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ABSTRACT 
Multiple attribute decision analysis (MADA) problems in the situation of belief group decision making (BGDM) are a 
special class of decision problems, where the attribute evaluations of each decision maker (DM) are represented by 
belief functions. In order to solve these special problems, in this paper, TOPSIS (technique for order preference by 
similarity to ideal solution) model is extended by three approaches, by which group preferences are aggregated in dif-
ferent manners. Corresponding to the three approaches, three extended TOPSIS models, the pre-model, post-model, 
and inter-model, are developed and their procedures are elaborated step by step. Aggregating group preferences in the 
three extended models respectively depends on Dempster’s rule or its modifications, some social choice functions, and 
some mean approaches. Furthermore, a numerical example clearly illustrates the procedures of the three extended 
models for BGDM. 
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1. Introduction 
Recently, the uncertain multiple attribute decision analy-
sis (MADA) problems with a group of decision makers 
(DMs) have been widely studied in the literature, in which 
the attribute evaluations are unknown, vague, partial 
known, or imprecise. The representative solution is to 
construct a fuzzy TOPSIS (technique for order preference 
by similarity to ideal solution), a classical modified ap-
proach for uncertain MADA problems, to choose the best 
one from a set of alternatives [2-4, 18, 20, 30]. 

However, compared with the Dempster-Shafer theory 
(DST) [5,23], the operators of fuzzy set theory (FST) to 
aggregate group preferences, which are usually the ar-
ithmetical mean, the geometric mean, or their modifica-
tions, are less adaptable and available. Hence, this paper 
uses the DST to describe uncertain MADA problems; that 
is to say, it uses basic belief assignments (bbas) to repre-
sent uncertain attribute evaluations. 

In practice, due to the one-to-one correspondence be-
tween the bba and the belief function [23], the bba is 
usually either elicited from experts, or constructed from 
observation data. To transform qualitative experts’ opin-
ions into bbas, some methods have been proposed by 
Wong and Lingras [31], Bryson and Mobolurin [1], and 
Yaghlane et al. [34]. Using the bba to represent uncertain 
group attribute evaluations, one correspondingly converts 
the group decision making (GDM) to the belief group 
decision making (BGDM). 

To solve MADA problems in the situation of BGDM, 
the original TOPSIS [15] is extended by three approaches 
described in [25]. Their operators to aggregate group 
preferences are respectively the pre-operation, 
post-opera- tion, and inter-operation. 

Based on Yang’s rule and utility based equivalent 
transformation of the assessments on different frames of 
discernment [35], the evaluations on different attributes 
related to different frames can be unified to become the 
ones on a common frame. Furthermore, the positive and 
negative preference vectors of DM, the positive ideal 
solution of belief (PISB), and the negative ideal solution 
of belief (NISB) are constructed. The preference vectors 
avoid the possible paradoxes between the calculating 
ranks of alternatives and the fact of DM’s preference, and 
the PISB and NISB are used to determine the ranks of 
alternatives. The detailed extended models are explained 
step by step in Section 3. 

The rest of this paper is organized as follows. In Section 
2, the related foundations are reviewed. Section 3 dis-
cusses three extended models in accord with three ap-
proaches to aggregating group preferences, the 
pre-operation, post-operation, and inter-operation, in or-
der to make solutions to BGDM. A numerical example is 
given in Section 4 to illustrate the procedures of three 
extended models and their differences. At last, Section 5 
concludes this paper. 

2. Review of Related Foundations 
2.1. Basics of bba 
In a specific application domain, the DST first defines Ω, 
called the frame of discernment, containing N exhaustive 
and exclusive hypotheses. Let 2Ω denote the power set 
composed of 2N propositions of A such that A⊆Ω. 

Definition 1. Let Ω denote a frame of discernment, and 
S be a piece of arbitrary evidence source (ES) on Ω. Thus, 
the bba of ES is defined by m: 2Ω→ [0, 1]. This function 
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verifies the following properties [5, 23]:  

( )A m A⊆Ω∑ =1.                            (1) 

In Shafer’s original definition, m is called basic prob-
ability assignment (bpa) [23] with condition m (Ø) =0. 
However, since transferrable belief model (TBM) was 
proposed as a model of uncertainty [28], condition m (Ø) 
=0 has been omitted. Subsets A of Ω such that m (A)>0 are 
called focal elements of m. 

Definition 2. Let a power set on Ω be defined as 2Ω= 
(B1, B2, …, Br), where r=|2Ω|, the cardinality of 2Ω. Sup-
pose bbai (1≤i≤n) represents the distribution on 2Ω, thus 
bbai = (xi1,xi2,…,xir) satisfies: 

xij≥0, 0≤j≤r-1,                              (2) 
1

0

r
ijj

x−

=∑ =1, i=1, 2, …, n.                       (3) 

Given A⊆Ω, the mass m(A) represents the belief that 
supports A, and that, due to lack of the information and 
knowledge, does not support any strict subset of A. 

Let m1 and m2 be two bbas defined on Ω. Satisfying the 
closed world assumption, the normalized Dempster’s rule 
of combination is defined as [5,23] 

),()())(( 21,,21 CmBmkAmm ACBCB∑ =Ω⊆∗=⊗ I
  (4) 

where 1
1 2, ,

1 ( ) ( )
B C B C

K m B m C−
⊆Ω =∅

= −∑ I
,          (5) 

(m1⊗ m2)(Ø)=0.                            (6) 

Here, , , 1 2( ) ( )B C B C m B m C⊆Ω =∅∑ I  is the mass of the 
combined belief allocated to the empty-set before nor-
malization. Dempster’s rule is meaningful and can be 
applied only when , , 1 2( ) ( )B C B C m B m C⊆Ω =∅∑ I ≠1. 

2.2. Basics of TOPSIS 
2.2.1. MADM.  
MADM problems are a class of decision problems simply 
denoted by  
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n
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,                       (7) 

where Ai (1≤i≤m) denotes the ith alternative, Cj (1≤j≤n) 
denotes the jth attribute, and vij (1≤i≤m, 1≤j≤n) de-
notes the assessment of DM to the attribute Cj of alterna-
tive Ai. 

Suppose W=(w1, w2, …, wn) such that 
1

n
jj

w
=∑ =1 is a 

weight vector, where wj denotes the weight of Cj. 

MADM problem solving includes: 

(a) Construct the attribute set of system assessment and 
correlate system performance and objective; 

(b) Confirm the available alternative set for imple-
menting the objective; 

(c) Evaluate all alternatives according to the attribute 
set and give vij (1≤i≤m, 1≤j≤n). 

(d) Apply normalized analysis methodologies to 
MADM problems; 

(e) Make choice of the best alternative; 

(f) Collect new information and start with a new deci-
sion procedure for MADM problems if the resulting al-
ternative can not be accepted. 

Steps (a) and (e) orient to DM, but others to applica-
tions. In Step (d), DM expresses his/her preference ac-
cording to the relative importance of every attribute, for 
example, setting wj. 

2.2.2. TOPSIS  
The TOPSIS is an important practical technique to solve 
MADA problems originating from the concept of a dis-
placed ideal point from which the compromise solution 
has the shortest distance [36]. In the view of Hwang and 
Yoon [15], the rating of alternative depends on the short-
est distance from the positive ideal solution (PIS) and the 
farthest distance from the negative ideal solution (NIS) or 
nadir. Compared with the Analytic Hierarchy Process 
(AHP) [22], the TOPSIS fits the cases with a large num-
ber of attributes and alternatives. 

In [15], Hwang and Yoon partition attributes into three 
classes: benefit ones, cost ones and non-monotonic ones. 
The different classes of attributes correspond to different 
normalization methods in order to fit different real-world 
situations, i.e. the vector normalization, the linear nor-
malization, and the non-monotonic normalization. 

Practically, the TOPSIS and its extensions are used to 
solve many theoretical and real-world problems, such as 
decision making with fuzzy data [16] or interval data 
[17], decision support analysis for material selection of 
metallic bipolar plates [24], evaluating initial training 
aircraft under a fuzzy environment [29], or in-
ter-company comparison [6]. 

A general flow of TOPSIS involves: 

1) Normalize decision matrix V= (vij)m×n. 

The decision matrix V is transformed to a normalized 

matrix R by 

∑ −

=
m

k kj

ij
ij

v

v
r

1
2

 (1≤i≤m, 1≤j≤n), where 

rij is the normalized one of vij. 

2) Calculate weighted decision matrix Z=(zij)m×n. 
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The normalized matrix R is transformed to a weighted 
decision matrix Z such that zij=wj·rij (1≤i≤m, 1≤j≤n), 
where wj denotes the weight of Cj such that 

1

n
jj

w
=∑ =1. 

3) Determine PIS and NIS. 

The PIS and NIS are respectively  

A+= { 1z
+ , 2z+ , …, nz+ }={( max

j
zij| j∈Ωb), ( min

j
zij| 

j∈Ωc)}, 

A-= { 1z
− , 2z− , …, nz− }={( min

j
zij| j∈Ωb), ( max

j
zij| 

j∈Ωc)}, 

where Ωb and Ωc are benefit attribute set and cost attribute 
set, respectively. 

4) Compute the separation measures of each alternative 
from the PIS and NIS. 

The separation measures of each alternative from the 
PIS and NIS are respectively 

2
1
( )n

i ij jj
D z z+ +

=
= −∑ , i=1, 2, …, m, 

2
1
( )n

i ij jj
D z z− −

=
= −∑ , i=1, 2, …, m. 

5) Calculate the closeness coefficient of each alterna-
tive. 

The closeness of each alternative can be defined as  

RCi= i

i i

D
D D

−

+ −+
，i=1, 2, …, m. 

6) Rank the preference order. 

The alternative set denoted by Ai (1≤i≤m) is ranked by 
means of RCi, which indicates what the best alternative is. 

2.3. Discussion 
The original TOPSIS has the ability to effectively solve 
general MADM problems for one DM, which can easily 
extended to deal with the situation of GDM. 

In the work of Shih et al. [25], they constructed an in-
ternal extended model of TOPSIS for GDM, in which the 
steps were updated involving the decision matrix nor-
malization, distance measures, and aggregation operators. 
One can obviously realize that the internal model never 
fits external extensions of TOPSIS associated with the 
pre-operation and post-operation. Furthermore, it is not 
suitable for the internal extension of TOPSIS in this 
study, where uncertain group evaluations are represented 
by bbas. 

In Section 3, three extended models for BGDM, re-
cently researched by Fu etc. in [10-12], are elaborated step 
by step, corresponding to the pre-operation, 
post-operation, and inter-operation. 

3. Solutions to Belief Group Decision Making 
According to the classes of group preference aggregation 
proposed by Shih et al. [25], we extend the original 
TOPSIS to be available for BGDM situation by three 
approaches, corresponding to the pre-operation, 
post-operation, and inter-operation. Three extended 
TOPSIS models are respectively named as pre-model, 
post-model, and inter-model. The detailed procedures of 
the three models are interpreted as follows. 

3.1. Pre-model 
The pre-model is composed of the following steps. 

Step 1: Construct initial group belief decision matrices 
(BDMs). 

The initial BDM of each DM can be defined as fol-
lows: 
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                      (8) 

where Ai (1≤i≤m) denotes the ith alternative, Cj (1≤j≤n) 
denotes the jth attribute, and t

ijy  (1≤i≤m, 1≤j≤n, 
1≤t≤T) denotes the belief assessment of DM t to the 
attribute Cj of alternative Ai. Let Ωj (1≤j≤n) be the frame 
of discernment used to generate the assessments on the 
attribute Cj. In terms of Definition 2, we have t

ijy  = 

j

t
iBΩ  = 1 2( , , , )

j

t t t
i i irb b bK , where | 2 |j

jr Ω= . 

Convenient to decide the PISB and NISB, the distribu-
tion of power set on Ωj is specified in Definition 3. 

Definition3. Let Ωj be the frame of discernment used 
to generate the assessments on the attribute Cj (1≤j≤n), 
and 1 22 ( , , , )j

jrB B BΩ = K  be the distribution of an arbitrary 

power set on Ωj, where | 2 |j
jr Ω= . Suppose the cardi-

nality of Bk is increasing along the increase of k. Fur-
thermore, we assume B1 = Ø (empty-set), B2 and B3 re-
spectively correspond to the single positive ideal element 
(SPIE) and the single negative ideal element (SNIE) of 
Ωj. 

The original TOPSIS requires a uniform dimension for 
the assessments on every quantitative attribute. The three 
extensions of TOPSIS for BGDM situation are also con-
strained by this requirement. That is to say, the various 
frames, Ωj (1≤j≤n), have to be transformed to a unified 
frame ΩC so that every attribute can be assessed in a uni-
form, consistent and compatible manner. 

The transformation from Ωj (1≤j≤n) to ΩC is stipulated 
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as Proposition 1. 

Proposition1. Let Ωj be the frame of discernment used 
to generate the assessments on the attribute Cj (1≤j≤n). 
The assessments on Ωj can be equivalently and rationally 
transformed to the ones on a common frame of discern-
ment ΩC. 

In fact, Proposition 1 is clearly correct since two tech-
niques, a rule based one and a utility based one, are in-
vestigated to accomplish the transformation in Proposition 
1 [35]. 

From Proposition 1, t
ijy  in Eq (8) can be transformed 

to a distribution on ΩC. Therefore, the belief attribute 
evaluations of each DM to each alternative are unified in 
the set of distributions on ΩC. In the following, we sup-
pose t

ijy  denotes a distribution on ΩC. 

Step 2: Aggregate group BDMs to form a total BDM. 

From Step 1, we know the BDM of each DM as de-
fined in Eq (8). With the normalized Dempster’s rule of 
combination [5, 23], group BDMs are combined to form a 
total BDM. Let the total BDM be defined in the follow-
ing: 
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                       (9) 

where xij= jiB Ω = 1 2( , , , )
Ci i irb b bK , | 2 |C

Cr
Ω= , 1≤i≤m, 

1≤j≤n. Given any element xij in the total BDM, we 

have
1

T
t

i j ijt
x y

=
= ⊗ , where the operator ⊗  denotes the 

normalized Dempster’s rule of combination as specified 
in Eqs (4) to (6). Here, we suppose all experts have the 
same importance. 

Step 3: Normalize the total BDM. 

Different from the original TOPSIS, xij is not a real 
number but a normalized distribution on ΩC, the Step can 
be omitted. 

Step 4: Assign a total weight vector W to the attribute 
set. 

Let tW  denote the weight vector of each DM as-
signed to the attribute set. We have 

tW = 1 2( , , , )t t t
nw w wK , 1≤t≤T, 

1

n t
jj

w
=∑ =1. The total 

weight vector W can be defined as the arithmetical mean 
of all tW  (1≤t≤T), which is W= (w1, w2, …, wn) such 
that 

1

1 T t
j jt

w w
T =

= ∑ , 1≤j≤n.                      (10) 

Step 5: Determine the total PISB and NISB. 

Before determining the total PISB and NISB, first of 
all we define the PISB and NISB in Definition 4, owing 
to the distribution specification in Definition 3. 

Definition4. Based on the specification in Definition 3, 
given the attribute Cj (1≤j≤n), no matter whether it is 
the benefit attribute or the cost attribute, its PISB and 
NISB are respectively  

C

C

r 2

1 r(0,1,0, ,0 )
−

×

678
K  and

C

C

r 3

1 r(0,0,1,0, ,0 )
−

×

678
K . 

According to Definition 4, by combining the PISB and 
NISB of each attribute, we achieve the total PISB and 
NISB of total BDM. 

Step 6: Calculate the separation measures of each al-
ternative from the total PISB and NISB. 

From Step 5, the total PISB and NISB can be respec-
tively denoted by  

( )
+
× CrnS1 = (0,1,0, ,0,

Cr64748
K  ,L  0,1,0, ,0)

Cr64748
K   

and ( )
−
× CrnS1 = (0,0,1,0, ,0,

Cr6447448
K  ,L  0,0,1,0, ,0)

Cr6447448
K . 

Furthermore, in order to precisely reflect the preference 
of each DM and the physical implication of each subset of 

the distribution on 2 CΩ  when calculating the separation 
measures of each alternative from the PISB and NISB, we 
define the positive preference vector (PPV) 
( 1 , , , ,

C

t t t
k rβ β β+ + +K K ) and the negative preference vector 

(NPV) ( 1 , , , ,
C

t t t
k rβ β β− − −K K ) of each DM for the distribu-

tion on CΩ2  where 
1

1
Cr

t
k

k
β +

=

=∑ , 
1

1
Cr

t
k

k
β −

=

=∑ , | 2 |C
Cr

Ω= . 

Through ordered comparison of any two different subsets 
of the distribution on CΩ2   the PPV and NPV of DM can 

be achieved. We postulate 0t
kβ
+ > , 0t

kβ
− > , if k>1, and 

0t t
k kβ β+ −= = , if k=1, so as to keep all available infor-

mation. Let the positive group preference vector (PGPV) 
and negative group preference vector (NGPV) respec-
tively be ( 1 , , , ,

Ck rβ β β+ + +K K ) and ( 1 , , , ,
Ck rβ β β− − −K K ) such 

that
1

1
Cr

k
k

β +

=

=∑ , 
1

1
Cr

k
k

β −

=

=∑ , we thus have  

1

1 T
t

k k
tT

β β+ +

=

= ∑ ,                              (11) 
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1

1 T
t

k k
tT

β β− −

=

= ∑ .                              (12) 

The PPV and NPV can effectively avoid the possible 
paradoxes between calculating results and the fact of 
DM’s preference as well as physical implications of 
worlds in ΩC. 

Hence, the separation measures of each alternative 
from the total PISB and NISB are expressed as 

2
)1((1

11

)( +
+−

=

+

=

+ −= ∑∑ krjik

r

k
k

n

j
ji C

C

SbwD β    (13) 

and 

2
)1((1

11

)( −
+−

=

−

=

− −= ∑∑ krjik

r

k
k

n

j
ji C

C

SbwD β    (14) 

where 1≤i≤m, | 2 |C
Cr

Ω= , with the approach of 
Euclidian distance [9]. 

Step 7: Compute the closeness coefficient *
iE  of 

each alternative for group. 

The closeness coefficient of each alternative can be 
defined as  

*
iE = /( )i i iD D D− − ++ (1≤i≤m).             (15) 

The larger the value of
*
iE , the better the alternative. 

Step 8: Rank the preference order. 

In terms of *
iE , a set of alternatives will be ranked in 

an incremental order representing group preferences. 

3.2. Post-model 
The post-model is partially the same as the pre-model. 
After the procedure of original TOPSIS, the rank of each 
alternative representing group preferences is determined, 
aided by one of social choice functions [14], such as the 
Borda function in this paper. 

Step 1: Construct initial group BDMs. 

The Step is the same as Step 1 of pre-model. 

Step 2: Normalize the BDM of each DM. 

Same as Step 3 of pre-model, the Step can be omitted. 

Step 3: Assign the weight vector Wt to the attribute set 
for each DM. 

We suppose Wt denotes the weight vector of DM t as-
signed to the attribute set, where Wt= 1 2( , , , )t t t

nw w wK , 

1≤t≤T, 
1

n t
jj

w
=∑ =1. 

Step 4: Determine the PISB and NISB of each DM. 

As specified in Definition 3, the PISB and NISB of each 
DM are respectively denoted by  

( )
+
×
t

rn C
S1 = (0,1,0, ,0,

Cr64748
K  ,L  0,1,0, ,0)

Cr64748
K   

and  

( )
−
×
t

rn C
S1 = (0,0,1,0, ,0,

Cr6447448
K  ,L  0,0,1,0, ,0)

Cr6447448
K , where 

1≤t≤T. 

Step 5: Calculate the separation measures of each al-
ternative from the PISB and NISB of each DM. 

Similar to Step 6 of pre-model, the separation measures 
of each alternative from the PISB and NISB for each DM 
are expressed as 

2
)1((1

11

)( +
+−

=

+

=

+ −= ∑∑ t
krjik

r

k

t
k

n

j

t
j

t
i C

C

SbwD β  (16) 

and  

2
)1((1

11

)( −
+−

=

−

=

− −= ∑∑ t
krjik

r

k

t
k

n

j

t
j

t
i C

C

SbwD β  (17) 

where 1 2( , , , )
Ci i irb b bK = t

ijy , 1≤i≤m, 1≤t≤T, 

| 2 |C
Cr

Ω= . 

Step 6: Compute the closeness coefficient *t
iE  of each 

alternative for each DM. 

The closeness coefficient of each alternative for each 
DM can be defined as  

*t
iE = /( )t t t

i i iD D D− − ++ ,                        (18) 

where 1≤i≤m, 1≤t≤T.  

Step 7: Rank the preference order of each DM. 

In terms of *t
iE , a set of alternatives will be ranked in 

an incremental order representing the preference of each 
DM, where 1≤t≤T. 

Step 8: Give the Borda score of each alternative ac-
cording to the preference order of each DM. 

Suppose the preference order of DM t is 

1
t t t

i mB B BfKf fKf , where t
iB  (1≤i≤m) is the same 

as t
jA  (1≤j≤m). The Borda score of 1

tB  is m-1, the 

ones of 2
tB  and t

mB  are respectively m-1 and 0, and 
the rest may be deduced by analogy. 

Step 9: Aggregate the Borda score of each alternative 
given by each DM. 
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Let the Borda score vectors of each alternative repre-
senting the preference of DM t and group preferences be 
respectively ( 1 , , , ,t t t

i mS S SK K ) and ( 1, , , ,i mS S SK K ). 
We have  

1

T
t

i i
t

S S
=

= ∑ , 1≤i≤m.                         (19) 

Step 10: Rank the preference order for group. 

According to ( 1, , , ,i mS S SK K ), we rank the prefer-
ence order of a set of alternatives for group. 

3.3. Inter-model 
The inter-model is similar to the internal TOPSIS model 
of Shih et al. [25]. It combines the individual separation 
measures of each alternative from the PISB and NISB to 
form group measures within the TOPSIS procedure. 

The first five Steps of inter-model are the same as Steps 
1 to 5 of post-model. 

Step 6: Combine the individual measures of each al-
ternative from the PISB and NISB to form group meas-
ures. 

From Step 5 of post-model, we achieve the individual 
measures of each alternative from the PISB and NISB, 
which are respectively t

iD +  and t
iD −  (1≤i≤m, 1≤t≤T). 

Thus, the group measures of each alternative are respec-
tively  

1

T
t

i it
D D+ +

=
= ⊕                                (20) 

and 

1

T
t

i it
D D− −

=
= ⊕ .                               (21) 

The operator ⊕  can be the arithmetical mean, the 
geometric mean, or their modifications. In this paper, the 
arithmetical mean is our choice. 

Steps 7 and 8 are the same as Steps 7 and 8 of 
pre-model. 

As mentioned above, three extended models are similar 
to each other in many Steps. The main differences lie in 
the aggregation of group preferences. 

In the pre-model, thanks to two strategies of Dempster’s 
rule modification (e.g. [8, 19, 26-27, 32-33]) and source 
modification (e.g. [7, 13, 21]) aiming at combining con-
flicting beliefs, the preference conflicts between different 
DMs can be effectively dealt with. In the post-model, 
some social choice functions [14] can be selected to 
guarantee group preferences aggregation is rational and 
available in different applications. In the inter-model, the 
arithmetical mean, the geometric mean, or their modifi-
cations are used to aggregate the individual separation 
measures of each alternative from the PISB and NISB. 

In practice, how to select the appropriate extended 

model depends on how to select the appropriate approach 
to aggregating group preferences, which is the most 
suitable one for real-world problems. 

4. Numerical Example 
To clearly illustrate the procedures of three extended 
models, a numerical example is shown as follows. 

From Tables 1 to 3, one can know initial group BDMs, 
and the preference vectors and weight vector of each DM. 
There are two attributes, three alternatives, and three 
DMs in this example. Two attributes C1 and C2 are the 
benefit one and the cost one, respectively. Suppose Ω1= 
{good, common}, Ω2= {small, big, common}, ΩC= {first, 
second, third}, according to Proposition 1, the assess-
ments on Ω1 and Ω2 can be equivalently transformed to the 
ones on ΩC. In terms of Definition 3, the power set on ΩC 
is {{Ø}, {first}, {third}, {second}, {first, third}, {first, 
second}, {second, third}, {first, second, third}}. 

As specified in Definition 4, the PISB and NISB are 
respectively (0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0) and (0,0,1,0, 
0,0,0,0,0,0,1,0,0,0,0,0). The decision procedures of three 
extended models will be presented as follows. 

In the pre-model, group belief evaluations are firstly 
combined to form the total BDM displayed in Table 4, 
with the normalized Dempster’s rule of combination. 

Afterwards, according to Eq (10), the total weight 
vector W= (0.6, 0.4) is generated from the weight vectors 
in Table 3. Based on the data in Table 2, the PGPV and 
NGPV are computed respectively as (0,0.03,0.207,0.092, 
0.207,0.05,0.207,0.207) and (0,0.384,0.055,0.163,0.055, 
0.233,0.055,0.055), in terms of Eqs (11) and (12). 

With the above results, the total separation measures 
and the closeness coefficient of each alternative are ob-
tained in Table 5, according to Eqs (13) to (15). 

From Table 5, the preference order of three alternatives 
is known to be A1 f A3 f A2, where the notation “ f ” 
means “prior”. 

In the post-model, first of all the individual separation 
measures and the closeness coefficient of each alternative 
are computed in Table 6. 

The Borda score and rank of each alternative for group 
are generated from the data in Table 6 and shown in Table 
7. 

According to Table 7, three alternatives are ranked by 
the preference order A1f A2=A3. 

In the inter-model, the separation measures and close-
ness coefficient of each alternative for group are achieved 
in Table 8, on the basis of the data in Table 6. 

Three alternatives are ranked with the preference order 
A1 f A2 f A3 according to Table 8. 
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The three preference orders corresponding to three ex-
tended models are pair-wise different. The mediator and 
the requirements of a real application decide which order 
is the best one and which extended model should be ap-

plied. Especially, if the mediator only wants to know the 
best alternative, it is unnecessary to differentiate the three 
orders. 

Table 1. Initial group BDMs 

  C1 C2 
DM1 (0,0.6,0,0,0,0.4,0,0) (0,0.3,0.2,0,0,0.5,0,0) 
DM2 (0,0.5,0,0.2,0,0.3,0,0) (0,0.5,0.2,0,0,0,0.3,0) A1 
DM3 (0,0.4,0,0.2,0,0.4,0,0) (0,0.4,0,0.4,0,0.2,0,0) 
DM1 (0,0.2,0,0.5,0,0,0.3,0) (0,0.6,0.2,0,0,0.2,0,0) 
DM2 (0,0.3,0,0.5,0,0.2,0,0) (0,0.4,0.1,0,0,0,0.5,0) A2 
DM3 (0,0.4,0,0.3,0,0.3,0,0) (0,0.5,0.3,0,0,0.2,0,0) 
DM1 (0,0.2,0,0.8,0,0,0,0) (0,0.2,0.4,0,0,0,0.4,0) 
DM2 (0,0.7,0,0,0,0.3,0,0) (0,0.4,0.2,0.4,0,0,0,0) A3 
DM3 (0,0.6,0,0.1,0,0.3,0,0) (0,0.2,0.6,0,0,0.2,0,0) 

  
Table 2. The preference vectors of each DM 

 1 8( , , )β β+ +K  1 8( , , )β β− −K  
DM1 (0,0.04,0.2,0.1,0.2,0.06,0.2,0.2) (0,0.4,0.05,0.15,0.05,0.25,0.05,0.05) 
DM2 (0,0.03,0.2,0.12,0.2,0.05,0.2,0.2) (0,0.3,0.09,0.14,0.09,0.2,0.09,0.09) 
DM3 (0,0.02,0.22,0.06,0.22,0.04,0.22,0.22) (0,0.45,0.025,0.2,0.025,0.25,0.025,0.025) 

Table 3. The weight vector of each DM

 w1 w2 
DM1 0.5 0.5 
DM2 0.7 0.3 
DM3 0.6 0.4 

Table 4. The total group BDM 

 C1 C2 
A1 (0,0.83,0,0.1,0,0.07,0,0) (0,0.73,0,0.27,0,0,0,0) 
A2 (0,0.17,0,0.83,0,0,0,0) (0,0.8,0.13,0.07,0,0,0,0) 
A3 (0,0.65,0,0.35,0,0,0,0) (0,0.2,0,0.8,0,0,0,0) 

Table 5. The separation measures and closeness coefficient  
of each alternative in the pre-model 

 D+ D- E*= D-/( D-+ D+) rank 

A1 0.06911 0.54954 0.8883 1 
A2 0.2291 0.4715 0.673 3 
A3 0.2005 0.46065 0.6967 2  
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Table 6. The separation measures and the closeness coefficient  
of each alternative in the post-model 

  S+ S- E* 

DM1 0.17117 0.42691 0.7138 
DM2 0.14768 0.41741 0.7387 A1 
DM3 0.13023 0.37762 0.7436 
DM1 0.19925 0.38341 0.658 
DM2 0.227 0.39373 0.6343 A2 
DM3 0.14241 0.36932 0.7217 
DM1 0.29933 0.31937 0.5162 
DM2 0.12822 0.46573 0.7841 A3 
DM3 0.20465 0.37376 0.6462 

Table 7. The Borda score and rank of each alternative 

 Borda score rank 

A1 5 1 
A2 2 2 

A3 2 2 

Table 8. The separation measures and closeness coefficient  
of each alternative in the inter-model 

 D+ D- E*= D-/( D-+ D+) rank 

A1 0.14969 0.40731 0.7313 1 

A2 0.18955 0.38215 0.6684 2 

A3 0.21073 0.38629 0.647 3 
 

5. Conclusions 
Through representing the uncertain attribute evaluations of 
a group of DMs to alternatives by bbas, the common GDM 
is extended to the BGDM. To solve the MADA problems 
in the situation of BGDM, we develop three extended 
TOPSIS models, the pre-model, post-model, and in-
ter-model, associated with three approaches to aggregating 
group preferences, the pre-operation, post-operation, and 
inter-operation. 

For the BGDM, three extended models are elaborated 
step by step, based on the equivalent transformation of the 
assessments on different frames of discernment, the PISB 
and NISB, and the PPV and NPV of each DM. Further-
more, a numerical example clearly illustrates the proce-
dures of three extended models. 

The reliability of experts may be an important factor to 
influence our method. If a group of experts have different 
reliability, their bbas may be discounted [23] before used 
in the three models. The discounting approach is intro-

duced in the original work of Shafer [23]. In practical 
applications, how to decide the reliability of experts may 
be a problem difficult to solve [19]. 

The computational complexity may be a problem for our 
method is on the power set of a frame of discernment. In 
fact, the numerical examples in Section 4 are solved by the 
program made by Microsoft Visual C++ 6.0 within several 
seconds. By testing randomly selected data, we find that 
when |Ω|<13, the solutions can be obtained within several 
seconds. Note that for the MADA problems in the situation 
of BGDM, |Ω|<13 is generally enough to provide the 
satisfactory service for experts. If |Ω| is too large, experts 
will have difficulties to make decisions. Therefore, the 
computational complexity of our method can be effec-
tively solved by the computer program and the real con-
straints of experts’ decision making. 
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