

Forecast of China Population under Different Fertility Policy

Jun'e Liu, Lei Chai, Zina Xu

The School of Information, Beijing Wuzi University, Beijing, China Email: 884507392@qq.com

Received 14 June 2016; accepted 24 July 2016; published 27 July 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). <u>http://creativecommons.org/licenses/by/4.0/</u> Open Access

Abstract

In this paper, we use queue elements prediction and forecasting software PADIS-INT, set three different fertility programs, and predict China's total population and the trends of population structural change in 2015-2050, based on the fifth and sixth national census data. The results show that since implementation of the two-child family planning policy, the aging trend of the population structure will be significantly improved, and after 2030 our population structure will be gradually younger. In view of the problem of population sex ratio imbalance, we verified it, and the results showed that by 2020 there will be a bachelor phenomenon, but the number did not report as much. Finally, we gave a brief summary and recommendations for our studies.

Keywords

Queue Elements Prediction, PADIS-INT, Population Prediction

1. Introduction

Our country has a large global population. The population problem is one of the key issues of socio-economic development, and an important basis for future economic development is to be accurate population structure prediction.

China in 2000 and 2010 respectively conducted the fifth and sixth national census, and 1% of the national population survey in 2015. This article uses queue elements prediction model and census data of 2000 and 2010, estimates quantitatively the trends of our population change from 2015 to 2050, and discusses relevant demographic change. We find that aging population situation is serious. Our government opened the "single second child" policy in 2013, and implementation of "comprehensive second child" policy in 2015, so this article also discusses the demographic changes after the implementation of appropriate policies. The prediction results showed that the adjustment of fertility policy can improve the birth rate of China's population, reduce the degree

of aging, increase labor force population and so on. So whether it is the understanding of the economic status quo, or to grasp the development trend of the future, accurate predictions of population and demographic changes are critical.

At the same time, many reports and experts have pointed out that our country has a problem of sex-ratio imbalance. There are media reports that "There will be 3000 to 4000 million bachelors by 2020". In this paper, we through a series of analysis and calculation, verified our country's sex ratio imbalance problem, and gave some suggestions.

2. Forecasting Methods and Software

There are many models and ways to carry out population forecast, such as: linear regression model, the amount of average growth, exponential smoothing, gray system GM, the age-shifting algorithm, matrix equations and the like. This paper uses a queue element prediction method, which is based on population itself change the elements and sub-elements of prediction methods demographic principles, not only can predict the size of the population, but also can predict the population structure, population prediction of the most widely used method.

2.1. Queue Element Prediction Method

The population of any area, there is always births, deaths, migration and other phenomena, in constant development of variation, but the basic theory of demographic changes in the population and a large number of facts show that when the population of a region to achieve a larger scale, their different gender, age group of the population over time generally have relatively stable characteristics. Carried out according to population projections queue element method the basic principles and ideas, is to use this feature, for each age group population prediction area, set its rate of change in a future period, are calculated accordingly within a future period the number of deaths and net migration, with its population at the beginning of the addition and subtraction, to arrive at the end of the forecast population to a higher age group.

Now 5 years old by age group from the packet, the time interval at 5-year forecast, we build model:

$$M_{x,t+5} = \left(p_{x,t}^{m} + m_{x,t}^{m}\right) \cdot M_{x-s,t} \qquad 5 \le x \le 95$$

$$F_{x,t+5} = \left(p_{x,t}^{f} + m_{x,t}^{f}\right) \cdot F_{x-5,t} \qquad 5 \le x \le 95$$

$$B_{t} = \sum_{x=15}^{49} \left(\left(F_{x,t} + F_{x,t+5}\right) \cdot b_{x,t} \cdot \frac{5}{2}\right)$$

$$B_{t,m} = B_{t} \cdot \frac{r}{100 + r}$$

$$B_{t,f} = B_{t} - B_{t,m}$$

$$M_{0,t+5} = \left(p_{0,t}^{m} + m_{0,t}^{m}\right) \cdot B_{t,m}$$

$$F_{0,t+5} = \left(p_{0,t}^{f} + m_{0,t}^{m}\right) \cdot B_{t,f}$$

$$M_{95,t+5} = \left(p_{95,t}^{m} + m_{95,t}^{m}\right) \cdot \left(M_{90,t} + M_{95,t}\right)$$

$$F_{95,t+5} = \left(p_{95,t}^{f} + m_{95,t}^{f}\right) \cdot \left(F_{90,t} + F_{95,t}\right)$$

On behalf of the meaning of each symbol of the formula which follows as Table 1.

2.2. Prediction Software PADIS-INT

PADIS-INT is under the guidance of the United Nations Population Division, the China Population and Development Research Center population projections developed by international software, which has seven advantages: 1) powerful, it can combine long-term with short-term forecasting, so we can assess pushed back 100 years and predict the future in 400 years, it also can formulate high, medium and low three kinds of programs, simul-

Table 1. Related symbol description.

Symbolic variable	Variable means	Symbolic variable	Variable means
М	male population in the $x \sim x + 4$ age group	D ^m	probability of survival <i>that</i> male
$M_{_{x,t}}$	$(x = 0, 5, 10, \cdots, 95)$	$P_{0,t}^m$	infants born in the years $t \sim t + 5$ became $0 \sim 4$ age group population to $t + 5$ year
	female population in		probability of survival that female
$F_{x,t}$	the $x \sim x + 4$ age group ($x = 0, 5, 10, \dots, 95$)	$P^{f}_{0,t}$	infants born in the years $t \sim t + 5$ became 0-4 age group population to $t + 5$ -year
$M_{_{100,r}}$	Men Elderly Population over 100 years old	$b_{x,t}$	female population fertility of $x \sim x + 4$ age group in the year $t \sim t + 5$
$F_{_{100,t}}$	Women Elderly Population over 100 years old	$m_{_{x,t}}^{^{m}}$	net migration rate of the male population in $x-5 \sim x-1$ years old age group in <i>t year</i> to $t + 5$ years $x \sim x + 4$ age group of the population during the forecast period
B,	$t \sim t + 5$ years, the number of babies born	$m^f_{_{xx}}$	net migration rate of the female population in $x-5 \sim x-1$ years old age group in <i>t year</i> to $t + 5$ years $x \sim x + 4$ age group of the population during the forecast period
$B_{r,m}$	number of male infants born between $t \sim t + 5$	$m_{o_J}^m$	net migration rate <i>of</i> male infants born <i>in</i> $t \sim t + 5$ year become a population of 0 - 4 year-old age group to $t + 5$ years
$B_{i,f}$	number of female infants born between $t \sim t + 5$	$m_{_{0_J}}^f$	net migration rate <i>of</i> female infants born <i>in</i> $t \sim t + 5$ year become a population of 0 - 4 year-old age group to $t + 5$ years
r	sex ratio at birth	$m_{_{95J}}^{m}$	net migration rate <i>of</i> the male population over the age of 90 in <i>t year</i> become male over the age of 95 group in $t + 5$ year
P_{xx}^m	survival probability of male population in $x - 5 \sim x - 1$ years old age group in t year to $t + 5$ year in $x \sim x + 4$ age group	$m^{i}_{_{95J}}$	net migration rate <i>of</i> the female population over the age of 90 in <i>t year</i> become male over the age of 95 group in $t + 5$ year
P_{xt}^{f}	survival probability of female population in $x-5 \sim x-1$ years old age group in t year to $t+5$ year in $x \sim x+4$ age group		

taneously in eight countries (or regional, ethnic) forecast. There is no precedent in the international arena; 2) High accuracy, with the United Nations predicted population as the reference, the error rate of the main result is less than 1%; 3) Convenient, web-based, any browser, anywhere in the world it can be used in real time; 4) Visual effects, and a variety of graphics display, clearly visible contrast; 5) It reflects the international direction, using the six working languages of the United Nations, to facilitate global promotion; 6) Enter simple, rich output, effective decision-making to support economic and social development; 7) Advanced technology, combine the population forecast technology with the modern information technology. Use PADIS-INT forecast software needs to set the following parameters:

- 1) The amount of people by sex and age in the base year.
- 2) Mortality levels during the forecast period.
- 3) Select the model life table.
- 4) Fertility levels during the forecast period—the total fertility rate.
- 5) Fertility patterns, the fertility level of women of childbearing age.
- 6) Sex ratio at birth during the forecast period.
- 7) Migration levels during the forecast period.
- 8) Migration patterns.

3. Empirical Analysis

Based on the date of the sixth census, we designed fertility policy remains unchanged, "two children alone" policy, "a comprehensive two children" policy implementation of the three programs, and predicted China's population trends from 2015 to 2050 respectively, and by comparing the results of the analysis to predict the impact on China to curb the population growth.

3.1. Model Assumptions

1) When forecasting the total population, we assumed that net immigration rate is 0.

2) When setting up three different levels of fertility, it is assumed: the scenario where the fertility level in 2020 reached 1.8, and thereafter will stabilize at 1.8 unchanged; high levels of fertility programs in 2016 reached the highest point of 1.94, 2020 decreased to 1.8, then it will remain at this level.

3) Male life assumed an increase of 2.7 years per decade when setting the level of mortality, female life expectancy rose by 3.4 years per decade.

4) Suppose after 15 years to achieve normal levels when setting sex ratio at birth, which varies linearly 2025 to maintain the level of 107, then it will remain at this level from 2026 to 2050.

3.2. Data in the Base Period

Data base period is the starting point for the calculation model, select the exact data base of the model to predict the accuracy of the results have a significant impact. This paper selects 2010, China's sixth population census data and checks the data as part of the data base, the total population every 5 years for a group of 0 - 79 years old population will be divided into 16 groups, the population aged 80 and over return as a group.

3.3. Prediction and Parameter Settings

Mainly refers to the prediction of fertility, mortality, sex ratio, net immigration rate. Parameters to predict based on the sixth census in 2010, and make reasonable adjustments, in order to predict the future and structure of the total number of population trends.

3.3.1. Fertility Rate

Fertility rate is an important variable in the formation of the new population, and one of factors that bring about the population increase. Prediction and set our total fertility rate is mainly based on the qualitative analysis of family planning policy. According to the 2010 census data show that the national total fertility rate of 1.18, the results of calculations of experts is only 1.5 - 1.6, far below the population replacement level. Affected "two children alone" and "full two children" Policy, many scholars have pointed out in the short term may be a slight rebound in the fertility rate, but in the long run will not be ups and downs. Zhai Zhenwu said at the seminar "single second child" policy will make our total fertility rate have a relatively significant rise, the highest point may be more than 1.8 (but not more than two), but the cumulative effect of the release of fertility will fluctuations in 1.6 - 1.7. "National Population Development Strategy Research Report" (2006) pointed that if the total population peak at 15 million people around the country in the next 30 years, the total fertility rate should be maintained at about 1.8, too high or too low is not conducive to population and coordinated economic and social development [1].

Therefore, this article on the set forecast fertility levels assumed three programs:

Option One (low program): Constant fertility, fertility and fertility of the sixth census data is the same throughout the period, as shown in Table 2.

Option II (middle program): Fertility levels gradually increased from 2014 to 2020 to reach 1.8 thereafter will stabilize at 1.8 unchanged, as shown in Table 3.

Option III (high program): Next few years, the total fertility rate increased in 2016 to reach the highest point of 1.94, and then began to decline in 2020 dropped to 1.8, then it will remain at this level, as shown in **Table 4**.

3.3.2. Death Level

Death level is related of the expected life. From the point of view of China's total population, over the past few decades the average growth of 2.77 years per decade for Men, Women average increase of 3.45 years per decade. Because of medical conditions and people's living standards have greatly enhanced than before, it is expected that the life will continue to grow for some time. In general, the higher the average life expectancy, the slower speed. Therefore, we assume that male life expectancy grew 2.7 years per decade, female life expectancy rose by 3.4 years per decade. Male and female life expectancy from 2010 to 2050 as shown in Table 5.

3.3.3. Death Mode

Using the software PADIS-INT conducted population projections, the impact of death is determined by the project setting mode of the selected model life tables, the software provides two categories of life table: Kou de Man and the United Nations life table.

The West model of Kou Halderman life table model established on the basis of 130 real life table data, and these life table mainly from Africa and Asia, such as Israel, Japan and Taiwan Province of China and South Africa. Their mortality data had no significant systematic bias, so this set of models than other groups more broadly representative, be regarded as the standard model life table. Therefore, this study choose Kou Halderman West model life table to predict the development trend of China's population.

3.3.4. Sex Ratio at Birth

In the absence of interference of human factors, the sex ratio at birth should be relatively stable, ranging between 103 - 107, in different countries, nations differ slightly from the normal of about 107 often, if a serious deviation from this range, It will cause a series of social problems [2].

According to the sixth national census data, in 2010 China's sex ratio at birth was 104.90.Former director of the National Population and Family Planning Commission Zhang Weiqing pointed out, 10 to 15 years and strive to achieve normal sex ratio at birth. Therefore, based on the current sex ratio at birth of 104.90, we assumpted that after 15 years to achieve a normal level, which varies linearly 2025 to maintain the level of 107, then constant 107 from 2026 to 2050, as shown in **Table 6**.

3.3.5. Migration Levels

China, as a whole, the geographical scope of internal migration will not have any impact on the number of

Table 2. I	Table 2. Low program: 2010 women of childbearing age groups fertility.											
Age g	roup (y)	15 -	19	20 - 24	25 - 29	30 - 34	35 -	39	40 - 44	45 - 49	Total fe	rtility rate
Fertility	rate (‰)	5.9	03	69.47	84.08	45.84	18.7	71	7.51	4.68	1	181
Table 3. I	Table 3. Middle program: The total fertility rate for each year 2011-2050.											
Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		2050
TFR	1.242	1.304	1.366	1.428	1.49	1.552	1.614	1.676	1.738	1.8	1.8	1.8
Table 4. I	Table 4. High program: The total fertility rate for each year 2011-2050.											
Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		2050
TFR	1.18	1.18	1.18	1.18	1.56	1.94	1.905	1.87	1.835	1.8	1.8	1.8

Table 5. Life expect	tancy of women and	men 2010-2050.			
Year	Man	Women	Year	Man	Women
2000	69.63	73.33	2031	78.05	84.51
2010	72.38	77.37	2032	78.32	84.85
2011	72.65	77.71	2033	78.59	85.19
2012	72.92	78.05	2034	78.86	85.53
2013	73.19	78.39	2035	79.13	85.87
2014	73.46	78.73	2036	79.4	86.21
2015	73.73	79.07	2037	79.67	86.55
2016	74.00	79.41	2038	79.94	86.89
2017	74.27	79.75	2039	80.21	87.23
2018	74.54	80.09	2040	80.48	87.57
2019	74.81	80.43	2041	80.75	87.91
2020	75.08	80.77	2042	81.02	88.25
2021	75.35	81.11	2043	81.29	88.59
2022	75.62	81.45	2044	81.56	88.93
2023	75.89	81.79	2045	81.83	89.27
2024	76.16	82.13	2046	82.1	89.61
2025	76.43	82.47	2047	82.37	89.95
2026	76.7	82.81	2048	82.64	90.29
2027	76.97	83.15	2049	82.91	90.63
2028	77.24	83.49	2050	83.18	90.97
2029	77.51	83.83			
2030	77.78	84.17			

population change (which is, without regard to internal migration between regions), and low net migration rate of population between China and overseas, and migration factors influence population changes negligible [3]. Therefore, this article does not consider the transfer of population, population migration assumed to be zero.

4. Result Analysis

According to demographic data and relevant parameters of the above assumption, we run software PADIS-INT, obtained predictions of population size and structure under three scenarios of each year by age and sex, the results are as follows.

4.1. Analysis of the Total Population

4.1.1. Total Population

Number of programs at three of China's total population in 2011-2050 as shown in **Table 7**; Total population trend analysis and the results of comparison shown in **Figure 1**.

Based on the above chart analysis, we can see:

1) Fertility Policy adjustment brought about the increase of total population, the overall trend showed a decrease after an initial increase. Forecast results show that if implement "comprehensive second child" policy, China's total population in 2020 will from 1.36 billion people increase to 1.4 billion people, and reach a peak

Table 6. 2011-2050 the se	ble 6. 2011-2050 the sex ratio at birth.									
Year	Sex ratio at birth	Year	Sex ratio at birth							
2011	105.04	2031	107							
2012	105.18	2032	107							
2013	105.32	2033	107							
2014	105.46	2034	107							
2015	105.6	2035	107							
2016	105.74	2036	107							
2017	105.88	2037	107							
2018	106.02	2038	107							
2019	106.16	2039	107							
2020	106.3	2040	107							
2021	106.44	2041	107							
2022	106.58	2042	107							
2023	106.72	2043	107							
2024	106.86	2044	107							
2025	107	2045	107							
2026	107	2046	107							
2027	107	2047	107							
2028	107	2048	107							
2029	107	2049	107							
2030	107	2050	107							

1.439 billion people in 2044, after a downward trend, by 2050 the total population approximately is14.34 billion.

2) The total population reached a peak in 2044, compared with Cai Fang, editor of "China's Sustainable Development Master Plan (national volume)—China Population and Sustainable Development" in the projections of the total population peak will occur in 2033, delayed nearly 10 years. The reason is because the implementation of "comprehensive second child" policy, so that the total fertility rate fluctuate slightly in the short term, in 2016 reached the highest point of 1.94, bringing the total population peak was delayed, but the total population is still showing the trend of at first increased then decreased after, and did not show significant growth.

4.1.2. Birth

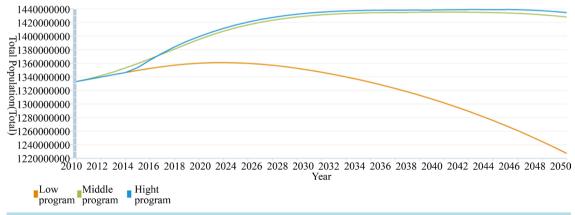
Number of programs at three of China's birth in 2011-2050 as shown in **Table 8**; Birth trends analysis and the results of comparison shown in **Figure 2**.

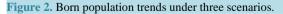
Based on the above chart analysis, we can see:

1) With the implementation of "Alone two children," our birth once a small peak in 2014-2020 years, after slow growth in the number of population, and the population reached a peak in 2040, about 1434 million people, and the number of birth is about 12,993,397 people by 2050.

2) By comparison between the three programs can be seen to curb the facilities did not bring skyrocketing population, but gradually improve fertility policy, in line with the law of population development, help stabilize moderately low fertility level, slowing total population in the rapid decline after reaching a peak of momentum and in favor of long-term balanced development of population.

Table 7. China's total population trends.										
Year	Low program	Middle program	High program	Year	Low program	Middle program	High program			
2010	1332810869	1332810869	1332810869	2031	1343293849	1432119789	1436046090			
2011	1336031187	1336699699	1336031187	2032	1339718492	1432964245	1436815419			
2012	1339391584	1341410798	1339391584	2033	1335872869	1433588223	1437357337			
2013	1342783073	1346837172	1342783073	2034	1331760239	1434034901	1437706741			
2014	1346098487	1352859082	1346098487	2035	1327381399	1434346775	1437900419			
2015	1349252379	1359368629	1353374628	2036	1322735978	1434563498	1437991353			
2016	1352154201	1366239256	1364395650	2037	1317822058	1434712848	1438049846			
2017	1354728065	1373351466	1374551855	2038	1312630623	1434808287	1438126171			
2018	1356893544	1380568746	1383743204	2039	1307157602	1434861536	1438250132			
2019	1358595775	1387780255	1391909947	2040	1301398743	1434877243	1438418894			
2020	1359795269	1394888858	1399015852	2041	1295357184	1434858321	1438611595			
2021	1360492220	1401278264	1405404291	2042	1289029037	1434788774	1438798572			
2022	1360685972	1406953051	1411078348	2043	1282402591	1434633565	1438946500			
2023	1360388412	1411935770	1416060290	2044	1275466181	1434350652	1439006553			
2024	1359617112	1416257585	1420381266	2045	1268212707	1433899641	1438911406			
2025	1358398506	1419962468	1424085315	2046	1260636621	1433240186	1438594670			
2026	1356762331	1423099506	1427221580	2047	1252732949	1432333489	1438005560			
2027	1354733164	1425715335	1429832601	2048	1244513406	1431158167	1437122655			
2028	1352341075	1427866757	1431969239	2049	1235984917	1429690209	1435919842			
2029	1349615859	1429611557	1433680774	2050	1227151804	1427909360	1434370797			
2030	1346594297	1431013628	1435018961							




Figure 1. The total number of population trends under three programs.

4.1.3. Workforce

Number of programs at three of China's Workforce in 2011-2050 as shown in **Table 9**; Workforce trends analysis and the results of comparison shown in **Figure 3**.

Based on the Table 9 and Figure 3 analysis, we can see:

Year	Low program	Middle program	High program	Year	Low program	Middle program	High program
2011	12899084	13576888	12899084	2031	8263321	12716973	12637006
2012	13040006	14410383	13040006	2032	8152308	12618662	12542643
2013	13098761	15163560	13098761	2033	8052071	12568076	12485270
2014	13065109	15811081	13065109	2034	7958828	12564752	12466954
2015	12955961	16359727	17128220	2035	7869170	12607025	12488517
2016	12765612	16790097	20987531	2036	7780944	12691011	12565099
2017	12508140	17108642	20193226	2037	7692116	12804226	12713560
2018	12178747	17297977	19300218	2038	7596571	12933250	12914786
2019	11801747	17382577	18352716	2039	7492408	13069464	13141356
2020	11388673	17372541	17372552	2040	7380567	13206842	13361549
2021	10971124	16735593	16735614	2041	7263324	13338505	13552103
2022	10562161	16111743	16111771	2042	7138933	13450720	13709426
2023	10173398	15518705	15518742	2043	7003499	13528334	13833818
2024	9810810	14965603	14965643	2044	6857526	13564777	13910184
2025	9482074	14464147	14464181	2045	6705067	13561187	13919450
2026	9190628	14019580	14019602	2046	6546472	13516422	13861395
2027	8933754	13631921	13627760	2047	6383927	13433677	13753337
2028	8716842	13311285	13296877	2048	6218724	13315094	13609412
2029	8537370	13056439	13023107	2049	6053068	13165008	13431867
2030	8387509	12859015	12794504	2050	5890554	12993397	13226711
2000 1800 1600 Births(Total) 800 600	00000 00000 00000	2016 2018 2020 20		30 2032 2 Year	034 2036 2038 2	040 2042 2044 20	46 2048 2050

1) Labor force continued to decline, but the implementation of the new fertility policy enables our country appears to increase the number of labor force in 2030. Under "Comprehensive second child" policy in 2030, China's labor population increased to 819,091,027 from the 814,988,330 people, by the year 2050 increased to 681,412,849 from the 571,151,238 people.

"Two children alone" and "full two children" to curb the generally affect only a few labor force after 2) 2030,

Table 9. T	Table 9. Tendency of the total workforce.										
Year	Low program	Middle program	High program	Year	Low program	Middle program	High program				
2010	933893808	933893808	933893808	2031	803324282	817362045	815516199				
2011	933460096	933460096	933460096	2032	791707056	810271138	811463194				
2012	931291749	931291749	931291749	2033	780059146	803662269	806827248				
2013	927380830	927380830	927380830	2034	768941961	798040927	802162087				
2014	923574442	923574442	923574442	2035	758281755	793275804	797396439				
2015	919852013	919852013	919852013	2036	748916017	789590223	793710110				
2016	917655107	917655107	917655107	2037	739903609	786047315	790166351				
2017	915478848	915478848	915478848	2038	731233326	782646209	786764367				
2018	913311237	913311237	913311237	2039	722074399	778569600	782686882				
2019	910514291	910514291	910514291	2040	712457473	773865626	777982034				
2020	907037252	907037252	907037252	2041	702333330	768504363	772619901				
2021	902103789	902103789	902103789	2042	691816302	762622164	766732727				
2022	896335596	896335596	896335596	2043	680944083	756283434	760378935				
2023	889668969	889668969	889668969	2044	669006112	748805585	752867368				
2024	882564926	882564926	882564926	2045	655989675	740203213	744200479				
2025	874976831	874976831	874976831	2046	640057904	728668870	732586359				
2026	863666226	864330985	863666226	2047	622914488	715936516	719778163				
2027	851795119	853804656	851795119	2048	604516846	702000138	705759228				
2028	839257176	843294069	839257176	2049	587281453	689316122	692977811				
2029	827016863	833751386	827016863	2050	571151238	677869081	681412849				
2030	814988330	825068429	819091027								

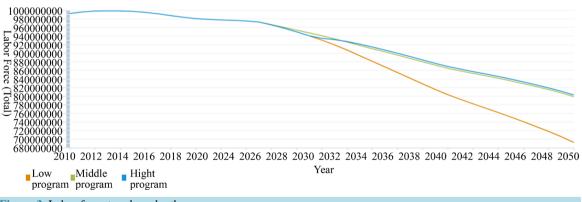


Figure 3. Labor force trends under three programs.

compared with the two solutions, the biggest difference can be seen in the number of working-age population appeared in 2034, workforce from 798,040,927 to 802,162,087 people, more than 4,121,160 people.

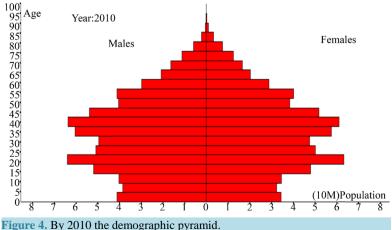
In summary it can be seen, the adjustment of Family Planning Policy can increase labor force aged population, 2050 of 15 - 59 year-old working-age population increased from 571,151,238 to 681,412,849. Additional popu-

lation to some extent complementary labor age population size, slowing the reduction of labor supply phenomenon.

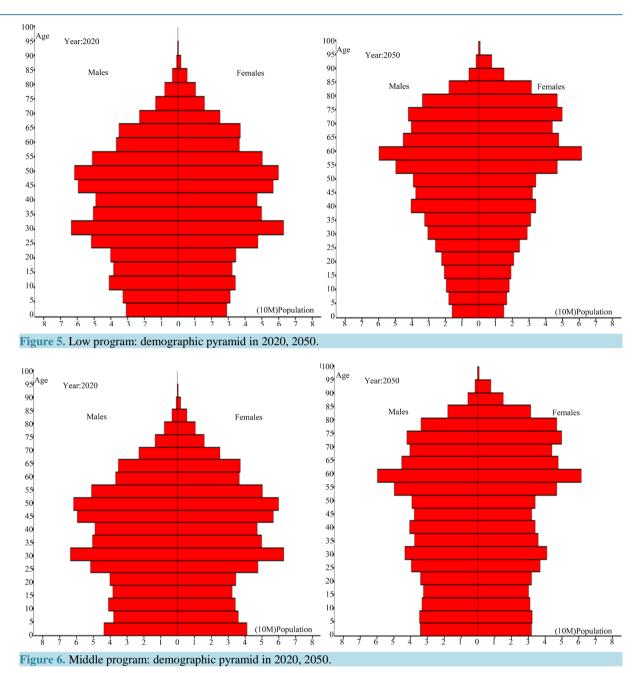
4.2. Population Structure Analysis

2010 demographic pyramid and the pyramid structures of three programs shown in Figures 4-8.

By analyzing the graphic of our population pyramid chart in 2010 can be found, the proportion of the population aged 0 - 14 was significantly smaller than the proportion of 15 - 49 years old, population structure began to show a "in" word forms, namely "middle, two small" form. shows the increasingly aging population structure, but also indicates that China's first demographic dividend coming to an end.

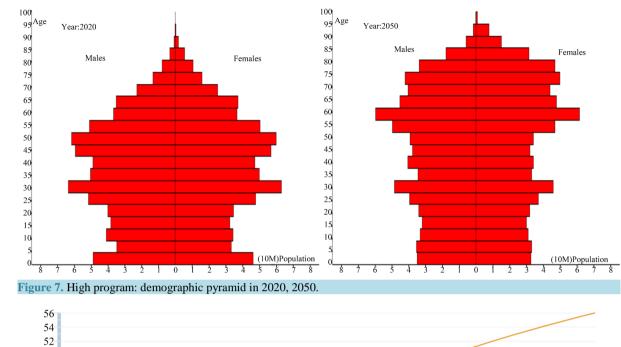

In the low program, from 2020 demographic pyramid graphics can be seen that in 2020 China's population pyramid was "the" shape is more obvious, indicates the number of births further reduce, the trend of population aging be more obvious; from 2050 demographic pyramid graphics can be seen, Population pyramid inverted triangle shape, shows the proportion of new-born population further lower than 2020, and the population structure was severely aging state.

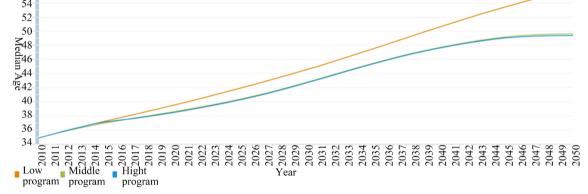
In the middle program, observation of the demographic pyramid in 2020 found that the bottom of the pyramid population aged 0 - 14 to improve the proportion of low birth plan by 14.7%, which is due to changes in fertility. Observed 2050 population pyramid structure found, the proportion of the population aged 60 - 65 is greater than the proportion of other age groups. If we reject this age, look younger population structure, in line with moderate aging demographic characteristics, indicating that changes in fertility rate has gradually improve China's aging population trend.


In the high program, observation of the demographic pyramid discovered in 2020, was at the bottom of the pyramid proportion of the population aged 0 - 14 lower fertility program has been greatly improved, the proportion of the population over 40 years of age is relatively large, 15 - 30 age population proportion of small, showing a "two big middle small" form, which shows changes in fertility brought a large number of new and young people, significantly changed the original trend of demographic changes. Observation of 2050 demographic pyramid found that the proportion of the population aged 60 - 65 is more than any other age group, if this age excluded, demographic look younger, consistent with a mild aging demographic characteristics. This shows that high fertility not only completely changed the structure of the original population aging trend, but to make our country a young population structure and becomes excessive, indicating China's total population will enter another period of rapid growth.

In addition, changes can also be seen from the line chart of the median age of the three programs, it becomes more and more young, as shown in Figure 8.

As can be seen from Figure 8, without changing fertility policy, "two children alone" policy of "full two children," three different programs, China's population structure becomes more and more young. If does not change its policy of growth, the structure of our population median age of over 50 years, will reach 60 years of age, the aging serious, but if change the fertility policy, the median age will be reduced to 50 years of age, changed the structure of the original population aging trend, the population structure has become more younger.


J. E Liu et al.



4.3. Unbalanced Sex Ratio Analysis

According to media reports: "by 2020, the number of men of marriageable age than women in China more than the 30 million to 40 million, which means that in an average of five men can not find a mate." But after a certain observation and calculation, we find that the gender imbalance is not so serious yet to be confirmed. We do not rule out the sex ratio is high, but the data is not to be "too high" estimates or data itself has a problem, according to the method of longitudinal studies on past data inference can explanation some problems.

Methodologically speaking, simply look at the sex ratio, can not determine the early 1980s population concealed omissions on sex, especially in the case we want to find out whether the baby boy is also reporting, and we can not analyze units remain on the sex ratio synthesis unit, only through sex-disaggregated data can we prove such omissions of baby boy and baby girl [4]. So we have to look for concealed and unreported data by comparison with data by age and gender, as shown in Table 10 and Table 11.

From the above two figures (Figure 9 and Figure 10) (Black lines represent the number of males or females aged 0 - 9 years in 2000; Red lines represent the number of males or females aged 10 - 19 years in 2010) it can be found that the data graph drawn based on the fifth and sixth Census has problems. Because, according to population development process, consider the incident caused by illness and accident, in 2010 the population aged 10 - 19 should be less than or data lines coincide in the age of the data line aged 0 - 9 in 2000, so figure shows changes in male and female demographic data among all age groups in violation of the law. We can be sure that in 2000 the population in each age group of 0 - 9 years there is a big omission has concealed.

We get **Table 4**, **Table 5** by subtracting, the number of males or females aged 10 - 19 years in 2010 subtract the number of males or females aged 0 - 9 years in 2000. If based on 2010 census data, 0 age group of the population in 2000 after 10 years, in 2010 census data in the corresponding group of men increased 934,493 people, females increased 875,342 people, indicating born in 2000 population underreporting the number of concealed boys more than the girls nearly 59151 people; In 2000, 1 age group of the population after 10 years, increased 505,504 men, women increased 677,232 people, indicating that the number of unreported concealed girls born in 1999 more than the boys 171,728 people; The number change of 2-year-old population in 2000 shows, in 2000-2010 years baby boy repay population higher than baby girl, 187,980 people, and so on. In 2000, the total number of female population is larger than the total number of male population repay repay, that in 2000 the population group aged 0 - 4 years baby boy omission indeed slightly higher than the number of false negatives. Therefore, sex ratio in 2000 may be lower than shown in the census.

In addition, according to the front part of analysis of the result of the total population projections and popula-

2000			2010		
Age	Male	Female	Age	Male	Female
0	6896316	5748208	10	7830808	6623549
1	7017055	5735925	11	7522558	6413156
2	7799459	6433064	12	8288987	7110572
3	8077190	6762119	13	8161000	7064032
4	8707371	7371550	14	8463924	7429876
5	9011804	7690045	15	9524898	8499586
6	9228213	7964235	16	9795181	8995340
7	9802318	8531113	17	10760828	10014541
8	10344592	9072474	18	10744556	10010718
9	12242996	10903038	19	11079367	10464099

Table 10. 2000 census data, the population group aged 0 - 4 years	s changes in circumstances.
---	-----------------------------

 Table 11. Data difference in each age group of the population.

Sixth census	s-fifth census
Male	Female
934493	875342
505504	677232
489528	677508
83811	301913
-243447	58327
513094	809541
566968	1031105
958510	1483428
399964	938244
-1163629	-438939

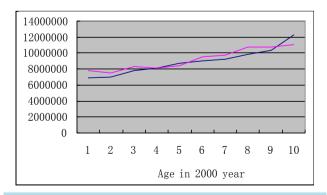


Figure 9. 0 - 9-year-old males in each age group five or six times in reference to Figure Census.

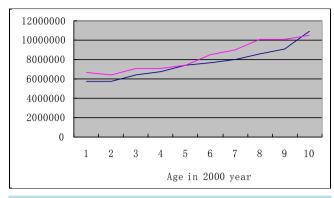


Figure 10. 0 - 9-year-old females in each age group five or six times in reference to Figure Census.

Age	Male	Female	Total people	Age	Male	Female	Total people
0	8850388	8349051	17199439	51	12576661	12200152	24776813
1	9324522	8811004	18135526	52	12665605	12325269	24990874
2	9788586	9262867	19051453	53	12202176	11902945	24105121
3	10225814	9691347	19917161	54	11751536	11493425	23244961
4	10612667	10073490	20686158	55	11155347	10955241	22110588
5	8648059	8221818	16869877	56	10730650	10574247	21304897
6	6585986	6271720	12857706	57	10315195	10204306	20519501
7	6592292	6288097	12880389	58	9676014	9583928	19259943
8	6552045	6260049	12812093	59	9070194	8999224	18069419
9	6470591	6192496	12663088	60	8083749	7983175	16066924
10	8381995	7032351	15414347	61	7565850	7490602	15056452
11	8291975	6958954	15250929	62	7075324	7025418	14100743
12	8188636	6878416	15067052	63	7026323	7059160	14085483
13	8082942	6795743	14878685	64	6971893	7089948	14061841
14	7977287	6713010	14690297	65	7461601	7762081	15223682
15	7769882	6530935	14300818	66	7383542	7781520	15165063
16	7668673	6451333	14120006	67	7295013	7792422	15087434
17	7568035	6372388	13940423	68	6726426	7224210	13950636
18	7635897	6457033	14092930	69	6192618	6689786	12882404
19	7703589	6542477	14246066	70	5472747	5900088	11372835
20	7673915	6513767	14187682	71	5013912	5445129	10459042
21	7741264	6599555	14340819	72	4581011	5015664	9596675
22	7808982	6686299	14495281	73	4137975	4597548	8735523
23	8211778	7134810	15346588	74	3727526	4205962	7933488
24	8635042	7613179	16248221	75	3281356	3772213	7053569

1	Ι.	E	Li	u	et	al	

Continued							
25	9349171	8412116	17761287	76	2933244	3431037	6364280
26	9832495	8976320	18808815	77	2611001	3110592	5721594
27	10341927	9578588	19920515	78	2374339	2891316	5265656
28	10783074	10125517	20908591	79	2150058	2678549	4828607
29	11244406	10703954	21948360	80	1998098	2535409	4533508
30	12315965	12000119	24316084	81	1783564	2323880	4107445
31	12843077	12685538	25528615	82	1579182	2117081	3696263
32	13392404	13409924	26802328	83	1348649	1890187	3238836
33	12788475	12794151	25582626	84	1142447	1677000	2819447
34	12211462	12206478	24417940	85	966828	1502421	2469249
35	10790002	10712973	21502975	86	800937	1311816	2112752
36	10301879	10220401	20522280	87	655493	1135475	1790969
37	9835103	9750205	19585308	88	502048	927281	1429328
38	9780086	9645399	19425485	89	379830	750459	1130290
39	9724617	9541443	19266060	90	281782	595987	877770
40	9648095	9373777	19021872	91	207733	473056	680789
41	9591277	9271754	18863031	92	151129	371709	522838
42	9533630	9170262	18703892	93	101279	274829	376108
43	9910542	9521560	19432102	94	66966	201078	268044
44	10301073	9885657	20186729	95	42986	145645	188631
45	11189779	10732014	21921793	96	27975	105175	133150
46	11625322	11140145	22765467	97	18093	75543	93636
47	12074563	11562462	23637025	98	10667	49707	60374
48	12175633	11687117	23862750	99	6249	32523	38772
49	12274112	11811639	24085750	100+	3127	21144	24271
50	12483964	12074659	24558623				

tion structure between 2015-2050, we can know the cases of age and gender in 2020, as shown in Table 12.

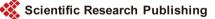
The above table shows that in 2020 marriageable age [20, 34], the total male population is 145,512,986, the total female population is 133,439,196, more men than women 12073790, bachelor amount reported a gap, but it coincided with the argument that women underreporting rate higher than men.

So, to sum up, by 2020, the number of men will more than the number of women, bachelor phenomenon will occur, however, the amount does not reach the bachelor as high as reported in reports.

5. Conclusion and Suggestion

Based on the data of the sixth census, the article predicts the trend of population structure change in China from 2015 to 2050. Since the fourth part of the article we demonstrate that the existence of Chinese male and female fertility exists underreporting phenomenon, but when we do the total population and population structure analysis are not added to the false negative rate, which are the biggest shortcomings of this article. Therefore, to improve, we can start from the false negative rate. However, due to limited space, there is no longer recalculated.

By comparing the change in the trend of population structure under three different fertility programs, we believe that:


1) To maintain current family planning policy unchanged will make China a serious aging population structure, which is imperative to adjust the family planning policy.

2) Moderate fertility program, the implementation of the two-child family planning policy can significantly improve the structure of China's population aging problem, but will not bring too many new people. It is an ideal choice for our future family planning policy.

3) Sex-ratio imbalance is mainly due to the preference of fertility concept to men, fetal gender identification in non medical needs, flaws in the relevant laws and regulations, ineffective medical supervision and other factors. Therefore, we need consider these factors synthetically to further strengthen the governance of sex ratio at birth.

References

- [1] Li, X.Y., Xi, Y.Y. and Wu, X.M. (2014) Two Children Alone Policy of Population Affected by Natural Changes to Predict. *Economic Management Research*, **5**, 47-53.
- [2] Alho, J.M. (1998) A Stochastic Forecast of the Population of Finland, Review. Statistics Finland, Helsinki.
- Keyfitz (1996) Population Growth, Development and Environment. *Population Studies*, 50, 335-359. <u>http://dx.doi.org/10.1080/0032472031000149526</u>
- [4] Liu, C.B. and Feng, X.T. (2008) China Population Sex Ratio: We Know What, You Should Also Know What. Population and Development, 2, 36-46.

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, Linkedin, Twitter, etc

A wide selection of journals (inclusive of 9 subjects, more than 200 journals)

Providing a 24-hour high-quality service

User-friendly online submission system

Fair and swift peer-review system

Efficient typesetting and proofreading procedure

Display of the result of downloads and visits, as well as the number of cited articles

Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/