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ABSTRACT 

Emergency-vehicle drivers who aim to reach their destinations through the fastest possible routes cannot rely solely on 
expected average travel times. Instead, the drivers should combine this travel-time information with the characteristics 
of data variation and then select the best or optimal route. The problem can be formulated on a graph in which the origin 
point and destination point are given. To each arc in the graph a random variable is assigned, characterized by the ex- 
pected time to traverse the arc and the variance of that time. The problem is then to minimize the total origin-destination 
expected time, subject to the constraint that the variance of the travel time does not exceed a given threshold. This paper 
proposes an exact pseudo-polynomial algorithm and an ε-approximation algorithm (so-called FPTAS) for this problem. 
The model and algorithms were tested using real-life data of travel times under uncertain urban traffic conditions and 
demonstrated favorable computational results. 
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1. Introduction 

The public’s concern for safety and improving quality of 
life has generated a need for improved service of nume- 
rous public-safety and transportation agencies. An im- 
portant challenge in this regard is to improve transporta- 
tion system management for emergency response.  

Minimization of emergency response time is a key focus 
in endeavors to improve emergency transport systems. A 
rapid response to an emergency situation can prevent or 
minimize adverse outcomes such as fatalities or the loss of 
property. In many cases, emergency vehicles (e.g., medical 
ambulances, police and security cars, fire and rescue 
vehicles, hazardous materials trucks, and gas/ electricity 
repair vehicles) are exempt from conventional traffic laws 
so that they may reach their destinations as quickly as 
possible; for example, they may be permitted to drive 
through red lights or exceed the speed limit. 

Efficient routing under uncertain traffic conditions can 
improve the performance of intelligent transportation 
systems, wherein real-time traffic information is avail- 
able at emergency dispatch centers. This research aims to 
develop and enhance a real-time emergency response 
system that uses real-time travel time information to as- 
sist the dispatchers of emergency vehicles in assigning 
the vehicles to optimal routes. To this end, this paper 
proposes a mathematical model for a decision-making 
process in real-time route dispatching. The model is for- 

mulated as a constrained shortest-path problem that can 
help the dispatcher to make decisions. The problem is 
stochastic path planning since, in contrast to standard 
deterministic routing problem, it takes traffic variability 
into account. In addition, the computational efficiency 
(algorithm complexity) of the process is examined, be- 
cause this computational time has a major effect on the 
model’s applicability in real-time situations.  

The dispatching model proposed herein uses a dynamic- 
programming shortest-path algorithm as the basis for a 
fully polynomial time approximation scheme (FPTAS). 
Although a number of routing models have been devel-
oped previously, the current model is substantially more 
flexible, incorporating a joint analysis of the expected 
route time and its variance. The model and algorithms 
were tested using real-life data of travel time under un-
certain urban traffic conditions and demonstrated favor-
able computational results. 

2. Literature Review 

Emergency vehicle routing (EVR) has been an attractive 
subject for operations researchers for many years. Most 
studies on EVR systems focus on location, fleet size, and 
operations performance. The majority of EVR mathe- 
matical models can be categorized into the following 
groups: 

Group one: Location of emergency vehicle stations or 
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individual emergency vehicles within a region, subject to 
some performance criteria such as response time [1]; 

Group two: Determination of the minimum number of 
emergency vehicles required to cover a given area; 

Group three: Dispatching strategies and their influence 
on performance results and services for emergency victims.  

Work on emergency vehicle dispatching has generally 
involved the use of three approaches: queuing, mathe-
matical programming, and dynamic programming (DP). 
Among studies using queuing methods, Larson [2,3] used 
a hypercube queuing model as a tool for facility location 
and redistricting in urban emergency services. Yet the 
ability to develop analytical methods (mathematical pro- 
gramming and queuing models) for EVR systems is 
rather limited, because even sophisticated analytical mod- 
els cannot solve real-world problems under uncertain 
traffic data.  

Cooke and Halsey [4] were the first to deal with time- 
dependent shortest path algorithms. Their algorithm is 
based on Bellman’s principle of optimality and dynamic 
programming. Starting from the destination node, the al- 
gorithm calculates the path operating backwards. Zilias- 
kopoulos and Mahmassani [5] extended Cooke and Hal-
sey’s algorithm to calculate the time-dependent shortest 
paths from all nodes in a network to a given destination 
node over a given time horizon in a network with time- 
dependent arc costs. Goldberg and Paz [6] formulated an 
optimization model that allowed for stochastic travel 
times, unequal emergency vehicle utilizations, various 
call types, and service times that depend on call location. 
Ben-Akiva et al. [7] have shown that the static model 
outperforms the dynamic traffic assignment model for 
shorter prediction horizons. Hadas and Ceder [8] suggest 
a stochastic model for EVR under uncertainty that yields 
a set of paths and determines the probability that a given 
path is the shortest. The EVR algorithm proposed herein 
uses a combinatorial enumeration of prospective routes 
in combination with a simulation of several candidate 
shortest paths. 

3. Problem Formulation 

The problem framework is based on a computational 
network composed of a graph (possibly cyclic), G = 
(N,A), with a set N of nodes, a set A of arcs, a start node 
s = 1, and a destination node t = n. The term tij, denoting 
the time to traverse arc (i,j) in G, is a random variable 
characterized by two parameters: mij—the expected time, 
and vij the variance. |A| = h, and |N| = n. The parameters 
mij are assumed to be integers. A path p is called feasible 
if the variance of the time to traverse the path is at most 
R, where R is a given threshold. The problem is to find a 
feasible path with minimum expected time. 
Mathematical Form 
Problem input: G(N,A)—a given graph.  

For any arc (i,j)A, two parameters are given: mij— 
the expected time; vij—the variance. 

M(p) denotes the expected time to traverse path p;  
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V(p) denotes the variance of the time it takes to trav- 
erse path p. All tij are assumed to be independent random  
variables and therefore  
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In a mathematical form the problem is to find a path p 
such that: 
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4. Exact Algorithm: Dynamic Programming 

This section introduces an exact DP algorithm. Since mij 
are assumed to be integers, DP is a pseudo-polynomial 
algorithm. As a result, if mij is bounded, DP is polyno- 
mial. 

Let us associate with each path p a pair (M, V), where 
M = M(p) is the expected time to traverse path p, and, 
correspondingly, V = V(p) is the variance of the time to 
traverse p. Sets S(k) of pairs (M, V) are arranged in in- 
creasing order of M-values, so that every pair in S(k) 
corresponds to a path from node s to a node k. In order to 
restore the path corresponding to a pair (M, V), each pair 
is assigned a predecessor pair, and then standard back- 
tracking can be used. 

If there are two pairs in S(k), (M1,V1) and (M2,V2) 
such that M1 ≤ M2 and V1 ≤ V2, then the pair (M2, V2) is 
called dominated and may be discarded. Let UB be the 
upper bound of the total expected time for the optimal  
path. For instance, UB can be set to . The de- 

( , )
ij

i j A

m



tailed polynomial time DP algorithm is presented in Fig- 
ure 1. 

Proposition 1. The complexity of the DP algorithm 
(Algorithm 1) is O(hnUB).  

Proof: Since the times are integers and dominated 
pairs are discarded, there are at most UB pairs in sets W 
and S(k). Furthermore, construction of W in lines 9 - 11 
requires O(UB) elementary operations, since W is con- 
structed from a single S(k). Merging the sorted sets W 
and S(k), in line 12, as well as discarding all the domi- 
nated pairs, is done in linear time (in the number of pairs, 
which is at most UB). In Step 2, lines 5 - 14 have two 
nested loops, where the first begins at line 6 and the sec- 
ond at line 7. These two loops go over all the arcs n − 1 
times, so that in total, there are O(hn) iterations of lines 
11 - 13. Thus, the total complexity of Algorithm 1 is  
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Algorithm 1. The exact DP algorithm  
1. Input: G(N,A) |N| = n, |A| = m,  
    {(m(i,j), v(i,j)|(i,j)A}; R 
2. Output: A variance-constrained path with  
    minimum expected time 
3. Step 1. [Initialization] 
4. Set S(1) = {(0,0)}, S(k)← for k = 2 ··· n 
5. Step 2. [Generate S(2) to S(n)] 
6. Repeat n − 1 times   
7.   for each arc (u,k)A  
       (leading from node u to node k) 
8.    W←  
9.   for each pair (M,V)S(u) 
10.   do if V + v(u,k) ≤ R then  
                  W←W {(M + m(u,k), V + v(u,k))} 
11.   endfor 
12.    S(k)←merge(S(k),W);  
           during merging eliminate the dominated pairs
13.   endfor 
14.  End Repeat 
15. Step 3. [Determine optimal solution] 
16. find min M in S(n), denote it by ans  
17. Return ans as the optimal time;  
      use backtracking to find optimal path. 

Figure 1. The exact pseudo-polynomial DP algorithm. 
 
O(hnUB). □ 

5. Fully Polynomial Time Approximation  
Scheme  

5.1. General Description of the FPTAS 

Our approach for constructing an FPTAS follows a so- 
called interval partitioning computational scheme. The 
interval partitioning technique was originally proposed 
by Sahni [9] for the knapsack problem and was later im- 
proved by Gens and Levner [10] and by Levner et al. [11] 
and Elalouf et al. [12]. The FPTAS in this paper consists 
of three main stages: 

Stage A: Find a preliminary lower bound LB and an 
upper bound UB on the optimal path’s expected time 
such that UB/LB ≤ n. 

Stage B: Find improved lower and upper bounds such 
that UB/LB ≤ 2. 

Stage C: Partition the interval [LB,UB] into n/ε equal 
subintervals, delete sufficiently close solutions in the 
subintervals, and then find an ε-approximation solution 
using full enumeration of the “representatives” (taking 
only one “representative” from each subinterval). 

This technique is similar to that presented by the au-
thor at the conference EOMAS-2011 and published in 
the conference proceedings [12]. Notice, however, that 
the present paper addresses another type of problem. 
Specifically, the underlying graph G is allowed to have 
cycles, and, in addition, the problem under consideration 
is a problem of minimizing, rather than maximizing, the 

objective function. As a result, the new algorithm has a 
different complexity. 

5.2. Stage A: Finding Preliminary Lower and  
Upper Bounds  

The following greedy technique is applied: Let A = {a1, 
a2, ···, am} be the set of arcs in G(N,A). Denote graph 
G'(N',A') with the same set of nodes, N' = N, and the set 
of arcs A A  . To define A', a binary variable, xai is 
used. If xai = 1 then ai   A’; otherwise ai   A’. The 
arcs in G are ordered according to their non-decreasing 
expected time values:      1 2a a ah , and are 
initialized at 

m m   m
0aix   for any i = 1, ···, h (i.e., the initial 

G’ is a graph with no arcs). Then the xai s are iteratively 
set at    1 21,a ax x 1, 

m

  and each arc is added to the 
graph  until a path is obtained from the source to the 
destination that satisfies the constraint. If all xai = 1 but 
such a path cannot be found, there is no feasible solution. 
Let xk be the last variable set to 1 in the above procedure. 
Then set 0 akm  . Obviously, the optimal total travel 
time (denoted by OPT) must lie between m0 and nm0. In 
cases where the OPT equals zero, the above greedy pro- 
cedure in Stage A finds the exact optimal solution (i.e., a 
path of zero duration); therefore, Stages B and C are not 
required. 

Complexity of Stage A. Sorting the arcs is done in O(h 
log h). Each check of whether the graph G has a feasible 
path on a selected set of arcs requires O(n2) time [13]. 
The total number of checks is O(logh) if a binary search 
is performed in the interval [1, h]. Thus, the complexity 
of Stage A here is O(n2logh).□  

5.3. Stage B: Finding Improved Bounds  

This stage has two building blocks: a test procedure, de-
noted Test (w,ε), and a narrowing procedure denoted 
BOUNDS that uses Test (w,ε) as a sub-procedure. 

5.3.1. Test Procedure (Test(w,ε)) 
Test(w,ε) is a parametric dynamic-programming type al- 
gorithm that has the following property: given positive 
parameters w and ε, it either reports that the minimum 
possible expected travel time M* ≤ w, or, otherwise, re- 
ports that M* ≥ w(1 − ε).  

Test(w,ε) will be repeatedly applied as a sub-procedure 
in the algorithm BOUNDS below to narrow the gap be- 
tween UB and LB until UB/LB ≤ 2.  

Associate with each path p a pair (M,V), where M = 
M(p) is the path expected travel time, and, correspond-
ingly, V = V(p), the variance of path time. Sets S(k) of 
pairs (M,V) are arranged in increasing order of M-values 
so that every pair in S(k) corresponds to a path from the 
start node s to a node k. As in DP, the dominated pairs in 
all S(k) sets are deleted. 
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In addition to dominated pairs, the δ-close pairs are 
deleted as follows: Given a δ, if there are two pairs in 
S(k), (M1, V1) and (M2, V2), such that 0 ≤ M2 – M1 ≤ δ, 
then the pairs are called δ-close. The δ-close pairs are 
discarded from set S(k) according to the following pro- 
cedure: 

1) Let w be a given parameter satisfying LB ≤ w ≤ UB. 
In each S(k), partition the interval [0,w] into n     
equal subintervals of size no greater than δ = εw/n;  

2) If more than one pair from S(k) falls into any one of 
the above subintervals, discard all such δ-close pairs, 
leaving only one representative pair in each subinterval, 
namely the pair with the smallest (in this subinterval) 
V-coordinate. 

3) A pair with (M,V) with M > w (called w-redundant) 
may be discarded. 

The algorithm for Test(w,ε) is presented in Figure 2. 
Proposition 2. The complexity of Test(w,ε) is  

O(hn2/ε),  
Proof: Since the subinterval length is δ = εw/n, there 

are O(n/ε) subintervals in interval [0,w]. Therefore there 
are O(n/ε) representative pairs in sets W and S(k). Further, 
constructing each W in lines 10 - 12 requires O(n/ε) ele- 
mentary operations. Merging the sorted sets W and S(k), 
in line 13, as well as discarding all the dominated pairs, 
is done in linear time (in the number of pairs, which is 
O(n/ε)). In Step 2 the algorithm goes over all the arcs n-1 
times, so that in total, there are O(nh) iterations of lines 
10 - 12. Thus, the total complexity of Algorithm 2 is 
O(hn2/ε). □ 
 

Algorithm 2. The Testing Procedure (Test(w,ε)) 
 
1. Input: G(N,A) |N| = n, |A| = h,  

{(m(i, j), v(i, j)|(i, j) A}; R 
2. Input ε,w 
3. δ←εw/n 
4. Step 1. [Initialization] 
5. Set S(1)={(0,0)}, S(k)← for k = 2 ··· n 
6. Step 2. [Generate S(1) to S(n)] 
7. Repeat n − 1 times   

8.   for each arc (u,k) A   
                (leading from node u to node k) 
9.    W← 
10.   for each pair (M,V) S(u) 
11.   do if V + v(u,k) ≤ R then  
                  W←W {(M + m(u,k), V + v(u,k))} 
12.   endfor 
13.    S(k)←merge(S(k),W); during merging  
        eliminate the dominated and δ-close pairs 
14.   endfor 
15.  End Repeat 
16.  Step 3. Find a pair (M,V) in S(n), such that M ≤ w.
17.  If such a path is found in S(n), return M* ≤ w.  
18.  If such a path cannot be found in S(n)  
                               return M* ≥ w(1 − ε)  

Figure 2. The testing procedure test (v, ε). 

5.3.2. The Narrowing Procedure (BOUNDS) 
The narrowing procedure presented in this section (Fig- 
ure 3) is adapted from the procedure suggested by Ergun 
et al. [14] for solving the restricted shortest path. Namely, 
when Test(w,ε) runs, the ε value is chosen as a function 
of UB/LB, and this value is updated from iteration to it-
eration. To distinguish the allowable error (ε) in the 
FPAS from the iteratively changing error in the testing 
procedure, the latter is denoted as θ. The complexity of 
BOUNDS is O(hn2). The proof is the same as that of 
Lemma 5 in [14].  

5.4. Stage C: The ε-Approximation Algorithm  

Stage C is initiated with LB and UB values satisfying 
UB/LB ≤ 2, and obtains an ε-approximation path. 

Associate with each path p a pair (M,V), where M = 
M(p) is the path expected time, and, correspondingly, V = 
V(p) is the path variance. Sets S(k) of pairs (M,V) are 
arranged in increasing order of M-values so that every 
pair in S(k) corresponds to a path from the start node s to 
a node k. As in DP all the dominated pairs are deleted in 
all S(k) sets. 

In addition to dominated pairs, the δ-close pairs are 
deleted as follows: Given a δ, if there are two pairs in 
S(k), (M1, V1) and (M2, V2), such that 0 ≤ M2 – M1 ≤ δ, 
then the pairs are called δ-close. The δ-close pairs are 
discarded from each set S(k) according to the following 
procedure: 

1) In each S(k), partition the interval [0,UB] into 
  UB LB n     equal subintervals of size no greater 

than δ = εLB/n; 
2) If more than one pair from S(k) falls into any one of 

the above subintervals, discard all such δ-close pairs, 
leaving only one representative pair in each subinterval, 
namely the pair with the largest (in this subinterval) 
V-coordinate. 

3) A pair (M,V) with M > UB may be discarded. 
The corresponding algorithm is presented in Figure 4. 

 
Algorithm 3. BOUNDS 
1. Input: LB and UB such that UB/LB ≤ n. 
2. Output: LB and UB such that UB/LB ≤ 2 
3. If UB/LB ≤ 2, Goto 10 

4. Set 1UB LB     

5. Set  1w L B UB     

6. Run Test(w, ) 

7. If Test(w,  ) returns that M* ≤ w then set UB←w 

8. else set UB←w(1 − ) 

9. Go to line 3 
10. Return the improved LB,UB 
11. End 

Figure 3. BOUNDS algorithm. 
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lines 11 - 13 requires O(n/ε) elementary operations, since 
W is constructed from a single S(k). Merging the sorted 
sets W and T, in line 14, as well as discarding all the 
dominated pairs, is done in linear time (in the number of 
pairs, which is O(n/ε)). In Step 2 there are O(nh) itera- 
tions of lines 11 - 13. Thus, Algorithm 4 has the com- 
plexity of O(hn2/ε) in total. Since step C dominates steps 
A and B of the algorithm, the complexity of the entire 
approximation algorithm is O(hn2/ε). □ 

Algorithm 4.  
The ε-approximation algorithm AA (LB, UB, ε) 
1. Input: G(N,A) |N| = n, |A| = h,  
    {(m(i,j), v(i,j)|(i,j)A}; R 
2. Input UB, LB, ε 
3. δ←εLB/n 
4. Output: ε-approximation path such that path  
    expected time is at most (1 + ε)OPT  
5. Step 1. [Initialization] 
6. Set S(1) = {(0,0)}, S(k)← for k = 2 ··· n 
7. Step 2. [Generate S(2) to S(n)] 
8. Repeat n − 1 times  
9.   for each arc (u,k)A  
               (leading from node u to node k) 
10.    W← 
11.   for each pair (M,V) S(u) 
12.   do if V + v(u,k) ≤ R then  
               W ← W {(M + m(u,k), V + v(u,k))} 
13.   endfor 
14.   S(k)←merge(S(k),W); during merging  
        eliminate the dominated and δ-close pairs 
15.   endfor 
16.  End Repeat 
17. Step 3. [Determine approximate solution] 
18. find min M in S(n), denote it by ans  
19. Return ans as the ε-approximation expected time,
      use backtracking to find the path 
20. The path’s expected time is at most (1 + ε) OPT. 

6. Example  

This section presents a practical numerical example of an 
application of the model. Figure 5(a) shows a Google 
Map representation of a region in Tel Aviv. Assume that 
a car accident has occurred at the point denoted “Acci- 
dent” on the map, and the nearest ambulance originates 
from the point denoted “Start”. The destination point for 
transporting accident victims is the Tel Aviv Sourasky 
Medical Center, denoted SMC on the map. The ambu- 
lance driver needs to choose the route with minimum 
expected time, satisfying the constraint that the route 
time variance does not exceed a given threshold R = 4. 
The corresponding graph with 10 main crossroads and 23 
main possible roads is presented in Figure 6. Real-life 
data are obtained by a statistical survey and presented in 
Table 1; all the numbers in the table are given in minutes. 
The last two lines are the average times and correspond- 
ing variances. The restricted shortest route found by our 
algorithm is shown in Figure 5(b). Its total response time 
is 6.6 with a variance of 3.67, which is less than the al-
lowed value of R = 4. Notice that the shortest unrestricted 
route in this problem has a total duration of 4.9 minutes,  

Figure 4. The ε-approximation algorithm AA (LB, UB, ε). 
 

Theorem 1. The complexity of AA (LB, UB, ε) is  
O(hn2/ε). The complexity of the entire three-stage FPTAS 
is O(hn2/ε). 

Proof: Since the subinterval length is δ = εLB/n, there 
are O(n(UB/LB)(1/ε)) subintervals in interval [0,UB], and 
since UB/LB ≤ 2, it comes to O(n/ε) subintervals in in- 
terval [LB,UB]. Therefore, there are O(n/ε) representative 
pairs in any set W, T and S(k). Constructing each W in  
 

Table 1. Point to point times (in minutes). 

9→108→108→9 7→9 7→8 6→7 5→6 3→6 3→5 3→4 2→4 2→3 1→2  

0.82 1.75 3.47 0.63 0.54 0.77 1.57 1.84 0.25 1.18 3.99 0.83 0.20 1 

1.01 0.11 3.85 0.17 0.64 0.76 2.26 1.29 0.21 1.14 4.27 0.85 0.26 2 

0.77 0.82 4.84 0.66 2.50 0.54 2.71 1.34 0.26 1.02 3.61 0.79 2.53 3 

1.07 0.50 2.58 1.90 0.29 0.24 2.06 1.27 0.21 1.30 3.80 0.73 0.31 4 

1.15 0.56 2.24 0.52 0.41 0.59 2.08 0.44 0.40 1.56 3.25 0.91 0.26 5 

0.97 0.76 3.40 0.20 0.70 1.09 1.69 0.34 0.15 1.47 3.21 0.68 0.24 6 

0.78 0.56 0.60 0.93 0.61 1.60 2.20 1.25 0.20 1.30 2.93 0.76 0.31 7 

1.12 1.57 3.35 0.35 0.80 0.81 2.42 1.07 0.20 0.99 3.39 0.78 0.32 8 

0.93 0.52 2.22 1.98 0.50 0.36 1.60 0.98 0.20 1.60 3.63 0.80 0.33 9 

0.99 1.44 2.07 0.53 0.37 1.09 2.10 1.10 3.50 1.13 3.18 0.75 0.51 10 

0.96 0.86 2.86 0.79 0.74 0.79 2.07 1.09 0.56 1.27 3.53 0.79 0.53 Average 

0.14 0.54 1.18 0.65 0.64 0.40 0.37 0.44 1.04 0.22 0.41 0.07 0.71 Data variance 
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(a) 

 
(b) 

Figure 5. (a) Accident area map (Google Maps); (b) A restricted shortest path found. 
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Figure 6. Graph corresponding to main roads. 

 
but its variance is 9.75, which exceeds the given thresh- 
old, R = 4. In the worst case, the practical realization of 
this (random) path duration may be 15 minutes, which is 
unacceptable in practice. 

They have the following advantages when applied to real- 
time emergency vehicle routing dispatching: 
 The emergency vehicle dispatching model can use 

real-time traffic information to dynamically compute 
the shortest paths. The model’s ability to utilize real- 
time information can improve EVR performance 
greatly, especially when traffic is dense and there is 
significant congestion in the road networks. 

7. Concluding Remarks  

Emergency vehicles are essential for population security. 
They must respond to emergency situations as quickly as 
possible and operate under varying conditions. This stu- 
dy improves the state of the art in emergency vehicle 
routing by introducing stochastic path planning taking 
the traffic variability into account. The paper’s results de- 
monstrate that stochastic path planning can reduce emer- 
gency vehicle travel time in practice. Stochastic path 
planning shows significant benefits over static path plan-
ning. Thus, in situations in which traffic is intensive and 
highly variable, stochastic path planning can play a sig-
nificant role in saving lives.  

 The model incorporates a flexible strategy and mathe- 
matical optimization using efficient enumeration of 
numerous routes. This model ensures that the EVR 
system works efficiently in most real-life situations.  

 The system enables responders to handle emergency 
situations in a timely fashion, i.e., with minimal re- 
sponse times. The proposed algorithm is capable of 
generating solutions in which travel time variance 
does not exceed a predetermined threshold; this prop- 
erty is especially important in urban areas with inten-
sive and highly variable traffic. Notice that standard 
shortest path algorithms do not possess this property. 
An example of a practical application of the algorithm 
is given in the previous section.  

Future research can expand this work in several direc- 
tions. First, it would be of interest to develop more real-
istic model formulations that can handle other types of 
traffic constraints and additional delay factors encoun- 
tered in the real world. Along with the typical constraint 
considered in this paper, according to which the variance 
of the path travel time cannot exceed a prescribed value, 
other types of probabilistic constraints are of interest; for 
instance, future models may pose constraints on the 
probability that path travel time exceeds a given value. A 
second potential focus for future work is to design new 
improved algorithms for solving these models. Further- 
more, it would be beneficial both from theoretical and 
practical points of view to extend the exact and approxi- 
mation algorithms proposed herein to solve more general 
lot-sizing and scheduling problems with stochastic pa- 
rameters. These algorithms could subsequently be com- 
pared with the procedures available in existing comer- 
cial software systems.  

An efficient routing algorithm is an indispensable com- 
ponent of commercial transportation software such as 
Google Maps [15], GAMS_Transportation Problem Sol- 
ver [16], and TransCAD [17]. More than that, the con-
strained routing problem considered in this paper is not 
only of interest on its own; actually, it arises as a sub- 
problem in many more general optimization problems 
such as planning and scheduling problems [18], lot-siz- 
ing problems [19] and facility location problems [20]. 
The efficient algorithm for finding the fastest (or cheap-
est, most profitable, robust, etc.) route usually serves as a 
subroutine in more general algorithms developed for 
solving these problems. 

This paper proposes an auxiliary dynamic program- 
ming approach for developing a fast routing strategy. 
Since for a large-scale network the complexity of this 
type of algorithm might be high, a fast approximation 
algorithm—based on a technique called interval parti- 
tioning [9] is introduced. This is the first study to use this 
approximation technique to solve a problem with uncer- 
tain data. To summarize, the mathematical model and 
algorithms presented in this paper can serve a basis for 
future real-time emergency vehicle dispatching systems.  
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Incorporation of the models and algorithms presented 
in this paper into a commercial vehicle dispatching sys- 
tem may improve system performance, and assessment 
of the real-world applicability of these algorithms con- 
stitutes another attractive direction for future research. 
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