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Abstract 
Accurate classification and prediction of future traffic conditions are essential 
for developing effective strategies for congestion mitigation on the highway 
systems. Speed distribution is one of the traffic stream parameters, which has 
been used to quantify the traffic conditions. Previous studies have shown that 
multi-modal probability distribution of speeds gives excellent results when 
simultaneously evaluating congested and free-flow traffic conditions. Howev-
er, most of these previous analytical studies do not incorporate the influencing 
factors in characterizing these conditions. This study evaluates the impact of 
traffic occupancy on the multi-state speed distribution using the Bayesian Di-
richlet Process Mixtures of Generalized Linear Models (DPM-GLM). Further, 
the study estimates the speed cut-point values of traffic states, which separate 
them into homogeneous groups using Bayesian change-point detection (BCD) 
technique. The study used 2015 archived one-year traffic data collected on 
Florida’s Interstate 295 freeway corridor. Information criteria results revealed 
three traffic states, which were identified as free-flow, transitional flow condi-
tion (congestion onset/offset), and the congested condition. The findings of the 
DPM-GLM indicated that in all estimated states, the traffic speed decreases 
when traffic occupancy increases. Comparison of the influence of traffic occu-
pancy between traffic states showed that traffic occupancy has more impact on 
the free-flow and the congested state than on the transitional flow condition. 
With respect to estimating the threshold speed value, the results of the BCD 
model revealed promising findings in characterizing levels of traffic congestion. 
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1. Introduction 

Speed is one of the important parameters in traffic flow analysis. Hence, under-
standing its characteristics is essential in the application of intelligent transport 
systems and for measuring the consistency of the traffic performance of a high-
way system. Furthermore, the speed distribution is useful in simulation and 
theoretical derivations regarding different traffic performance measures such as 
speed reliability and variability. The accurate estimation and prediction of speed 
are essential for traffic operators, planners, and traveler information systems [1]. 

Several factors influence the distribution of the traffic speed on freeways. 
These factors can be grouped into time-variant and time-invariant factors. The 
time-invariant factors include road geometric characteristics (e.g., posted speed 
limit, lane width, pavement condition, number of lanes, etc.) while the 
time-variant factors include traffic conditions (i.e., traffic flow and density), ve-
hicle mix, incidents, and driving characteristics [2] [3]. Understanding the effect 
of these factors on the distribution of traffic speed is necessary for predicting and 
classifying the congestion levels on a highway. 

The main objective of this paper is to provide a quantitative analysis of traffic 
congestion using mixture characteristics of the traffic speed distribution. In the 
modeling process, each traffic speed record is assumed to come from a hidden 
traffic state, which is drawn from a linear relation with traffic occupancy. 
Therefore, the corresponding impact of the traffic occupancy on the expected 
travel speed in each state is identified. More specifically, the study uses the Baye-
sian Dirichlet Process Mixtures of Generalized Linear Models (DPM-GLM) to 
cluster these states. The Dirichlet process mixture (DPM) classifies the hidden 
state by categorizing the GLM of each state. In addition, the study uses the Baye-
sian change-point detection (BCD) model to estimate the possible threshold 
speed value for each of the states. The threshold value is assumed to separate 
traffic states into homogeneous groups; thus, this procedure facilitates classifica-
tion of the traffic condition. The BCD model is estimated using a Bayesian ap-
proach, which gives the posterior distribution of the threshold values as well as 
the uncertainty of estimates. To check the consistency of the estimated cut- 
points by this approach, the classification error method that minimizes the false 
positive rate in each state is used to estimate optimal thresholds as well. Both 
posterior distributions of the model parameters for DPM-GLM and BCD are fit-
ted by the Metropolis-Hastings MCMC sampler. The study uses archived traffic 
data collected for a year in 2015 on an Interstate 295 corridor located in Jack-
sonville, Florida. 

2. Literature Review 

Most of the early analytical studies in modeling the characteristics of speed as-
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sume that the distribution follows a single-model distribution [4] [5]. Neverthe-
less, this model may apply only under homogeneous traffic conditions [6]. Re-
cent empirical studies show that the speed distribution exhibits heterogeneous 
characteristics. The heterogeneity is attributed to many factors, among which are 
driver behaviors, vehicle type, to mention but a few. These factors cause the speed 
distribution to have multiple subpopulations depending on the time window of the 
analysis. To account for heterogeneity in traffic speed or travel time, a mix-
ture/multi-modal distribution is preferred over the conventional unimodal distri-
bution [1] [7] [8] [9] [10] [11]. In contrast to the single-model distribution, the 
multi-modal distribution consists of two or more distributions whereby the 
weighted individual distributions are added to form the multi-model. Apart from 
offering a better fit, the multi-modal distribution offers several advantages com-
pared to a single-model distribution; one of them is the ability to cluster different 
states of the distribution simultaneously. Therefore, the multi-modal distribution 
is more flexible than its counterpart [8] [12]. In addition to flexibility, the model 
incorporates the uncertainty associated with different traffic conditions (states). 

Several studies have applied the multi-modal distribution to characterize dif-
ferent traffic conditions. For instance, the study in [13] used the multi-model to 
evaluate the congestion level. The study limited the multi-model to two mixture 
components to classify the speed distribution. The study in [6] concluded that 
the speed distributions might be more than two, depending on the time of the 
analysis. Results from [14] identified four states of traffic condition, that is, 
free-flow condition, congestion onset, congested condition, and congestion dis-
solve (offset) condition. The free-flow condition consists of the nearly symme-
trical shape of the travel time or the speed distribution with low median value. 
Whereas, the congestion onset and offset conditions are characterized by low 
median value with left skewed distribution. The congested condition consists of 
higher median value with the right-skewed distribution. 

It is worth mentioning studies, which are more closely related to our study. 
The study in [15] developed an algorithm to identify congestion while consider-
ing the influence of visibility and weather conditions. The study by [15] uses the 
mixture model to estimate the speed distribution in order to describe the traffic 
conditions. The mean values of the two regimes, i.e., congested and free-flow 
conditions were described by a linear relationship with visibility and weather 
condition. Following a similar approach, the study by [16] estimated the speed 
distribution considering the instantaneous speed and average historical speed as 
independent variables to the mean values of the component. Moreover, the 
study in [12] evaluated the impact of the signal timing on the travel time distri-
bution. The study found that using the multi-modal distribution with varying 
mixing probabilities improves the model fitting performance. In contrast to 
standard multi-modal distribution, the varying mixing probability model allows 
flexibility in following the underlying stochastic process of the data distribution 
[12]. In addition, the mean values of each mixture components are classified de-
pending on the associated factors. 
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In all closely related literature aforementioned, the expectation-maximization 
(EM) approach for estimating the parameters was used. The EM method is sus-
ceptible to a local minima problem (over-fitting). In this study, the Markov Chain 
Monte Carlo (MCMC) approach that treats the model parameters as distributions 
is used. Apart from eliminating the over-fitting problem, the posterior distribution 
of the parameters estimated by this method can be updated easily when new data 
become available. Besides, it incorporates a prior knowledge regarding speed dis-
tribution [17], which adds an advantage on estimating posterior distributions with 
less number of sample size as compared to EM approach [17] [18]. Additionally, 
this study incorporates the influence of the traffic occupancy on the multistate 
speed characteristics, which has not been addressed by the previous studies. 

3. Model Framework 

3.1. Dirichlet Process Mixtures of Generalized Linear Models 

In the commonly used finite mixture models, the expected mean values of the 
given observations, such as speed in each component mixture are constants. In 
this study, the conventional method is extended such that it depends on the ex-
planatory variables, iX . The Dirichlet Process mixtures of Generalized Linear 
Models (DPM-GLM) (symbols definition in Table 1) can be represented hie-
rarchically as follows [19]: 

( )

( )

| ~ . | , for 1,2,3, ,
| ~
| , ~ ,

i i i i

i

S GLM X i n
G G

G H DP H

θ θ

θ
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              (1) 

The GLM parameters are linear predictors given by: 
 

Table 1. Variables/parameters definition for Equation (1) through (4). 

Parameter/variable Definition 

DP (α, H) 
random probability density function coming from the Dirichlet 
distribution with parameters α and H 

H represents the base distribution 

α concentration parameter 

G the random distribution drawn from the Dirichlet process DP (α, H) 

iθ  
the parameter of G distribution which follows a stick-breaking process 
(SBP) 

iβ  is the regression parameters 

iX  is the vector of predictors 
2
iσ  is the variance in the model 

N the Gaussian distribution 

Si is the speed observation 
*
iw  is the mixing proportion 

*
kθ

δ
 

represent a Dirac delta function concentrated at 

k represents the number of mixture components. 
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The above DPM-GLM is implemented using the stick-breaking process (SBP). 
The SBP involves breaking a unit length stick into disjoint pieces repeatedly [20]. 
The initial break, 1k = , is determined randomly with a probability 1v , which is 
considered as the probability of the first mixture component. After the first 
break, the next break, 2k = , has the probability ( )1 21 v v− ∗ . The process of 
breaking continues until the desired n number of clusters ( k n= ) are created. 
On the other hand, when the process of breaking continues until the infinite 
number of clusters is created the model become nonparametric with infinite 
mixture states/components [21]. However, the literature point out that working 
with the infinite dimensional posterior distribution is computationally expensive 
[22]. By focusing on Equation (3) above, the stick-breaking construction process 
considers the following conditions: 
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Estimating the posterior distribution of the hierarchical Bayesian model is 
analytically challenging as it involves high dimensional integral in the marginal 
likelihood [7]. To address this problem, the common method for approximating 
the model parameters is the MCMC simulation. This study considers also 
MCMC simulation to estimate the posterior distribution of the unknown para-
meters. In particular, we adopt Metropolis-Hastings sampling step through 
PyMC3, an open source package [23]. The Metropolis-Hastings sampling step 
uses the acceptance or rejection rule to draw samples to the proposed posterior 
distribution [23]. The prior of the distribution is taken as non-informative with 
Gamma (1, 1) for concentration parameter of the Dirichlet process. Normal 
(mean = 0, std. = 100) and Uniform (0, 10) for predictor parameter and sigma, 
respectively. The first 10,000 iterations were discarded as burn-in and following 
10,000 iterations were used for inference. To reduce correlations between drawn 
samples, the sequence of inference iterations was thinned by 10 iterations. 

3.2. Model Selection 

In this study, three information criteria, which are the Bayesian information cri-
terion (BIC), the Akaike information criterion (AIC), and the Deviance Infor-
mation Criterion (DIC) were used to select the optimal number of mixture 
states. All information criteria balance between model complexity (i.e., the 
number of parameters required) and accuracy in prediction to identify the most 
appropriate model. The model with the smallest score is selected as the best 
model among a set of candidates. The BIC is defined as: 

( ) ( )BIC 2 ln lnL k n= − ∗ + ∗                    (5) 

The AIC is given as: 
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( )AIC 2 ln 2L k= − ∗ + ∗                      (6) 

where k is the number of estimated parameters, L is the maximized likelihood of 
the model, and n is the number of observations. 

In Bayesian statistics, the DIC is commonly used for the goodness of fit test 
[24]. Equation (7) defines the model, where D  is the posterior mean of the de-
viance and Dp  is the measure of model complexity, estimated by ( )D D θ− , 
and ( )D θ  is the deviance evaluated at the posterior means of the parameters 
[25]. 

( )DIC 2 D DD p D pθ= + = +                    (7) 

3.3. Traffic Speed Change-Point Detection 

Similar to clustering task, change-point detection (BCD) represents a threshold 
value/location that divides data into distinct homogeneous groups. The process 
of detecting the change-point is well established in time series problem, whereby 
the main purpose is to identify the shift in trends such that the pattern before 
and after a threshold value are different [25]. In change-point detection analysis, 
generally, the number of change-points and their threshold value are unknown. 
In the literature, several methods exist in establishing a change-point whereby 
most of them identify this value through means, variances, amplitude or both 
change in a sequence of observation [25]. Recent studies extended a change- 
point detection problem to regression models. To illustrated change-point, Fig-
ure 1 indicates the regression model with one and two change-points from a si-
mulated data. 

In computing the change-point using the Bayesian approach, the assumption 
about parameter estimation is needed. Herein, we analyzed the problem consi-
dering a linear regression with normality assumption. The following model in-
dicates an example of the change-point detection problem with two switch 
points [25]:  
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<



   (8) 

where switch point refers to the speed where the pattern changes, a is the speed 
less than 1switchpoint , b represents speeds between 1switchpoint  and 

2switchpoint . c represents speeds greater than 2switchpoint , iY  is the speed 
record in the dataset, β  is the occupancy coefficient and T

iX  is the transpose 
of covariates, σ  is the standard deviation of the data. min_speed and 
max_speed is the minimum and maximum speed in the dataset, respectively. 
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(a) 

 
(b) 

Figure 1. Illustration of a change-point in regression model. (a) One change-point data; 
(b) Two change-points data. 

 
The above model can be easily modified to infer the change-point in the ex-

planatory variables instead of the response variable. Prior to estimating the 
model parameters, the number of change-point was inferred from the optimal 
number of clusters established through information criterion methods (see 
model selection section). Afterward, the above model parameters are estimated 
via the Bayesian approach. In particular, we implemented in Pymc3 [23] and 
Metropolis-Hastings sampling step is selected for the analysis. The prior distri-
bution of the switch points was taken as a uniform distribution with equal 
probabilities of falling at any traffic speed in the dataset. Before sampling the 
posterior distribution, the optimization technique through the maximum a 
posteriori (MAP) was applied to find initial parameters with relatively high 
probability. 

We also considered the classification error method that minimizes the false 
positive rate in each component to estimate the threshold values [15]. During 
modeling, the optimal value is estimated by computing a speed that intercepts 
the two conservative normal distributions (that is, mixture components). Ma-
thematically, this value is found by equating the two normal distributions and 
then finding the speed value that has the same frequency in the dataset. The 
purpose of using this method is to compare with BCD estimates. 
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4. Study Data and Speed Estimation 

The study used traffic data from a 4.8-mile corridor of the Interstate 295 freeway 
(Figure 2) located in Jacksonville, Florida. In the analysis, we consider only 
southbound traffic in evaluating the proposed model. The corridor runs from 
Park Ave to San Jose Blvd interchange. The posted speed limit in the corridor is 
65 miles per hour (mph). 

The archived traffic data for analysis were provided by the Regional Integrated 
Transportation Information System (RITIS). The dataset is composed of spot 
speed and traffic occupancy collected from microwave vehicle detectors (MVD) 
aggregated at 15-minute intervals. The data gathered were collected for the pe-
riod of January 1, 2015 through December 31, 2015. Weekend, holidays, and 
days in which incidents (crashes, work zones, etc.) happened were omitted from 
the dataset to reduce variability. The average speed from the MVD was calcu-
lated and considered to represent the link travel speed. 

The corridor travel speed was estimated using Equation (9).  

( ) ,1Speed
n

j tj
t

u
u

n
==

∑
                      (9) 

where n represents the number of detectors on a link (five (5) detectors are 
used), and ,j tu  is the spot speed of MVD j at time t. 

Figure 3 summarizes hourly traffic speed in the dataset. The figure shows that  
 

 
Figure 2. The Study Corridor. 
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Figure 3. Summary of hourly speed observations of a corridor. 

 
the morning peak hour occurred between 7 a.m. and 8 a.m. while the evening 
peaking hour occurred between 5 p.m. and 6 p.m. Closer examination of Figure 
3 reveals that traffic frequently experiences lower speeds, particularly during the 
morning peak hours. 

In modeling of the mixture model, the stationary stochastic process is re-
quired. However, the speed characteristic is noisy in nature and a long time 
window of analysis is usually nonstationary. To address the problem, it is a 
common approach dividing the speed into intervals to create a stationary cha-
racteristic and then mixture models are applied to account for heterogeneity in 
speed data [6] [12]. In this study, three intervals were identified; that is, morning 
peak hours (Z1) which range between 6 a.m. to 9 a.m., off-peak hours (Z2) from 
10 a.m. to 2 p.m. and evening peak hour (Z3) from 3 p.m. to 7 p.m. (Figure 3). 
In evaluating the traffic congestion, morning and evening peak hours were con-
sidered as the time window of the analysis. 

5. Results and Discussion 

The model selection results based on AIC and BIC criteria are shown in Figure 
4. According to this figure, the optimal number of clusters during the morning 
peak hours is three mixture components while the evening peak hours revealed 
four traffic states. Since the Bayesian approach is computationally intensive, we 
used BIC and AIC results as prior to estimate the Deviance Information Crite-
rion (DIC). In the analysis, two, three and four mixture components DIC fit 
were compared. The results suggest that three components are the optimal 
number of clusters for both peak hours (Table 2). Comparing the BIC and AIC 
of the four and three mixture components on the evening peak hours, no signif-
icant difference in the fitted value between these models was observed. Conse-
quently, we applied three states in the analysis, which correspond to the 
free-flow, congestion onset/offset and the congested condition. These states are 
somewhat similar to the research findings by [14]. In this study, four states are 
indicated; free-flow, congestion onset, congestion offset and the congested con- 



E. Kidando et al. 
 

327 

 
(a) 

 
(b) 

Figure 4. The BIC and AIC score. (a) Morning peak hours; (b) Evening peak hours. 
 

Table 2. The result of DIC scores. 

 Time of analysis 
Morning peak hours 

(6 a.m. - 9 a.m.) 
Evening peak hours 

(3 p.m. - 7 p.m.) 

Id Mixture components 
Deviance Information  

Criteria (DIC) 
Deviance Information  

Criteria (DIC) 

1 2 24,588 23,711 

2 3 8592 22,992 

3 4 24,330 27,834 

 
dition. Nonetheless, the distribution characteristics of congestion onset and 
congestion offset are similar and are considered as one state in our study, i.e., 
transitional flow condition. 

Table 3 gives the posterior mean, standard deviation and Bayesian credible 
interval (BCI). Based on the BCI, it can be inferred that the estimated coeffi-
cients are all significant at the 95% BCI. It is because the effects of the traffic oc-
cupancy in each state do not consist of zero values in the BIC [26]. Comparing 
the influence of traffic occupancy on the speed distribution, model results show 
that the traffic occupancy affects the congested and free-flow traffic conditions 
more compared with the congestion onset/offset. To clarify, consider the morn-
ing peak hours’ parameters. The free-flow revealed −0.16 as the coefficient and 
−0.15 for the congested condition, whereas −0.03 is estimated during the onset/  
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Table 3. Posterior summary of the model parameters. 

  Morning peak hours (6 a.m. - 9 a.m.) 

Id  Mean Std. MC error 95% BCI 

 Free-flow condition   

1 
Intercept 79.01 2.73 0.2673 78.72, 79.35 

Occupancy −0.16 0.00 0.00 −0.16, −0.16 

 Congestion onset/offset    

2 
Intercept 70.86 0.17 0.008 70.10, 71.54 

Occupancy −0.03 0.00 0.00 −0.04, −0.03 

 Congested condition    

3 
Intercept 66.32 0.69 0.07 64.91, 67.49 

Occupancy −0.15 0.00 0.00 −0.16, −0.15 

 Evening peak hours (3 p.m. - 7 p.m.) 

 Free-flow condition Mean Std. MC error 95% BCI 

1 
Intercept 73.60 0.34 0.030 72.92, 74.19 

Occupancy −0.13 0.003 0.0002 −0.13, −0.12 

 Congestion onset/offset    

2 
Intercept 70.99 0.101 0.007 70.80, 71.19 

Occupancy −0.029 0.001 0.0001 −0.032, −0.026 

 Congested condition 

3 
Intercept 46.63 0.540 0.05 45.59, 47.65 

Occupancy −0.036 0.010 0.001 −0.059, −0.015 

Note: BCI is the Bayesian credible interval, Std. stands for the standard deviation of the posterior distribu-
tion; MC error represents the Monte Carlo error. 

 
offset condition. A similar pattern was seen during the evening peak hours. 

Figure 5 illustrates the drawn samples for the morning peak hours established 
in the analysis. The drawn samples were obtained by discarding the first 10,000 
iterations and using the next 10,000 iterations for inference of the posterior dis-
tribution. The inference iterations were thinned by 10 to reduce autocorrelations 
between samples. As indicated in a figure, left column plots show kernel densi-
ties of the marginal posterior distributions of the random variable. Moreover, 
the graph shows three clusters of traffic speed and occupancy relationship, 
which are clearly separated from one another. The p, alpha, and beta_1 random 
variable correspond to the mixture weight, GLM parameters for constant and 
occupancy respectively. On the other end, sigma represents the variability of 
occupancy around the mean. In the right column figures, the Markov Chain 
sampling paths in sequential order are presented. Based on the figures, we may 
say that the chains are quite stable with respect to variability suggesting that 
convergence of the random variables was achieved. 

The results of mixture components show that the morning peak hours re-
vealed a higher proportion of free-flow speed data (60%) followed by 27% for  
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Figure 5. Posterior predicted clusters estimated by 10,000 iterations for the morning peak hours. 
 

congestion onset/offset speed and congested speed being the least (13%). On the 
other hand, evening peak hours indicated a higher percentage of data in conges-
tion onset/offset (nearly 89%) with the least data in the congested state (0.43%). 
Comparatively, the morning peak hours experience more congestion than even-
ing peak hours (Figure 6). These findings are also consistent with the summary 
analysis of the hourly speed distribution presented in Figure 3. In practice, it is 
indicating that the majority of the traffic travels southbound in the morning and 
northbound in the evening hours resulting in southbound evening peak hours 
being less congested. 

Figure 7 shows histograms of traffic speed along with predicted posterior 
density. This figure shows that data, kernel density, and predicted posterior den-
sities are close to one another, suggesting that mixture of the normal distribution 
can accurately estimate the distribution. Further analysis of the figure, the morn-
ing peak hour shows clearly the three clusters of the traffic condition. On the 
other end, due to low congestion data point on evening peak hours, the three 
clusters are not clearly visible in Figure 7(b). 

Traffic State Cut-Point 

To assess the effectiveness of the change-point detection (BCD) approach, the 
study started with testing the model using simulated data prior to modeling traf-
fic dataset. The results were reasonable given that the estimated parameters were  
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Figure 6. Estimated weight of the mixture components. 

 

 
(a) 

 
(b) 

Figure 7. Posterior predicted clusters with three mixture components. (a) Morning peak 
hours; (b) Evening peak hours. 

 
close to the actual parameters. Then, the developed model was applied to traffic 
data to detect the speed threshold values. Figure 8 shows the results of analysis 
using this approach. 

Figure 8 shows 45 miles per hour (mph) and 64 mph are threshold values for 
congestion and free-flow speed during morning peak hours, respectively. During 
the evening peak hours of the same traffic direction, the cut points were esti-
mated at 48 mph and 66 mph for congested and free-flow traffic conditions, re-
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spectively. To clarify these values how they appear in the speed distribution, 
Figure 9(a) gives a graphical representation of the cut-point speeds. Based on 
the results in Figure 9 it can be said that the estimated values are close to the 
observed separation points of the mixture components of the traffic speed dis-
tribution. 

 

 
Figure 8. Estimated threshold values of the states. 

 

 
(a) 

 
(b) 

Figure 9. The cut-point of the traffic states during the morning peak hours. (a) BCD- 
model results; (b) Misclassification error method-model results. 
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Using the classification error method, the morning peak hours indicated 47 
mph speed for congestion and congestion onset/offset cut-point value while the 
free-flow condition was estimated to have a speed greater than 64 mph (Figure 
9(b)). The model results for the evening peak hour, on the contrary, failed to 
identify the congested state cut-point speed. This may be due to having a few 
(only 0.43%) speed records for congested state condition (Figure 7(b)). This 
might have affected the analysis of cut-point using this method. 

Comparing the estimate from the classification error method and BCD me-
thod, the threshold values are close to one another with a smaller difference. 
Moreover, these findings are consistent with findings reported in the literature. 
For instance, a research conducted by [15] used classification error method to 
define threshold speed for congestion condition. Although the study considered 
only two states, i.e., congested and non-congested, the finding for the threshold 
is estimated at nearly 56 mph, which is close to our model findings. 

6. Conclusions 

The main objective of this paper was to provide a quantitative analysis of the 
traffic congestion using mixture characteristics of the traffic speed distribution. 
In the modeling process, each speed record was assumed to come from the hid-
den traffic state, which is linearly related to the traffic occupancy. The study used 
the Bayesian Dirichlet Process Mixtures of Generalized Linear Models (DPM- 
GLM) to achieve this task. Furthermore, the study used Bayesian change-point 
detection (BCD) approach to estimate the possible threshold speed value for the 
established states, which separates the states into homogeneous groups. In addi-
tion, the classification error method that minimizes the error in each mixture 
component was used for the purpose of comparison with BCD results. 

To accomplish the study, data collected from the Interstate 295 freeway cor-
ridor in Jacksonville, Florida were used. The archived traffic data used in the 
analysis were collected in the corridor using microwave vehicle detectors (MVD) 
and were aggregated at a 15-minute interval. The data gathered were collected 
for the period of January 1, 2015 through December 31, 2015. 

According to the information criteria analysis, three traffic states were identi-
fied as the optimal number of mixture states that provide a better trade-off be-
tween model complexity and accuracy in prediction. These states correspond to 
free-flow, transitional flow condition (congestion onset/offset), and the con-
gested condition. The results of mixture components indicated that the propor-
tion of congested speed is greater for the morning peak hours (13%) compared 
with the evening peak hours. Furthermore, congestion onset/offset speed and 
free-flow speed were estimated with the highest proportion among the compo-
nents during the evening peak hours and the morning peak hours, respectively. 
The change-point detection approach demonstrated that it can be used to esti-
mate the cut-point speed in order to classify different traffic states. In the model 
results, 47 mph and 48 mph are indicated as speed for congestion and conges-
tion onset/offset cut-point value during the morning peak hours and evening 
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peak hours, respectively. The free-flow speed is estimated at the speed greater 
than 64 mph and 66 mph for morning peak hours and evening peak hours, re-
spectively. 

The proposed approach can be used to identify accurately clusters of 
low-speed regimes to better detect congestions. The approach can be used both 
in a retrospective analysis of historical data evaluation and prospective evalua-
tion to identify congestions in real-time. Practically, dissemination of this in-
formation to the public is very important so that regular and non-regular com-
muters can make well-informed decisions in order to avoid delays and conges-
tion. 

7. Limitations and Recommendations 

It is important to note that the data used in this study were aggregated at 
15-minute intervals. It is not clear whether similar conclusions can be genera-
lized to other time intervals (such as 5-minute, 1-hour etc.) of data aggregation. 
Future studies may consider using different time interval in the analysis. Fur-
thermore, this study focused on evaluating the impact of traffic occupancy in 
characterizing traffic congestion. However, there are other factors that influence 
traffic conditions; therefore, evaluating the impact of other time-varying factors 
such as the effect of incidents, vehicle mix, weather, driving characteristics and 
other factors should be considered in future studies. It is also recommended that 
this methodology be extended to a longer corridor and large-scale road net-
works. 
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