows that there are less than 
4% of total signs are out of the searching space. On the other hand, because the  
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Figure 3. Searching space and the layout of two frames in the source image. 

 
images are taken from the moving car, the out-of-space signs will move into the 
searching space over time. 

2) Color Segmentation: We use the color segmentation to extract the specified 
color of the traffic sign boundary, e.g. red and blue. The color segmentation 
contains two parts. The first part is the color transform. The researches [5] [14] 
[15] claim that the Normalized-RGB Color Transform performs the most robust 
result under different lighting and contrast condition. A gray-scale image is 
generated by the color transform, and the value is higher for red or blue, lower 
for other colors. We emphasize the negative influence of green color, in other 
words, a pixel that has greener ingredient is less likely to be the targeted blue or 
red color. The modified normalized RGB color transform, called NRB color 
transform, is shown as following: 

( ) ( ),
ax ,

,
m R B

R
NRB R

G B
G B

β α+ ∗ + +
=                    (1) 

where R, G, B are the red, green and blue color channel, respectively. max(R; B) 
is the maximum value between R and B. α is a small constant, we set to 8. β is a 
green color magnification, we set to 4 in this work. 

The second part is the thresholding. A threshold is used to determine if the 
pixel has the specified color or not. The transformed pixel that passes the thre-
shold will be set to 1, otherwise 0. Thus, the binary image is produced by the 
color segmentation. For the flexibility under different conditions, we use mul-
tiple thresholds instead of a single threshold. Hence, multiple binary images are 
produced by thresholding. 

3) Single-Pass Connected Component Labeling: We use the Connected Com-
ponent Labeling (CCL) algorithm to group the white pixels in the binary image. 
The CCL algorithm scans the binary image and assigns the label to each pixel 
using only local operations [18]. A set of connected pixels is called a “region”. As 
shown in Figure 4, two pixels are “connected” if they are adjacent to each other. 
The traditional two-pass CCL algorithm produces the labeled image, where all 
pixels that belong to a region are labeled to the same number. The first pass of 
CCL is to scan the pixels and record the connecting relations. The initially la-
beled image is generated, but the label number may be incorrect because there  
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(a)                   (b) 

Figure 4. The adjacent pixels of (a) 4-connectivity; (b) 8-connectivity. The central pixel is 
marked as × and the adjacent pixels are gray. The pixels with letters are the ones that 
should be checked while scanning the image. 
 
are unread pixels when scanning the image in the first pass. Hence, the second 
pass is to re-label the incorrect labels by the recorded relations. 

Obviously, the connecting relations of the pixels are built in the first pass, 
while the second pass is only used to replace the incorrect labels in the labeled 
image. Abubaker et al. [19] propose the single-pass algorithm for the connected 
component analysis. If we do not need the labeled image as the result, the second 
pass can be eliminated. Instead, we extract some “features” of the regions during 
the first pass. Because of the elimination of the second pass, the theoretical 
computing time of the single-pass algorithm is half comparing to the two-pass 
algorithm.  

Furthermore, the memory requirement is reduced. According to Figure 4, 
when we scan the pixels in the binary image, the decision of the current label 
number is observed by only the neighbor labels in the previous row. Because the 
result is features of the region, the completely labeled image can be replaced by a 
labeled row, called the “row-buffer”. Besides, the “data-table” is introduced to 
store the extracted region features. Overall, the total memory of the CCL is 
greatly reduced by the elimination of labeled image, even though the additional 
storage, e.g. the data-table, is required. The main procedure of single-pass CCL 
algorithm can be expressed as the pseudo code of Algorithm 1. We select the 
bounding box as the region feature in this work. The bounding box contains the 
boundaries of regions, which lets us extract the ROIs from the source image. Fi-
nally, we can pass the detected ROIs to the next main procedure, recognition. 

2.2. Recognition Procedure 

The recognition procedure is used to classify the potential traffic signs found by 
the detection procedure. Besides, there are many false detected ROIs, which 
should be removed. The schematic diagram of the recognition procedure is 
shown in Figure 5. We first check the region criteria. It can be done by observ-
ing only the bounding box information. The width and height of the region 
should not be greater than 110% of the maximal size nor less than 90% of the 
minimal size. The width/height ratio should be within 0.75 and 1.25. According 
to the experiment, there are averagely 10.75 ROIs per image that meet the crite-
ria. We extract the eligible regions from the source image. They are converted 
into gray-scale and resized to 32 × 32, before the HOG calculation. 
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Figure 5. Schematic diagram of the recognition procedure. (a) ROI boundaries produced 
by detection procedure; (b) Extracted traffic signs; (c) Resize and convert to gray-scale; 
(d) HOG descriptor calculation; (e) SVM classification; (f) Traffic sign recognized. 
 
Algorithm 1. Single-pass connected components labeling. 
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1) Simplification of HOG Calculation: Next, we calculate the HOG descriptor 
of the regions. We choose the HOG parameters that reference to N. Dalal et al. 
[7]: 3 × 3 blocks per window, 2 × 2 cells per block, 8 × 8 pixels per cell, an 8-bin 
histogram spreads over 0 to 360 degrees, and the arithmetic mean is used for 
normalization. Not all parameters are same as the original research. Moreover, 
we replace the floating-point calculation with fixed-point for simplification and 
faster computation. In other words, the quantization is performed for easier 
hardware implementation. 

We use some approximate formulas instead of the original precise formulas. 
The gradient calculation of X-axis and Y-axis are: 

[ ]
[ ]T

1,0,1

1,0,1

x

y

grad

grad

= −

= −
                         (2) 

which are same as the original ones. We use the Manhattan distance to approx-
imate the magnitude calculation: 

x ygrad grad grad= +                      (3) 

where |gradx| and |grady| are the absolute values of X-gradient and Y-gradient. 
When we need only 8 bins result that distributes over 0 to 360 degrees, the 
orientation calculation can be approximated as the following formula: 

( ) ( ) ( ), 0 4 0 2 1x y y x x yori grad grad grad grad= < ⋅ + < ⋅ + > ⋅      (4) 

where the comparing calculation (e.g. <and>) produces 1 bit result. The actual 
calculated values of each orientation bin are shown in Figure 6. 

2) SVM Classification: After the HOG descriptor is generated, we classify the 
ROIs with the Support Vector Machine (SVM) [20]. The detailed parameters of 
the SVM are described in Section 4. The SVM is trained before testing, in other 
words, only the prediction is performed when doing the TSR procedure. Finally, 
the traffic signs in the source image are recognized and the false positives are 
removed. 
 

 
Figure 6. The calculated values of the 8-bin orientation. 
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3. Performance Evaluation 

A. Testing Dataset and Environment Settings 
The German Traffic Sign Detection Benchmark (GTSDB) [21] is a dataset that 

aims to present a real-world single-image detection problem. The source images 
in the GTSDB are 1360 × 800 pixels. The target sign size is 24 × 24 at minimal 
and 128 × 128 at maximal. Our TSR experiment contains more than 500 images 
with more than 700 traffic signs. There are total 35 classes of the signs, which 
could be categorized into 3 major classes. Figure 7 shows the example of target 
signs and the major classes of GTSDB. 

The detection rate is defined as following: 

#correctly detected sigDetec ns
# to

tion rat
tal s

e
sign

=              (5) 

If a detected region has more than 75% overlap area with the ground-truth 
signs, we decide that it is a correct detection. Otherwise, it is a false positive de-
tection. 

The recognition rate is defined as following: 

#correctly classified signs
# tota

Re
l 

cognition 
detected s s

rate
ign

=            (6) 

If there is a correct detected sign, it should be classified to the corresponding 
class. Else, the false detection should be classified as non-traffic-sign. The para-
meters for SVM are: one vs. one type, linear kernel, γ = 0.1, and C = 10. The 
SVM training and testing process is described as following. First, we randomly 
divide all detected signs into 5 categories, e.g. 20% for each category. Second, we 
select one of the category for testing dataset, while the others are training data-
set. Third, we train the SVM with the training dataset and calculate the SVM 
prediction accuracy with the testing dataset. Then, we repeat the procedure for 5 
times and select a different category for testing dataset for each time. Finally, the 
total recognition rate is the average results of 5 times. 

The software implementation of the proposed TSR method is written in C++ 
using the OpenCV 3.0 [22] library. The SVM classification uses the LIBSVM  
 

 
Figure 7. Traffic sign classes and the major classes of GTSDB. (a) Prohibitory; (b) Dan-
ger; (c) Mandatory. 
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[23] library. Our experiment executes on the PC with Intel Xeon E3-1230v2 (3.2 
GHz) CPU and 16GB RAM. 

B. The Influence of Color Segmentation Thresholds 
The threshold value in the color segmentation procedure can influence the 

detection rate. We choose multiple thresholds to overcome the variation of 
weather and lighting conditions. According to Figure 8, we find that using three 
thresholds performs the better result. However, the improvement is negligible 
when using more than three thresholds. The disadvantage of multiple thresholds 
is that the CCL needs more computing time to process multiple images, as well 
as more potential signs generated. Overall, we select three thresholds to reach 
the detection rate of 96.61% in this work. 

C. The Influence of Reducing HOG Calculation Bits 
For easier hardware implementation and resource efficiency, we use the 

fix-point to replace the floating-point in the HOG calculation. There is a division 
calculation when performing normalization to the HOG descriptor output. 
Thus, we test that how many bits are enough for the descriptor. Furthermore, 
the input bits could also be reduced. The following experiment results are ob-
tained by HOG descriptors and SVM classification. The descriptors are generat-
ed from the ROIs that generated by the detection procedure. Figure 9 shows the 
influence of reducing HOG input bits. According to the result, the input bit re-
ducing does not have the significant influence of recognition rate until 4-bit. 
Thus, we select 4-bit as the input data width of a pixel. Figure 10 shows the in-
fluence of reducing HOG output bits. We find that the recognition rate is almost 
unchanged while reducing the descriptor bits, until the 4-bit fixed point is tested. 
As the experiment result shows, we select 4-bit as the output data width for a 
descriptor element. 

In addition, by observing the HOG descriptors, we find that there are less than 
0.01% values which are greater than 0.4375. Hence, if we truncate the values to 
0.4375, there is one more output bit reduced. Even though, the recognition  
 

 
Figure 8. Traffic sign classes and the major classes of GTSDB. (a) Prohibitory; (b) Dan-
ger; (c) Mandatory. 
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Figure 9. The influence of reducing HOG input bits vs. recognition rate. 
 

 
Figure 10. The influence of reducing HOG output bits vs. recognition rate. 
 
rate keeps unchanged, because there are too little affected values to influence the 
result. In brief, the proposed TSR method reaches the 90.85% recognition rate 
when the input data is 4-bit width and the output data is 3-bit width. 

D. Time Consumption of Software Implementation 
The time consumption of the TSR software implementation is listed in Table 1. 

The result is the average of testing more than 700 source image. According to 
the result, the detection procedure consumes about 3/4 of total time. The CCL 
costs most time to process, which is about half of whole TSR procedure. The 
HOG descriptor generation is an OpenCV built-in function, which is highly op-
timized by SIMD instructions. Hence, it is so fast and only takes about 5% of to-
tal time. We use LIBSVM to do SVM classification, and the result only counts 
the prediction time without training time. Thus, it is a relatively simple procedure.  
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Table 1. Time consumption of the tsr software implementation. 

Main  
Procedure 

Sub Procedure 
Time  
(ms) 

Percentage 
Time 
(ms) 

Percentage 

Detection 
Allocate memory and create two frames 

NRB color transform 
1.28 
5.26 

4.8% 
19.6% 

19.99 74.4% 

 Thresholding and single-pass CCL 13.45 50.1%   

Recognition 
Resize and convert to gray image 

HOG calculation (OpenCV build-in) 
0.95 
1.41 

3.5% 
5.2% 

6.88 25.6% 

 SVM classification (LIBSVM) 4.52 16.8%   

Total  26.87 100% 26.87 100% 

 
To summarize, the propose TSR method with software implementation needs 
26.87 ms to process an image with size of 1360 × 800 on average. In other words, 
the processing speed is up to 37 fps. The result may be considered as real-time, 
but we can do better with the hardware implementation. 

4. Hardware Implementation 

A. Overall Architecture 
In this section, we describe the hardware architecture of the proposed TSR 

method. The hardware design should implement the most critical part of the 
TSR method. There are two aspects of the critical part should be considered. The 
first is the procedure that requires the most time to process, which is timing 
critical. The second is the procedure that requires the most computing resource, 
which means resource critical. Therefore, we decide to implement the detection 
procedure and the HOG calculation of recognition procedure in hardware. 
There are some relatively simple procedures like SVM prediction and image re-
sizing. We use software implementation on those procedures. Figure 11 shows 
the hardware/software combination flow of the proposed TSR method. The 
source image first inputs to the hardware color segmentation unit, pixel by pixel 
as raster scanning. The pixels that determined as foreground or background are 
delivered to the single-pass CCL unit to group the connected pixels into a ROI. 
Next, the detected ROIs are checked with several conditions by the software 
procedure, and the ROIs that pass the conditions are resized to a constant size. 
The HOG unit generates the descriptors of resized ROIs. Finally, these descrip-
tors are classified by software SVM procedure, and the traffic sign recognition is 
done. 

The top module for TSR contains two independent main modules, detection 
module and recognition module. The input data of detection module is the 
source image. The output is the region information of potential signs (or ROIs). 
In fact, the information is the feature vector of ROIs. The detection module 
contains two sub-modules, color segmentation (CS) and connected component 
labeling (CCL). After NRB transforming and thresholding in CS module, the 
color pixel reduces into 1-bit value and passes to CCL module. The input of  
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Figure 11. Flow chart of hardware/software combination method for TSR. 

 
recognition module is the resized region and the output is HOG descriptor. 
There is a HOG sub-module contained in the recognition module. Figure 12 
shows the block diagram of TSR top module. 

B. Detection Module 
The detection module contains two main sub-modules, color segmentation 

(CS) module and connected component labeling (CCL) module. For better per-
formance, we implement a two-stage pipeline on these modules. Figure 13 
shows the block diagram of detection module. The hollow arrows represent data 
path, and the solid arrows represent control path. The CS module receives a col-
or pixel with three 8-bit channel per cycle. We use raster-scan to obtain the pixel 
from the source image. The color data of input pixel first transforms into a sin-
gle 8-bit gray-scale data at normalized-RB color transform (NRB) module. Then, 
a threshold is performed on the data to produce a 1-bit true/false value. The CS 
control unit selects the current thresholds that are pre-defined in our TSR expe-
riment. The CCL module receives the 1-bit value, and regards the value as fore-
ground (1) or background (0). The CCL control unit generates the coordinates 
information and control signals. The CCL main unit executes the single-pass 
CCL algorithm. When a region is found, the unit outputs the corresponding re-
gion feature, which is the boundary box of the region. 

1) NRB Color Transform Module: The Normalized Red/Blue color transform 
(NRB) module used to transform the RGB color image into red/blue enhanced 
image. We implement the formula shown at Equation (1). Figure 14 shows the 
block diagram of NRB module. For fast calculation, we implement left shifting 
instead of multiplication. In fact, because the shift value is constant, the shifting 
is wire connection in hardware. We multiply the numerator by 256 to make sure 
that the division result is an integer that is greater than zero. 

2) Connected Component Labeling Module: The Connected Component 
Labeling (CCL) module implements the single-pass CCL algorithm. Because it is 
the most resource consuming module of the TSR design, we try to reduce the 
memory requirement for resource efficiency. Comparing to the other CCL de-
signs [24] [25] [26] [27], the most important improvement of our design is the  
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Figure 12. Block diagram of TSR top module. 

 

 
Figure 13. Block diagram of detection module. 

 

 
Figure 14. Block diagram of NRB module. 

 
eliminating of “merge-stack”. The merge stack is used to record the merge pat-
tern when scanning a row. The merge pattern is the connecting relations be-
tween pixels. When we find two pixels are connected, this information is pushed 
into the stack. After scanning a row, we pop the merge pattern from the stack, 
and update the connecting relations in the merge-table and the data-table. 

The CCL procedure is divided into two phases, a) scanning a row and b) ite-
rating through tables. At the scanning a row phase, the proposed CCL algorithm 
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reads pixels from a binary image using raster-scanning. The connecting relations 
and region feature vectors are also recorded at this phase. After a row is scanned, 
it switches to the iterating through tables phase. We check all used entries at the 
merge-table and the active-table to find the completed labels and the feature of 
the completed region is sent out. 

Figure 15 shows the block diagram of CCL main module when scanning a 
row. We describe the hardware execution flow as following. 

1) Fetch the neighbor labels from the row-buffer as explained in the previous, 
and inquiry the correct label from the merge-table. The row-buffer is indexed by 
the axis x, so it is the input of the row-buffer. 

2) The new label value is provided by the release-queue. If the release-queue is 
empty, the value is provided by the label-counter. 

3) The label-selector determines the current label value. If a merging between 
two labels appears, the label-selector sends the merging signal. 

4) The row-buffer records the current label. The merge-table records the 
merging of two labels if needed. The data-table records the feature vectors of re-
gions and merges two vectors if the merging signal received. The feature vectors 
are bounding box of regions in this work, hence the inputs of the merge-table 
are the axis x and the axis y. 

5) The active-table marks the current label as active, thus prevents the releas-
ing of the current label when iterating through tables. 

All these stages are done within a cycle. Therefore, we can process a pixel per 
cycle. After scanning a row, the CCL module switches into iterating through 
tables phase. 

Figure 16 shows the block diagram of CCL main module when iterating 
through tables. We descript the hardware execution flow as following. 
 

 
Figure 15. Block diagram of CCL main module when scanning a row. 
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Figure 16. Block diagram of CCL main module when iterating through tables. 
 

1) Fetch the label from the iterate-counter. The counter counts from zero to 
the same value as the label-counter, because the values greater than the la-
bel-counter are never used before. 

2) The label-iterator checks the merging state of the label in the merge-table. 
The label is considered as the root when it points to self. 

3) The label-iterator checks the activating state of the label in the active-table. 
4) Record the unused labels in the release-queue. A label is considered as un-

used when it is not the root or it is inactivate. 
5) When the label-iterator finds a completed label, the feature vector of the 

corresponding labeled region sends out, and the entry in the data-table can be 
reused. A label is considered as completed when it is the root and it is inactivate. 

All these stages are done within a cycle. Therefore, we can process a table en-
try per cycle. After the iterate-counter finishes, the CCL module switches back to 
the scanning a row phase and the procedure continues. 

C. Recognition Module 
The recognition module contains HOG compute module and HOG control 

module. Figure 17 shows the block diagram of recognition module. The recog-
nition module receives one ROI pixel per cycle. The input pixel is reduced into 4 
most significant bits for lower computing resource and fast computing time. For 
the same reason, the output is reduced into 3 most significant bits. When the 
calculation of HOG is done, the recognition module outputs the descriptor for 3 
bits per cycle. The Histogram of Gradient Module contains four major modules. 
The cell buffer receives ROI pixels and stores the values. When all 64 entries of 
the cell buffer are filled, the cell process unit calculates the gradient information 
of each pixel, including the orientation and magnitude. The gradient will then 
store into block buffer, which contain 4 voting tables. After all 64 entries of the  
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Figure 17. Block diagram of CCL main module when iterating through tables. 
 
cell buffer processed, the first voting table is completed. Next, we fill the cell 
buffer with another 64 pixels, and the procedure continues. Finally, all voting 
tables are completed. The block process unit calculates the normalization result 
across 4 tables and the HOG module outputs the descriptor for SVM classifica-
tion. 

Figure 18 shows the block diagram and data flow of cell buffer, cell process 
unit and block buffer. The cell buffer is a 64 entries array storing ROI pixel val-
ues. The block buffer contains 4 voting tables. Each table is indexed by the gra-
dient orientation and accumulates the gradient magnitude. The cell process unit 
contains several function units, and divides into two-stage pipeline for better 
performance. We implement the gradient unit with Equation (2), the gradient 
absolute unit with Equation (3) and the orientation unit with Equation (4). 

Figure 19 shows the block diagram and data flow of block buffer and block 
process unit. The block process unit calculates the arithmetic mean of a descrip-
tor element across all four cells in the block. Then, the descriptor output is re-
duced to 3-bit width. We divide the block process unit into two-stage pipeline. 

D. Cycles of Hardware Implementation 
Because the detection module receives one pixel per cycle, the throughput is 1 

pixel/cycle. We set the frame size to 680 × 480, and there are two frames in an 
image. We assume that the max number of label is 128 (or a quarter of frame 
row size), which is observed from our TSR experiment. The worst case is that all 
128 labels are used, hence there are another 128 cycles to check the label comple-
tion from tables after scanning each row. The detection procedure takes 387,840 
cycles to process a frame, which means 775,680 cycles to process an image. 

The parameters for HOG are described in Section III. We first need 64 cycles 
to fill the cell-buffer and 64 cycles to process each pixel in the cell-buffer. The 
block-buffer contains 4 cells and need 512 cycles to be filled. Finally, there are 
another 32 cycles to output the descriptor in a block and total 9 blocks to be 
computed. Overall, the detection procedure takes 4896 cycles to process a ROI.  
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Figure 18. Block diagram of cell buffer, cell process unit and block buffer. 
 

 
Figure 19. Block diagram of block buffer and block process unit. 
 
We assume that there are 10.75 regions per image on average, which means ave-
ragely 52,632 cycles to process all ROIs in an image. 

The detection module and the recognition module are independent to each 
other. Hence, a pipeline mechanism could perform to increase overall through-
put. Each time the detection module produces a valid ROI, the ROI will be send 
to the recognition module. The detection module requires 775,680 cycles to 
process an image. The recognition module needs 52,632 cycles to complete all 
ROIs in an image. Therefore, the detection procedure requires more cycles than 
recognition, which is the bottleneck, as same as the software implementation. 

E. Implementation Results and Comparisons 
We synthesize and perform APR to the proposed TSR hardware architecture 

with TSMC 90 nm CMOS technology. Table 2 shows the detail specification. 
The design layout of APR result is shown in Figure 20. The hardware detection 
module simulates with several images with various conditions from GTSDB da-
taset. The hardware recognition module simulates with all three different major 
classes of traffic signs from GTSDB dataset. Both modules output exactly same 
results to software implementation. The core size is 0.26 mm2 and chip size is  
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Figure 20. Layout of the proposed design; the chip core size is 0.51 mm × 0.51 mm2. 
 
Table 2. The specification table of proposed architecture. 

Technology TSMC90 nm 

2

2

Core Size 0.51 0.51 mm
Chip Size 1.05 1.05 mm

×
×

  

Clock Rate 105 MHz 

Power 8.03 mW 

Test Coverage 97.98% 

Number of Input Pins 66
Number of Output Pins 18
Number of Total Pins 84

  

Package CLCC84 

 
about 1 mm2. The design operates at 105 MHz clock frequency. It needs 775,680 
cycles to process an input image, which means the speed is up to 135 fps, or 7.4 
ms per image. 

We compare our resource efficient CCL architecture with other CCL hard-
ware designs. There are the traditional two pass algorithm [24], the single pass 
algorithm [25], the single pass with label recycling mechanism [26], and The 
state of the art design [27]. Our most important improvement is the elimination 
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of the merge-stack that used in other designs. We use the method similar to 
Klaiber et al. [27] to calculate the main CCL storage size. The calculation is un-
der the typical case. The typical case assumes that the max number of indepen-
dent regions per row is equal to 1/4 of the row size, which is observed in our TSR 
experiment. The storage comparison with different image size is shown in Table 3. 
According to the result, the proposed CCL design reduces the memory size up to 
20% comparing to the most advanced design in the typical case. 

We also compare our TSR hardware design with others. To reach the 
real-time requirement, many researches implement the hardware accelerator or 
full system for traffic sign recognition. The hardware implementations could 
perform on Field Programmable Gate Array (FPGA) [28] [29] [30] [31] or Ap-
plication-Specific Integrated Circuit (ASIC) [31]. Most of them use hybrid me-
thod for easier hardware implementation and fast processing speed. Table 4 lists 
the detailed specification and the techniques they used in the different imple-
mentations. The most important, the processing time helps us determine 
whether the design reaches the real-time requirement. Besides, the larger image 
size means that the computing ability of the design is more powerful. 

According to the comparison, the proposed hardware design reaches the 
real-time requirement. Our design has the fastest processing speed with large 
input image size. In addition, testing by a public dataset makes our recognition 
rate more convince then the others. 
 
Table 3. Main storage size of various CCL designs under different image size in the typi-
cal case. 

Image size [24] [25] [26] [27] This work 

320 × 240 672,000 139,920 9920 7504 (100%) 6080 (81%) 

640 × 480 3072K 626,880 22,400 16,992 (100%) 13,760 (80%) 

1280 × 720 10,368K 2101K 49,920 37,952 (100%) 30,720 (80%) 

1920 × 1080 23,328K 4708K 76,800 58,368 (100%) 47,040 (80%) 

 
Table 4. Comparison of the TSR hardware designs. 

Design Detection Technique 
Recognition 
Technique 

Test 
Dataset 

Recognition 
Rate 

Image 
Size 

Technology 
Area/Gate 

Count 
Freq. 

(MHz) 
Speed 

(ms/frame) 

[28] 
HSV color space,  

median filter, CCL 

Border-vectors, 
Constructed  

neural network 
N/A N/A 640 × 480 

Xilinx  
Virtex 4 

160 K NAND 88 16 

[29] 
HSV color space, 
Morphological  
Filtering, CCL 

Template matching N/A N/A 320 × 240 
Xilinx  

Virtex 5 
N/A 100 114 

[30] 
HSI color space,  
Filtering, CCL 

Border descriptor 
(shape only) 

N/A N/A 1280 × 720 
Xilinx 

Spartan 6 
N/A 75 16.6 

[31] 
Multiscale Retinex, 
Template matching 

SIFT descriptor, 
SVM classifier 

N/A 90% 320 × 240 130 nm 10.61 mm2 200 33.3 

This 
work 

NRB 
color transform, CCL 

HOG descriptor,  
SVM classifier 

GTSDB 90.85% 1360 × 800 90 nm 0.26 mm2 105 7.4 
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5. Conclusion 

In this paper, we propose a traffic sign recognition method and its resource effi-
cient hardware implementation that processes in real-time. The proposed TSR 
method achieves 96.61% detection rate and 90.85% recognition rate while testing 
with GTSDB dataset. Our hardware implementation reduces the storage of CCL, 
and simplifies the HOG computation. The reducing of main CCL storage size is 
up to 20% comparing to the most advanced design under typical condition. The 
proposed hardware operates at 105 MHz clock frequency by using TSMC 90 nm 
CMOS technology. With image size of 1360 × 800, the processing speed is up to 
135 fps. The chip size is about 1 mm2 and the power consumption is close to 8 
mW. Therefore, this work is resource efficient and achieves real-time require-
ment. 
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