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ABSTRACT 

Feature detection in chemical sensors images falls under the general topic of mathematical morphology, where the goal 
is to detect “image objects” e.g. peaks or spots in an image. Here, we propose a novel method for object detection that 
can be generalized for a k-dimensional object obtained from an analogous higher-dimensional technology source. Our 
method is based on the smoothing decomposition, Data = Smooth + Rough, where the “rough” (i.e. residual) object 
from a k-dimensional cross-shaped smoother provides information for object detection. We demonstrate properties of 
this procedure with chemical sensor applications from various biological fields, including genetic and proteomic data 
analysis. 
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1. Introduction 

Numerous chemical sensor platforms and technologies 
require image analysis techniques to isolate the signal from 
the associated noise in the sensor. In a one-dimensional 
chemical sensor setting, for example, several technolo- 
gies produce spectra where scientists can gain informa- 
tion from associated peaks, or grayscale images where 
the features appear as streaks or lines. Meanwhile, in a 
two-dimensional setting, associated technologies produce 
images whose features are spots. Such image analyses 
usually involve methods where the goal is to identify and 
quantify the size of an image feature or object, i.e. fea- 
ture detection and quantification. 

Feature detection in multi-dimensional images is an 
area of great interest in a variety of applications, ranging 
from astronomy to proteomics [1-7]. Proposed methods 
employ image segmentation techniques such as water- 
shed methods, thresholding operators, and wavelet recon- 
struction methods to locate the features contained in a 
one-dimensional or two-dimensional image. Further, fea- 
ture detection has a growing body of research in larger 
high-dimensional datasets, as well; see, for example, [8, 
9]. The algorithms and methods proposed, however, us- 
ually apply solely to the application and technology of 
interest and may not be applicable to images of other 
forms or varying dimensionality. 

Determining the locations and boundaries associated 

with various chemical sensor features has been a problem  
considered by computer scientists and engineers (under 
the guise of image analysis), as well as mathematicians 
and statisticians (via mathematical morphology). Mathe- 
matical morphology (MM) is the science of analyzing 
and processing geometric structures (e.g. local maxima) 
in digital images via various processing techniques (e.g. 
local maxima) in digital images via various processing 
techniques [10-15]. Examples of common MM functions 
include opening, closing, thinning, binning, thresholding, 
and watershed methods, and have been employed in nu- 
merous applications including pedestrian detection [16], 
tumor mass detection [17], and facial feature detection 
[18,19]. A key component in MM lies in the choice of 
structuring element, i.e. the shape used to interrogate the 
image; its two main descriptive characteristics are its 
shape and size. In digital images, the structuring element 
scans the image and alters the pixels in its window con- 
tent using basic operators similar to Minkowski addition. 
Since the goal is commonly to smooth images by remov- 
ing the statistical noise, the usual practice is to choose a 
window which is (hyper-) cubical or (hyper-) spherical. 
Since our goal is feature detection rather than data smoo- 
thing, we instead propose a MM technique with a “cross” 
shaped structuring element in conjunction with residual 
analysis to aid in bump finding in chemical sensoring 
images. We have found that, by choosing the window to 
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be (hyper-) crossical (i.e. shaped like a multi-dimensional 
cross), the resulting residual image also contains crosses 
whose centers identify the locations of local maxima. 

This paper combines aspects of feature detection, data 
smoothing, and residual analysis to develop a new bump 
detection method for not only one- or two-dimensional 
images, but k-dimensional images for any . 
Thus, not only is this method straightforward, but it can 
also be applied universally to higher-dimensional images, 
providing researchers with a detection and quantification 
method for any chemical sensor technology whose fea- 
tures of interest are bumps. 

= 1,2,k 

2. Theoretical Model 

In our method, a specialized median (referred to hereafter 
as an s-median) smoother is developed, where the s-median 
determines the median associated with the intensity va- 
lues that lie spatially in the cross-shaped structuring ele- 
ment. Consider a k-dimensional (kD) image represented 
by  kI x , where x is a point location in the Cartesian 
coordinate system. We let ,k c  denote the kD smoothed 
image obtained by using an s-median operator with 
“arms” of length  on 

S

kc I ; window size examples are 
provided in Figure 1. 2,1 , for example, refers to the 
smoothed image that results from applying the the 5- 
pixel cross (see Figure 1(a)) s-median structuring ele- 
ment across 2

S

I . In this case, the center pixel within any 
 window in 23 3 I  is replaced with the associated 

median value from the 5-pixel cross. Similarly, applying 
a 9-pixel cross s-median (as shown in Figure 1(b)) 
across 2I  produces . 2,2

After applying this s-median throughout the raw image, 
we examine the associated residual image, , ,

S

=k c k k cR I S , 
to obtain information regarding bump detection and quan- 
tification. The ,k c  image contains k-dimensional cross 
features, where associated image local maxima identify 
the associated bump center, and local minima outline the 
shape of the bump. We can use this information, for 
example, to identify peaks and their associated area in 
one-dimensional applications involving spectral data, or 
spot detection and quantification in two-dimensional im- 
ages. Sections 2.1 and 2.2 introduce the theoretical un- 
derpinnings for our method and demonstrate the proce- 
dure for continuous and discrete functions, while Section 
2.3 extends these ideas to study the behavior of the s- 
median operator in the presence of noise. 

R

2.1. Computation on Continuous Functions 

This section develops the theoretical underpinnings for 

,k c  and, subsequently, ,k c  in the context of con- 
tinuous functions. We derive ,k c  for 1D and 2D the- 
oretical models by characterizing the the median operator  

S R
S

 
(a)                            (b) 

Figure 1. Examples of window shapes in 2D: Window sha- 
pe, often called the structuring element in morphology, re- 
fers to the pixels used to compute the median for smoothing. 
The window shapes are shaded in grey. (a) A 3 × 3 s-median 
cross window consisting of five pixels. This s-median re- 
places the intensity in pixel location “5” with the median 
intensity of the grey pixels (i.e. in locations 2, 4, 5, 6, 8); (b) 
A 5 × 5 s-median cross window consisting of nine pixels. 
The s-median image in pixel location “13” is obtained by 
computing the median intensity of the grey pixels (locations 
3, 8, 11, 12, 13, 14, 15, 18, 23). 
 
via the function mapping between input and output va- 
lues. 

2.1.1. One-Dimensional Continuous Functions 
Let  X x  and  X x  denote the cumulative density 
function (cdf) and probability density function (pdf), 
respectively, for the a random variable X  evaluated at 
the point x ; analogously, we denote the cdf and pdf for 
a random variable  at point . Let  
be a function that maps from the support set  (for the 
random variable 

Y y   :G x  


X ) to the support set  (for the ran- 
dom variable Y). For our applications,  G x  is ed 
from an optical device such as a charge-coupled device 
camera or laser scanner. Our goal is to obtain an ex- 
pression for 


 obtain

 Y y d thus Y [an y ich then de- 
termines the median of Y , Y

] wh
M , i.e. YM  satisfies  

  = 0M .5Y Y . Note that, in our notation for one di- 
mension, 


   ,=Y k cM x S x  at a given location, x. Thus, 
for simplicity, we will denote ,k c  as  xS  S x  (or 

YM ) with the implicit understanding that  S x  (or 

YM ) is also a function of k and c. 

2.1.2. Monotone Case 
Consider the case where  is strictly mono- 
tone on the interval 

 =Y G X
 n0 ,x x . Then, for  increasing,  G

 

 
     

 

1
0

0
0

0

1

=

0 ,

n

Y n
n

y G x

G y x
y G x y

x x

y G x



 


 
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 

G x  
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while, for  decreasing, G

 

 
     

 

0

1

0
0

1

=

0 .

n
Y n

n

n

y G x

x G y
y G x y

x x

y G x



 


 


 

G x

y

 

Strict monotonicity in  implies its invertibility for 
any , i.e. ; in particular, by 
definition of 

G

Y Xy     1=y G 
YM , we have 

    = 1 2 =Y Y X YM G M 

X

1 . Hence, in the mono-  

tone case, , where YM G M XM  denotes the me- 
dian associated with the random variable X , and “  ” 
denotes statistical equivalence as defined in [20], p. 36. 
Thus, the median for  is equivalent to the function 
evaluated at the median for 

Y
X ; in short, 

.  S x M  = =Y XG M

2.1.3. Piecewise Monotone Case 
For the piecewise monotone situation, we define 

 = : > 0XX x x   as an open interval  0 , nx x  with 

n . Let , , be the smallest 
collection of disjoint open intervals such that G  is 
strictly monotone on each 

 1= ,i i iA x x  = 0, , 1i n 

iA . By definition,  is stri- 
ctly monotonically increasing on 

G

iA  if, for any two 
values  , 1 2 ix x A  such that 1 2x x ,    1 2G x

i

< G x  
holds. Analogously, G  is strictly monotonically de- 
creasing if G x  for    1 G x 2 1 2,x x A  such that 

1 < 2x x
 i

. Note that continuity may not be enough for the 
A  to be countable, where we define countability as in 

[21]. Further, we assume strict monotonicity in the 
function, . We define the interval,  G

    
    

1

1

, ,
=

, ,

i i

i

i i

G x G x for G increasing on A
B

G x G x for G decreasing on A









,

,

i

i

i

 

where . While the sequence    =iB G A  iA  parti- 
tions ,  does not necessarily partition ; e.g., 
see Figure 2, where  and 

  iB



3= x= 1,2   G x x . 

Let 
i

, i.e. the    =G x G x I  xi A iA th decompo- 
sition of , and  G x I  defines the indicator function of 

iA  by  (0) if   = =A ii
I x I x A  1 x  is (not) in the 

interval  1,i ix x  . By definition,  iG x  is strictly mo- 
notone. Thus, for x X , we have , 
implying that any function  can be decomposed into 
the sum of its strictly monotone components, . 
Accordingly, we see that 

  =G x  1

=1

n

ii
G x



iG
G

    1 1 1
=0

0

=
n i i

Y X ii
n

x x
y G y

x x
   

    
  , where, for   iG

increasing on iA , 

 
x 

Figure 2. Partition: G(x) = x3 – x, where  ,1 2X   . The 

dashed horizontal lines denote the {Ai} partition of the x 
axis, while the dashed vertical lines denote the {Bi} intervals 
on the y axis. 
 

  
 

      
 

1

1
1

1
1

1

,

0 ,

i

i i
X i i i

i i

i

y G x

G y x
G y y G x G x

x x

y G x









 


   
 

 

and, for  decreasing on iG iA , 

  
 

      
 

1

1
1

1
1

1

,

0 .
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i i
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

 

 

For all but the most simple functions, there is no 
closed form solution by which to define YM . Never- 
theless, the above equations will allow for the calculation 
of YM  and thus  S x  using computational methods. 

2.1.4. Two-Dimensional Continuous Functions 
In the 2D continuous case, we introduce the function 

 = ,Z G x y  where the goal is to obtain an expression 
for  Z z . From standard probability theory such as in  

[22], we have    ,= ,Z X YAz
z f x y x  d dy , where  

    = , : ,zA x y G x y z  and , ,X Y f x y  is the joint 
pdf for X  and . Note that this is the general case for 
obtaining the cdf of 

Y
Z  in terms of X  and . For our 

specialized median, however, our sample space for 
Y

X  
and  must be defined in terms of another parameter, 
say , where  controls the width of the smoothing 
window in each dimension. Figure 3 illustrates an ex- 
ample sample space over which to compute 

Y
w w

 zZ . 
Since it is difficult to generalize , ,X Y f x y , we cannot 
generalize this situation to provide an explicit calculation 
for the median of  ,Z x y . Nevertheless, computational 
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associated with  G X  and its impact on the s-median. 

 

2.2.1. One-Dimensional Discrete Functions 
Let  X x  and  X x  denote the discrete cdf and 
probability mass function (pmf), respectively, for the 
arbitrary random variable X  evaluated at the point x . 
Let   :G x    be as defined above. The calcula- 
tion of the s-median proceeds by assuming ~X  Dis- 
crete Uniform( ) as defined in [23], and then comput- 
ing 

N
 Y y  based on the function, . Thus, the 

machinery developed in Section 2.1 can be applied to 
compute 

G X 

Figure 3. 2D continuous sample space: The sample space 

ethods can be used to compute MZ and thus 

YM . 
for the random variables in the 2D continuous setting. This 
sample space allows us to compute the cdf for Z and thus 
the specialized median. The sample space is defined in 
terms of the parameter W. 
 

 yWe can analogously represent Y  using discrete 
random variables X  and Y  as we did for the conti- 
nuous case, namely 

      
1

1

=0

= ,
n

Y i
i

iy Pr X G y Pr X A


      ,S x y . m

where  indicates probability. If we assume that X~ 
Discrete Uniform( ), then 

Pr
N2.2. Computation on Discrete Functions 

 function Let  G X  denote a “discrete” function, i.e. a

  
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1 ,

i

i

i i

i

G y

G y
Pr X G y G y N

N
G y N




 


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
  

1

  








 



 

with discrete/countable realizations from the continuous 
function  G X . By definition, G  is a function that 
maps from upport set   (of the discrete random 
variable X) to the support set  (for the discrete random 
variable Y). This section considers computational results 

 the s  


 

 

Figure 4. Rk,c for an image I of a single mountain: (a) An image of a 1D mountain generated by I1(x) = –x2 + 400, where x con-

age of a two-dimensional mountain generated by

sists of the integers between –20 and 20 (i.e. 41 points); (b) R1,1, i.e. the residual image associated with I1 when applying a 
smoothing window of three points (c = 1). All of the residuals equal 0 except for the residual intensity at the center of the 
mountain; (c) R1,7, i.e. the residual image associated with I1 when applying a smoothing window of 15 points (c = 7). The re-
siduals are greater than 0 at the location of the top of the mountain and several adjacent locations; (d) A 100 × 100 pixel im-

   
  

 2 2

1 250 50x x  

“cross” is clearly present in this image; (f) R2,7, i.e. the residual image associated with I2 using a 15 × 15 s-median where the 
smoothing window contains 29 pixels (c = 7). Here, the cross is wider than that appearing in R2;2, but the arms are not as long. 

 
 
 

2 6500 * exp
150

I x   ; (e) R2,2, i.e. the residual im-

age associated with I2 using a 5 × 5 s-median where the smoothing window consists of nine pixels (c = 2). The characteristic 
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deno
For the special case of a strict monotone discrete fu

tion G  on the full interval  1, , N ,  
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 Y y  
city for 

does not depend on the direction of monotoni- 

Functions 
ple space 

G . Figures 4(a)-(c) show the images from our 
technique pplied to a simple one-dimensional discrete 
piecewise monotone function. 

2.2.2. Two-Dimensional Discrete 

 a

For the 2D discrete case, we define the sam
with the following definition. 

Definition 2.1 Let X  be a discrete uniform on 
1 e, N , Y  be a discret iform on  1, N , and (x*, y*)  
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spectively. Then let   be of the form,
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 un
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
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Figure 5 illustrates the associated sample space. With 
this definition, the derivation of the s-median for Z  
follows analogously to the 2D continuous case (which  
analogous to the 1D case). 

Let :G      define a mapping from the su- 
pport sets 

is

  and 
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Figure 5. 2D discrete sample space: The discrete niform  u
random variables in the 2D setting. The center point is at 
the coordinate, (x*; y*). 
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defines the cdf of Z .
since

 Nicely, all of the above quantities 
can be computed  we specified the distributions for 
X  and . Note t e zero quantity in the third line is due Y h

ofto the intersection  the sets containing only the single 
point  ,x y  . The  jPr Y B  and  iPr X A  

end on he length of dep  t jB  and iA , respectively. 
Similar to the 2D discrete setting, there is usually no 

closed form solution for ZM  and thus t the 
be determined numerically. Fig es 4(d) ) 

show the imag

  ,S x y
ur

, bu
solution can -(f

es from our technique applied to a simple 
tw

 
extended to higher dimensions ) as demonstrated in 

ro
n light of Gaussian noise. In the 1D noise-free 

it can be shown (with 
 for any 

o-dimensional discrete piecewise monotone function. 

2.2.3. Extension to Larger Dimensions 
In this manuscript, we directly show the calculations for 
one and two dimensions. However, our method can be

( 3
[24]. 

2.3. Gaussian Noise Setting 

In this section, we examine the p perties of our proce- 
dure i
setting for image , ,=k k c k cI R S
our proposed methods) that 

, 

1,   > 0cR x c  
when x  is the location of the absolute maximum, and 

1, = 0cR  when the sequence contained in each dimen- 
sion of the smoo  is monotone. Further, 
under certain circumstances associated with 1D images, 

thing window

 1, < 0cR x  when x  is the location of a local minimum 
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in our image; see [24] for details. The following exam- 
ples, however, explore an ,k cR  image when noise is 
introduced in the raw image, kI . As expected, it will 

detection in ,k cR  more difficult where the 
signal-to-noise will be important. 

Consider adding independ and identically distri- 
buted (i.i.d.) Gaussian noise to the 1D monotonic sequ- 
ence   

make spot 

ent 

I x , where = ,1,x n . Let   = i iI i g N , 
where ig  denotes the true signal at location i , is  
equals the step size at i  in the monotonic sequence 
such that 1=i iig s g  , and  ~ 0,iN N i   denotes 
normally ributed n  
deviatio

 dist
n 

oise of mean zero and standard
 . We fix =is s  for our examples suc  t  

the signal-to-noise ratio (
h hat

s  ) remains constant within 
each simula

We examine the case when  1, = 0cR x  at an arbi- 
trary location 

tion. 

x  since own in [24], this may in- 
dicate a strictly increasin  decreasing sequence. In 
certain settings, a

, as sh
g

closed-for pute 
th

 or
m sol ution exists to com

e is zero (e probability that the R  imag  = 0Pr R ) 
over a monoton sequence with i.i.d. noise. In most cases, 
however, it is not possible to compute a closed-form 
solution for  = 0Pr R ; for notational simplicity, we 
use R  rather than  R x Figure 6 shows th l 
estimate for  1, = 0cPr R  over a monotone sequence 
for different values of c  in the 1D situation. Note that 
the 

e 

. e empirica

x -axis is f stepsize to standard deviation 
of th oise, and that each curve begins at 1/(2c + 1) and 
asymptotes at al-to-noise ratio, 

th

1. 

e ratio 

The 

o

sign
e n

s  , is the 
critical value in evaluati g how 1,cR  operates in a noisy 
envi nment. If the step size is 0, then each point in the 
window is equally likely to be the median, hence  

 

n
ro

1,

1
= 0 =

2 1cPr R
c 

 for any c when = 0s . As the 

step size increases relative to the standard deviation of 
the noise, naturally for any c , we expect the prob

  

ability 
to converge to one. ee m
images,  for 

 in the s   increases hence there 
ar

ro at that l

 Hence, for noise-fr onotone 
all c . 1,

In the presence of noise, however, the monotone signal 
becomes contaminated such that  1, = 0cPr R  decreases 
as c  increases. Intuitively, as c  increases, the number 
of points moothing wi

= 0cR

ndow

 

e more “opportunities” for other points to be the me- 
dian, thus making the residual nonze ocation. 

Given the local maximum at =x p  in a noise-free 
1D spot (mountain),  1, > 0cR p . In the presence of 
noise, we can estimate (via simulation) the probability 
that the 1D residual image intensity value at the local 
maximum location is positive; i.e e can estimate 

  1, > 0cPr R p  when i i

., w
   =I i g N  and  

1

1

, <
=

, ,
i

i
i

g s i p
g

g s i p





  

 

Figure 7(a) shows  at   the estimated   1, > 0cPr R p

 

Figure 6. Estimated probability of R = 0: For different 
values of c (which indicate the size of the cross smoother), 
the y axis is the estimated probability that the R image is 
zero over a monotone signal of step size s contaminated 
with i.i.d. normally distributed noise with standard devia- 
tion 3/4. The x axis is the signal-to-noise ratio. 
 

 

 

Figure 7. Estimated probability of R > 0 at a local maximum 
in 1D and 2D: (a) Pr(R1,c(p)) > 0, where p is the location of 
the absolute maximum in a 1D image; (b) Pr(R2; c(p1; p2)) > 
0 for a 2D image, where (p1; p2) represents the location of 
the absolute maximum in the 2D image. 
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the absolute maximum location  as a function of p
s   

from noise for the top two mountains. Recall that, with 
the noise-free single mountain example, we clearly de- 
tected a cross in the rough operator image at the moun- 
tain’s maximum. Further, the size of the observed cross 
was directly related to the operating window. As the 
window size increased, the size of the cross increased as 
well. Consider adding noise to the mountain in Figure 
4(d). Figure 10(a) shows a single mountain with i.i.d. 
N(0, = 200 ) noise added to the intensity at each pixel 
in Figure 4(d). Figures 10(b)-(c) show the associated 

2,cR  images for a = 9c  cross and a = 27c  cross, re- 
spectively. There are several interesting features to note 
in this example. We see the respective crosses associated 
with the smoothing window; however, when using the 

= 9c  arm, it is much harder to distinguish the cross 
from the remaining picture. With the = 27c  arm, the 
cross is more apparent, mainly due to the cross being 
wider tha Figure 10(b). 

To confirm that large values of c more effectively find 
s, Figures 11(a show a sequen three spots 

in order of increasing size with  0, = 48N   noise. 
Figures 11(d)-(f) are the R2,2 images corresponding to 
Figures 11(a)-(c), respectively. Figures 11(g)-(i) are the 

2,3 images corresponding to Figures 11(a)-(c). Figure 
11 demonstrates two important results: (  easier to  

for different values of 1D image. Ana- 
logously, Figure 7(b) shows 

c  in a 

2,   p > 0  
p

cR
n 

Pr
 whe

for a ma- 
ximum location  1 2= ,p p I  

at 
o cal  as the 

2 , as show
creases, th rate in wh

1 als  increases
of the 

is a 2D image. 
For all , the si

signal-to- 
n in Fi- 

ich 
, k = 1, 2. 

size of the 
smoothing window in detecting spots, Figures 8(a)-(b) 
shows a set of four Gaussian spots with different stan- 
dard deviations. Figure 8(c) shows the  image res- 
ulting from the smoother being app gure 8 . 
Now, we add noise to the Gaussian sp wn in  

 G
taini v

oothing windo
 of the no

t at a standard 
deviation of 50, the c

c

k c p
 ratio i

a)

k c p
furth

mulation resu
1  monot

eases, = 1,k
c  in

 converges t
r illustrate the im

lt
ni
. Fur

o 
por

s show th
ly
ther

e 
o

tance 

  , > 0Pr R
noise ncr
gures 7( -(b), as 

  , > 0Pr R
To e

2,4R
lied to Fi

ots sho
(a)
 Fi-

gures 8(a)-(b) where the random (i.i.d) noise added at 
each pixel is distributed according to a Normal distri- 
bution with mean 0 and standard deviation 5, 15, or 50. 
Figures 9(a), (b), and (c) display the residual image 

n in 

spot )-(c) ce of when the smoother is applied to the aussian spots con- 
ng noise with standard de iations of 5, 15, or 50, 

respectively. With a fixed sm w, as the 
standard deviation ise increases, the ability to 
discern he cross decreases. Specifically 

rosses are nearly indistinguishable 
R  

1) it is
 

 

Figure 8. Bump hunting: (a) A 200 pixel × 200 pixel image consisting of four Gaussian spots with different locations and 
scales; (b) The associated perspective plot; (c) The “rough” residual image (R2,4 image) after running a specialized median 
smoother (s-median), S2,4. Crosses are present at the locations of their respective spot centers associated with the spots shown 
in (a). 
 

 

Figure 9. Spot finding as noise increases: (a) R2,9 image associated with Figure 8, where i.i.d. normally distributed noise with 
mean 0 and standard deviation 5 (i.e. N(0, σ = 5)) was added to each pixel in Figure 8; (b) R2,9 image when the noise in Figure 
8 is N(0, σ = 15); (c) R2,9 image when the noise in Figure 8 is N(0, σ = 50). As the standard deviation of the noise increases, the 
ability to detect the cross at each spot decreases. 
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Figure 10. Mountains with noise added: (a) A 100 × 100 image of a 2D mountain where noise is normally distributed with 0 
mean and standard deviation, 200; (b) The associated R2,9 image; the characteristic “cross” is difficult to discern by eye; (c) 
The R2,27 image; the characteristic “cross” is also difficult to detect because of the noise, however it is more detectable than 
the cross in (b). 
 

 

Figure 11. Choice of smoothing operator: A series of Gaussian mountains of increasing size and N(0; σ = 48) noise are shown 
in (a), (b) and (c). The residual images R2,2 from applying an S2,2 operator to (a), (b), and (c) are shown in (d), (e), and (f), 
respectively. The residual images R2,3 from applying an S2,3 operator to (a), (b), and (c) are shown in (g), (h), and (i), 
respectively. The spots are more easily detected using the S2,3 operator (row 3) rather than the S2,2 operator (row 2). 
 
detect larger spots in the presence of noise, and (2) in the 
presence of noise, larger values of c are more effective 
for detecting spots. 

Collectively, Figures 6-11 illustrate the tradeoff that 
must be considered when determining the arm size for 
the s-median smoother. We see that large values of 
are more likely to yield positive residuals at the maxi- 
mum in the I image; however, the residuals associated 

with large values of c are also more likely to be nonzero 
in the presence of noise over monotonic regions. In other 
words, for spot finding, large values of c improve spot 
detection in noisy images, however, it may cause two 
distinct spots to merge into one spot in the presence of 
noise. A balance between these two issues will be critical 
in choosing the optimal c value(s) for peak or spot 
finding (see Section 3.4). 

c  
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3. Results and Discussion 

In this section, we present the results from applying our 
method to biologically motivated chemical sensor array 
data, including mass spectrometry, gel electrophoresis, 
and spotted microarray data. In mass spectrometry, the 
relevant data are represented as spectra where the asso- 
ciated peaks in the intensity plots represent proteins (or 
peptides) present in a sample. Obtaining the location and 
intensity of these peaks aides in identifying sample pro- 
teins for further study consideration. Gel electrophoresis 
data are represented in the form of 2D images comprised 
of protein spots. Again, investigators are interested in 
detecting these features in order to isolate their location 
in the image and potentially extract the associated protein 
sample for further analysis. Finally, spotted microarray 
data are represented as two-dimensional images of spots 
in a 2D matrix structure. Feature detection is key in order 
for the genetic data to be properly summarized and thus 
for these technologies to have utility in diagnosing dis- 
ease or assessing putative biomarkers. 

The code to perform our method is written using 
FIASCO, a collection of statistical software created in 
the Department of Statistics at Carnegie Mellon Univer- 
sity that was originally designed to analyze functional 
magnetic resonance imaging (fMRI) data. The computer 
code used for this work are available upon request from 
the corresponding author. In the following, we demon- 

file protein markers from tissue or 
bo

 thus applying the s-median 
g median to the I image. 

in ) to 500 data points, which corresponds to 
ately a 95 m/z bandwidth. Figure 12(b) shows 

th lting s-median image using the chosen bandwidth; 
 12(c) shows the associated  image. From 

examining the R image, we note that ikes in the ori- 
gi ectrum are preserved, thus ai  in the identi- 
fica of the peak location. Further, the “negative peaks” 
in dual image near the larg e serve to quan- 

k size in a MALDI-TOF im

trophoresis 

An r application of this spot det chnique is on 
im ained from two-dimensi fference gel 
electr resis (2D-DIGE) experi such as those  
 

strate our spot detection technique on the various exam- 
ple sets noted above. 

3.1. Mass Spectrometry 

Matrix-assisted laser desorption ionization time-of-flight 
(MALDI-TOF) mass spectrometry is a technology that 
can be used to pro

dily fluids, such as serum or plasma in order to com- 
pare biological samples from different patients or diffe- 
rent conditions. The output from a MALDI-TOF experi- 
ment consists of a measured intensity for each mass- 
to-charge ratio (m/z) value; see Figure 12(a). The sets of 
expressed proteins are identified within each spectrum in 
order to ultimately determine differentially expressed 
proteins between conditions or samples. See [25] for fur- 
ther details describing the MALDI-TOF technology. 

Our s-median derived R  image can be used to detect 
peaks in MALDI-TOF images and thus locate peptides 
present in the sample. The spectrum for each sample 
consists of a single vector, I,
is equivalent to applying a runnin
This dataset in question was obtained from the Prote- 
omics Core Laboratory at Roswell Park Cancer Institute. 
We use this real data to examine the results of applying 
the s-median to a MALDI-TOF spectrum. In this exam- 
ple, we set this dataset’s bandwidth (i.e. the value of c  

1,cR
approxim

e resu
Figure

nal sp
tion 

 the resi
tify the pea

3.2. Gel Elec

othe
ages obt

opho

1,500R
 the sp

ding

e spik
age. 

ection te
onal di

ments 

 

Figure 12. Mass spectrometry: (a) MALDI spectrum based 
on a tumor sample; (b) S image based on a smoothing win- 
dow of 95 m/z; (c) Associated R image that contains spikes 
at each local maximum in the original image I. 
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described in [26]. The ability to detect spots is crucial 
since missingness in this technology affects downstream 
analysis of detecting differential expression [27]. 

es, we will focus on images For our 2D-DIGE exampl
representing portions of the 2D gels examining morpho- 
genesis in Drosophila obtained from the Minden labora- 
tory at Carnegie Mellon University [28,29]. These images 
are obtained from a charge-coupled device (CCD) came- 
ra and the protein spots in these images allow the resear- 
chers to obtain a protein expression signature of the 
sample under a given condition or given time point. The 
images under study have been normalized according to 
the model described in [26]. The full images are 1024 
pixels 1280 pixels  and densely populated with pro- 
tein spots, making it difficult to observe individual 
protein spots in detail. We therefore focus on a  
50 magpixel  50 pixel  sub-i e to better understand the 
impact of applying the s-median. 

Figure 13(a) shows the protein gel sub-image selected 
for illustration, I , with the associated perspective plot 
shown in Figure 13(b). Figure 13(c) displays the asso- 
ciated residual image, 2,6R . From Figure 13(c), we can 
see the crosses associated with the protein spots shown in 
Figure 13(a). As well, we also see that each protein spot 
is outlined in black since, in the noise-free case, the R  
image is negative at local minima in an image. Thus, we 
use the black outline as a boundary identification tool to 
determine spot size in order to more accurately determine 
summary information and excise the protein sample(s) of 
interest from the gel. In 2D-DIGE experiments, after 
quantification of the protein spots under different chan- 
nels or conditions, similar to gene microarrays, the spot 
ratios are computed and compared to assess the degree of 
differential expression. 

3.3. Spotted Microarrays 

Genetic microarrays are a popular analysis tool to study 

eposited at that location. See [31] for a detailed des- 
cription of the microarray technology, and [32] for an 
overview of the methods used for microarray analysis. 
Pin-based spotted microarrays have the probe material 
deposited on the glass slide via a microscopic pin tip. In 
the pin-tip based microarray technology, image analysis 
software is required to summarize the signal for a given 
spot on a chip. In this situation, we can examine the R 
image obtained from a pin microarray image for proper 
identification of spot locations and spots sizes to aid in 
spot quantitation and data summarization. Note that this 
technology can be extended to study proteins as in [33] 
and other biologically active molecules where antibodies 

can be developed and spotted to the chip and used as 
capture molecules. Thus, this technology has widespread 
potential as a chemical sensor panel to monitor biological 
activity (e.g., see [34-36]). 

Figure 14(a) shows an example of a microarray image 
obtained from a cell cycle yeast experiment [37]. Similar 
to the gel electrophoresis example, Figure 14(b) ex- 
amines a subsection of the microarray chip shown in Fi- 
gure 14(a). Figure 14(c) shows the associated residual 
image ( ) obtained from applying an s-median to Fi- 
gure 14(b) closer inspection of Figure 14(c) reveals a 
black spot within the center of each microarray probe. 
This is an interesting phenomenon attributed to the 
manufacturing of the microarray. Occasionally, the im- 
pact of the pin onto the microarray chip displaces the 
probe material and causes a “doughnut” shape probe hy- 
bridization profile. The hybridization spot has a “hole” in 
the middle since there was little or no probe material 
deposited to hybridize. This effect is not obvious in Fi- 
gure 14(b) but is clearly distinguished in Figure 14(c)- 
(d). This kind of information can be used to improve the 
estimation of spot intensity in the microarray image. The 
spot intensity estimates are used as input for downstream 
processing, ultimately, yielding the expression value for 
each probe representing the amount of hybridized genetic 
material. 

3.4. Discussion 

The classic equation, , is well 
known to statisticians st ques or 
smoothing methods for datasets. In this manuscript, we 
demonstrate an application of this equation, resulting in a 
new operator where the residual image derived from a 
novel smoother can be used to locate spots or mountains

ted via 
ou

. Furth

15(c) displays the results when a median smoother with a 

genetic changes associated with diseases such as breast 
cancer [30]. The laser scanner images obtained from a 
microarray experiment consists of a series of spots indi- 
cating the measured fluorescence of a probe (or “gene”) 
d

2,6R
. A 

=rough data smooth
udying regression techni

 
r in an image. This method combines the residual operato

from statistics with the structuring element (cross-shaped 
window) in the field of mathematical morphology. Major 
advantages of our method include fast running time, 
broad application to many image types, and universal 
spot detection regardless of scale. That is, irrespective of 
a spot’s size and height, its location will be detec

r method. This aspect alleviates the need to alter or 
change the grey scales in an image when searching for 
spots of varying intensities. 

As demonstrated, this method uses the s-median ope- 
rator to smooth images. Other window operators can be 
considered, however they result in different residual 
image implications. For example, if a mean cross (i.e. “s- 
mean”) smoother is used on the Gaussian mountain in 
Figure 15(a) rather than a median smoother, the residual 
image does not reveal the shape of the mountain; see, e.g., 
Figure 15(b) er, the shape of the smoothing win- 
dow is also a critical component of consideration. Figure 
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s 50 pixel × 50 pixel image is a subimage of the Drosophilia 
he associated perspective plot for the data in (a); (c) The 
hich indicate protein spots in the image. There is also a 

th a black outline around several of the spots. 

Figure 13. 2D-DIGE images: (a) Subset of 2D-DIGE image. Thi
proteome gel, normalized according to the model in [26]; (b
associated R2,6 image. There are several “crosses” apparent, 
“speckled” black and white noise pattern present in the image 
 

) T
w

wi

 

p Figure 14. Gene microarray: (a) Full image of a microarray
showing roughly 25 spots; (c) R2,4 image resulting from the 
center of each spot indicate local minima. Common phenomen
probe material caused by the pin containing the probe ma
“donut” pattern in the perspective plot of the microarray 
perspective plot of the data shown in (c) further detailing the d
 

 chi
s-m
a 

ter
im
on

containing roughly 4000 spots; (b) Microarray subimage 
edian smoother applied to (b). Note the black pixels at the 

of pin microarray images are local minima due to the lack of 
ial impacting against the glass slide. This impact causes a 
age. This donut pattern is clearly recognized in (c); (d) A 
ut pattern. 

 

Figure 15. Other measures: The results from different variations on the s-median. (a) A Gaussian spot image, I, of dimension 
50 × 50; (b) The R2,2 image obtained from using an s-mean rather than s-median on the image in (a); (c) Associated residual 
image obtained from (a) using an s-median, where the window sequence is a 5 pixel × 5 pixel box shape containing all 25 
pixels. 
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grid or “box” shaped window sequence is used. Here, we 
now obtain a residual image that looks like a starburst 
instead of a cross. As a result, the spot center is now 
potentially more difficult to identify. The shape of the 
smoothing window (cross vs. box) and the summary 
statistic used (median versus mean) thus affect the R 
image and the ability to detect the mountains in an 
image. 

The issue of rotation invariance is an important con- 
cept within mathematical morphology operators used in 
image detection. Rotation invariance implies that the 
resultant image does not change when arbitrary rotations 
are applied to its input argument. In general, our spot 

nger rotation invariant. Figure 16(a) displays a biva- 
riate normal density with a correlation of 0.50 between 
the two variables. Figure 16(b) is the residual image 
from our proposed method. Meanwhile, Figure 16(c) is 
the result when employing a rotated version (45 degrees) 
of the structuring element used in Figure 16(b). Simi- 
larly, Figure 16(d) is the rotated version (90 degree) of 
Figure 16(a) with the corresponding  images shown 
in Figures 16(e)-(f). Our proposed spot finding method 
is not rotation invariant since the images in Figure 16(b) 
and Figure 16(e) are clearly different. Although our pro- 
posed method is not rotation invariant, it is possible to 
rotate our structuring element (cross) to align with the 
major and minor axes of a correlated spot as in Figures 
16(c) and (f). Both versions of the residual images 
clearly show a cross shape and provide utility in terms of 
locating the spots in the image. Future work will further 
explore the characteristics of the cross in each residual 
image in order to detect spots in correlated images. Note, 
however, in our biological applications (e.g. 2D-DIGE), 

orrelation within a given spot. 
When using the s-median operator for spot finding, the 

major consideration is the arm-length size  associated 
with the smoothing window, or alternativel e number 
of pixels included in the smoothing windo ructuring 
element). The s-median smoother natur  removes 
noise from 

finding method is rotation invariant for the Gaussian 
spots with zero correlation (e.g., spots of the type shown 
in Figure 8). Interestingly, if we induce any nonzero 
orrelation in the spot, the spot finding method is no c

lo

R

it is reasonable to assume that there is negligible cor- 
relation within a spot. For example in a DIGE image, the 
spots are created by electrophoresis in two dimensions 
where the electrophoresis for each dimension is per- 
formed separately. Similarly in pin-based microarray 
mages, it is reasonable to assume that there is negligible i

c

c
y th

w (st
ally

I , hence the size of the smoot ng window 
essentially des the amount of smoothi o apply to 
the dataset. From Figures 11 and 17, the  is 

small will undersmooth the image and cause spurious 
spots due to noise to appear as real spots. Since the 
choice of  is essentially choosing a smoothing para- 
meter, th re several available methods to consider 
when choo ng an optimal value for c. The general me- 
thod fo g smoothing parameters is based on 
cross valid  algorithms described in [22]. 

The optimal choice of c is related to the larger sta- 
tistical subject of bias-variance tradeoff. Choosing c too 
small lead a largely variable residual image (missing 
small spot while choosing c too large leads to a re- 
sidual im with a large bias term (too many spurious
spots). Similarly, the optimal choice of c is related to se

k) can deter- 
mine “opt al” smoothing strategies, while other proce- 
dures det ine smoothing parameters from examining 
figures suc  as mode trees [40] or estimates of the mean 
squared [41]. To improve the ability of our MM 
operator i e presence of noise, we have explored app- 
lying stan d image smoothing techniques to the image 
prior to ap ying the MM filter. Future work will exa- 
mine the utility of applying “pre-smoothers” to images 
before ap ng MM operators. In addition to examining 
pre-smoot rs, we will also examine data driven cross 
validatio mes for choosing an optimal value of c for 
specific image applications. In the same way we use pre- 
smoothe  smooth the image prior to analysis, we will 
also explo smoothing the resulting residual image. 

A majo ncern in proposing image analysis software 
algorithm volves performing the comparisons among 
competing methods. Unfortunately, due to the cost of 
these technologies and the lack of a gold standard for 
measuring e signal of the chemical sensor, it is difficult 
to design statistically appropriate benchmarks or quality 

tions, the success of our proposed method 
will be de ndent on the choice of smoothing parameter, 
c. It is ou e the scope of this manuscript to perform a 
thorough parison of competing spot finding algori- 
thms agai a set of noise distributions. For future work, 
we propo erforming comparisons such as those in [42, 
43] to establish conditions in simulated and real datasets 
where our ethods are superior to competing methods. 
The main al of this manuscript is to establish a new 
method fo spot finding in images and demonstrate it

hi
ng t

 choice of 
 deci

c
critical, since choosing c  too large will oversmooth the 
image and blend spots together, while choosing c  too 

performance on a variety of different biological images 
derived from chemical sensors. 

 c
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veral other problems in statistics, the optimal choice of 
bandwidth in kernel density estimation [38], and the 
amount of times to smooth a dataset [39]. Various 
strategies that estimate error quantities (ris

control studies to assess these image analysis techniques 
for a given chemical sensor. Although it is relatively 
simple to simulate “bumps” or mountains in an image, 
the difficulty arises in deciding the type of noise to im- 
pose upon the simulated images. In the presence of most 
noise distri

s 
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density with a correlation of 0.50; (b) The resulting residual 
n the structuring element in the residual operator used in (b) 
); (d) a 90 degree rotation of the spot in (a), i.e. a spot with a 
. The resulting residual image when the structuring element 

Figure 16. Rotational invariance: (a) A scaled bivariate norm
image using a R2,4 operator; (c) The resulting residual image wh
is rotated 45 degrees to align with the major axis of the spot in
correlation of –0.50; (e) The residual image using a R2,4 opera
used in (e) is rotated 45 degrees. 
 

al 
e

 (a
tor

 

 two relatively close mountains; (b) The R2,5 operator image 
resence of two relative maxima in the image; (c) The R2,27 
ountains are “blurred” into one cross. 

Figure 17. Two nearby mountains: (a) Perspective plot showi
associated with the image in (a). The two crosses indicate th
image obtained from the image in (a). In this situation, the two 

ng
e p
m
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4. Conclusion 

This manuscript develops a new method for spot finding 
and illustrates the technique’s great utility and applic- 
ability within several chemical sensor datasets such as 
mass spectrometry spectra, gel electrophoresis images, 
and microarray images. This method can be easily ex- 
tended to mountains in k dimensions and can be extended 
to further quantify the amount of signal present in other 
emerging chemical sensors with Gaussian profiles. 
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