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Abstract 
Image compression techniques aim to reduce redundant information in order 
to allow data storage and transmission in an efficient way. In this work, we 
propose and analyze a lossy image compression method based on the singular 
value decomposition using an optimal choice of eigenvalues and an adaptive 
mechanism for block partitioning. Experiments are conducted on several im-
ages to demonstrate the effectiveness of the proposed compression method in 
comparison with the direct application of the singular value decomposition. 
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1. Introduction 

Advances in digital imaging and video acquisition equipments, such as cameras, 
cell phones, and tablets, have enabled the generation of large volumes of data. 
Many applications use images and videos, such as medicine [1], remote sensing 
[2], microscopy [3], surveillance and security [4]. 

Adjacent pixels in images and videos usually have a high correlation, which 
leads to redundancy and demands high storage consumption. In order to reduce 
the space required and the transmission time of images and videos, several com-
pression techniques have been proposed in the literature. These techniques ex-
plore data redundancies and are generally classified into two categories of com-
pression methods: lossless and lossy. 

In lossless compression methods, the original data can be completely recov-
ered after the decompression process [4], whereas, in lossy compression me-
thods, certain less relevant information is discarded, such that the resulting im-
age is different from the original image. Ideally, this loss should be tolerated by 
the receiver [4]. 
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As the main contribution of this work, we present and evaluate a lossy-based 
image compression method based on the singular value decomposition (SVD) 
technique [5] [6]. The originality of the method resides mainly in the choice of 
eigenvalues and the partitioning of the images in an adaptive way, as well as a 
detailed investigation in the use of the SVD for the image compression. Experi-
ments show that the proposed method is able to achieve better results than those 
obtained with the direct application of SVD. In addition, new insights to the 
singular value decomposition-based compression method are provided. 

This paper is organized as follows. Some relevant concepts and approaches 
related to the topic under investigation are briefly described in Section 2. The 
proposed method for image compression using singular value decomposition is 
presented in Section 3. The results are reported and discussed in Section 4. Final 
considerations are presented in Section 5. 

2. Related Work  

Compression techniques [7]-[16] play an important role in the storage and 
transmission of image data. Their main purpose is to represent an image in a 
very compact way, that is, through a small number of bits without losing the es-
sential content of the information present in the image. 

Image compression methods are generally categorized into lossless and lossy 
approaches [17] [18] [19]. In lossless compression, all information originally 
contained in the image is preserved after it is uncompressed. In lossy compres-
sion, only part of the original information is preserved when the images is un-
compressed. 

Image compression methods are based on reducing redundancies in the data 
representation. The redundancies present in images can be divided into three 
categories [4] [20]. The coding redundancy refers to the use of a number of bits 
greater than absolutely necessary to represent the intensities of the pixels of the 
image. The interpixel redundancy is associated with the relation or similarity of 
neighboring pixels. Finally, the psychovisual redundancy concerns the imper-
ceptible details of the human visual system. 

Some lossless compression methods that explore coding redundancy are 
Huffman coding [21], Shannon-Fano coding [22], arithmetic coding [23] and 
dictionary-based encoding such as LZ78 and LZW [24]. Run-length coding [25], 
bit plane coding [26] and predictive coding [27] explore interpixel redundancy. 
Lossy compression methods, such as predictive coding by delta modulation (DM) 
[28] [29] or by differential pulse-code modulation (DPCM) [30] and transform 
coding [31] [32], typically explore psychovisual redundancy. 

A common transformation employed in image compression is the singular 
value decomposition (SVD). Waldemar et al. [33] proposed a hybrid system with 
Karhunen-Loéve (KL) vectors and SVD for image compression. Ranade et al. [34] 
performed permutations on the input image as a preprocessing, before applying 
the SVD. Rufai et al. [35] combined the SVD with wavelet difference reduction 
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(WDR), in which the input image is first compressed using the SVD and then 
compressed again with the WDR. 

In this work, we apply the use of singular value decomposition in image com-
pression and analyze its use locally and with an optimal choice of eigenvalues. 

3. Adaptive Image Compression  

In this section, we present our adaptive image compression approach based on 
singular value decomposition, the image partitioning process and the compres-
sion evaluation metrics. 

3.1. Image Compression  

The diagram presented in Figure 1 presents the main steps of the image com-
pression and decompression method proposed in this work. The compression 
algorithm has as input an image n pI ×  and, as output, the compressed image 
represented by the singular value decomposition matrices in a binary file. The 
decompression algorithm has as input the binary file containing the decomposi-
tion matrices and, as output, an image n p n pJ I× ×≈ . The steps of the method are 
presented in detail as follows. 

Initially, we calculate the singular value decomposition (SVD) for the entire 
image. The SVD of a real matrix n pA ×  corresponds to the factorization  

TA U V= Σ  

where U is a real unit matrix n n× , Σ  is a diagonal rectangular matrix n p×  
with diagonal nonnegative real numbers and V is a real unit matrix p p× . 

Since U and VT U are real unitary matrices, then TUU I=  and TVV I= , 
where I is the identity matrix. Thus, U and VT are orthogonal matrices. The 
columns of U are the eigenvectors of the matrix TAA , the columns of V are the 
eigenvectors of the matrix TA A  and the diagonal elements of the matrix Σ  
are the square roots of eigenvalues of TAA  or TA A . The eigenvalues are ar-
ranged in the matrix Σ  in descending order, that is, if iσ  are the diagonal 
elements of Σ , then 1 2 0nσ σ σ≥ ≥ ≥ > . Then,  
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Using the entire SVD arrays, with 1, , nσ σ , would typically make SVD ma-
trices larger than the original matrix. Since we are interested in lossy compres-
sion, some of the eigenvalues above a certain iσ  can be discarded, decreasing 
the final size of the three matrices. 

Considering that the iσ  elements are sorted in descending order, the first 
terms T

i i iσu v  contribute more significantly to the summation. Thus, we deter-
mine the i value that optimizes  
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Figure 1. Main stages of the image compression and decompression process. 

 
( )( ) ( )( )opt_value arg max 1 i ii
α λ α δ= − +              (2) 

where iλ  is the variance maintained by choosing the first i eigenvalues, calcu-
lated as  
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1i i iλ λ σ−= +                          (3) 
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σ
σ

σ
=
∑

 and iδ  is the relative redundancy of data, which can be ex-

pressed as  
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δ + +

= −                          (4) 

The factor α  is used to weight the two terms, calculated as  
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1 , otherwise
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0.6, otherwise
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′ <
= 


                       (6) 

The adaptive choice of the i value is made by means of the optimization de-
scribed previously and not by assigning a fixed minimum variance, as in many 
approaches of the literature [33] [34]. The motivation for this decision lies in the 
fact that we will consider a given eigenvalue if the cost to add it will compensate 
for the significance it carries, that is, adding the eigenvalue 1iσ +  would increase 
the number of bytes in the compressed image as opposed to improving the im-
age quality. 

In addition, other methods available in the literature [33] [34] do not consider 
or discuss the fact that the matrices generated by the SVD are real numbers 
(usually 64 bits), whereas an image is typically integer (8 bits), which makes the 
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direct application of SVD unfeasible. Thus, we apply a rounding in the matrices 
obtained by the decomposition, so that we consider only the first three decimal 
places. This rounding can be expressed as  

10 0.5df h = +                           (7) 

where h is the original value of the (real) matrix and f is the value obtained after 
rounding (integer). In this work, we consider 3d =  for two main reasons. First, 
this will cause us to have 3-digit numbers since the original values are in the 
range [ ]0,1 , which is interesting because the linear transformation that will be 
applied considers the interval from 0 to 255. Thus, a lower degree of loss will be 
obtained by changing the range of numbers. In addition, using smaller values for 
d showed, empirically, a great loss of information, whereas using larger values 
did not show significant improvement. This rounding is not applied to the Σ  
matrix, since its value is not between 0 and 1. 

Then, we apply a linear transformation that maps the original interval to the 
range 0 to 255 expressed as  

( )max min
min min

max min

g g
g f f g

f f
−

= − +
−

                 (8) 

where minf  and maxf  are the minimum and maximum values of the matrix, 
respectively, whereas ming  and maxg  are 0 and 255, respectively. The variable f 
represents the original value and g the value obtained after the transformation. 

Then, the image is divided into four blocks of the same size, and the compres-
sion is recursively applied to each of the blocks. This division is performed until 
the image has a certain minimum size. A quadtree decomposition is formed 
from this process, where the inner nodes represent the divisions of the image 
and the leaf nodes represent the SVD matrices. 

Figure 2(a) presents an example of a binary image of 4 4×  pixels. White 
pixels have a value of 0, whereas black pixels have a value of 1. The rank of the 
matrix representing this image is 4r =  since no row or column is linearly de-
pendent on the other. Figure 2(b) presents a partitioning, in which only pixels 
of the same intensity were kept together. The quadtree corresponding to the di-
vision performed is illustrated in Figure 2(c). 

Since all regions have pixels of the same intensity, the rank of each region in 
Figure 2(b) is equal to 1r = . Figure 2(d) presents an image where 4 pixels are 
black, but with another configuration. This image has rank 1r = , which shows 
a dependence of the rank and, consequently, of the good performance of the 
SVD in relation to the image content. 

 

 
Figure 2. Example of image partitioning using the quadtree decomposition.  
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The number of units (number of values) required to store the SVD matrices 
can be expressed as  

Units r pr nr= + +                       (9) 

where r is the rank, whereas p and n are the dimensions of the original image. 
The first term of the sum (r) corresponds to the diagonal matrix size Σ , whe-
reas the other values correspond to the two other matrices U and V. Thus, the 
number of units needed to store the image shown in Figure 2(a) is given by  

( )( ) ( )( )4 4 4 4 4 36+ + =                    (10) 

On the other hand, for the image after partitioning, illustrated in Figure 2(b), 
the number of units can be calculated as  

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

1 2 1 2 1 5

1 1 1 1 1 3

5 2 3 8 34

+ + =

+ + =

+ =

                     (11) 

We note that, for this division in the image, the number of units needed to 
store the SVD matrices has decreased. The amount of units needed to store SVD 
matrices with the division (considering all divisions with the same rank) is 
smaller than in the entire image, since  

( ) ( )
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                 (12) 

where r′  is the rank of the matrices after division and r′  is the rank of the 
original matrix. 

In our method, we determine the best alternative, that is, whether the decom-
position will be calculated in the entire image or in its four blocks, from the op-
timal value calculated with Equation (2). Thus, the block division will be chosen 
if  

4

0
opt_value

opt_value
4

j
j=>
∑

                 (13) 

where opt_value is the optimal value for the entire image and opt_value j  is the 
optimal value for the j-th block. 

For color images, a decomposition is calculated separately for each color 
channel. Finally, having the necessary information, the compressed image is 
stored in a binary file. Figure 3 shows the protocol used to store the image, with 
header and data. 

The binary file has at its beginning a global header, shown in Figure 3(a). In 
this header, three values are stored: the width (n) and height (p) of the image,  
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Figure 3. Image representation in a binary file.  

 
and the number of channels (ch) of the image. They determine the size of each 
node in the tree, which is necessary to correctly retrieve the data in the decom-
pression step. 

The tree nodes are stored, as shown in Figure 3, having a local header and 
data. The first information in this header is the type of node: 1) internal or 2) 
leaf. For internal nodes, we do not have data, but four children. Thus, after an 
internal node, four other nodes are expected. For the leaf nodes, besides the 
node type, we have the rank value r, the minimum and maximum values of each 
of the matrices. Finally, we have the data for that particular node. 

Given the compressed image, the file is read and the tree is reconstructed. For 
each SVD matrix, a linear transformation is applied in order to return it to the 
original interval. This is done by using Equation (8), where, in this case, minf  
and maxf  are 0 and 255 and ming  and maxg  are the various minimums and 
maximums of the original matrix. Next, we apply a transformation inverse to 
that made in Equation (7) to retrieve the decimal values. Finally, the matrices are 
multiplied to obtain an uncompressed image. 

3.2. Evaluation Metrics  

We evaluated the compression under two different aspects: the size of the com-
pressed image and the quality of the uncompressed image. For the first, we 
adopted the compression rate that can be expressed as  

( )
( )

S I
S

S I
=

′
                         (14) 

where ( )S I  refers to the size of the uncompressed image in bytes, whereas 
( )S I ′  refers to the size of the compressed image in bytes. The result of this 

measurement indicates how many times the compressed image is smaller than 
the original image. 

To evaluate the quality of the decompressed image, we used the mean of the 
structural similarity index (MSSIM), expressed as  

( )
( )

0
SSIM ,

MSSIM ,

k

i i
i

I J
I J

k
==
∑

                 (15) 

where I and J are the original and uncompressed images, respectively. iI  and 
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iJ  are the i-th windows of the images and k is the total number of windows. 
The structural similarity index (SSIM) [36] is expressed as  

( )
( )( ) ( )( )
( )( ) ( )( )

2 2
1 max 2 max

2 22 2 2 2
1 max 2 max

2 2
SSIM ,

x y xy

x y x y

k L k L
x y

k L k L

µ µ σ

µ µ σ σ

+ + + +
=

+ + + + + +
     (16) 

where xµ  and yµ  are the means of x and y, 2
xσ  and 2

yσ  are the variances of 
x and y. The variable xyσ  is the covariance between x and y, whereas 1k  and 

2k  are constants. The SSIM values are in a range of [ ]1,1− , where the higher 
the value, the greater the similarity. 

4. Experimental Results  

This section presents the results of experiments conducted on a set of twenty 
input images. Table 1 summarizes some relevant characteristics of the images. 
Seventeen images were extracted from a public domain repository [37], whereas 
the other three were collected separately. 
 
Table 1. Images used in our experiments.  

# Image Dimensions (pixels) Source 

1 airplane 512 512×  Public Domain 

2 baboon 512 512×  Public Domain 

3 barbara 512 512×  Public Domain 

4 boat 512 512×  Public Domain 

5 boy 768 512×  Public Domain 

6 cameraman 256 256×  Public Domain 

7 chessboard 1024 1024×  Collected Separately 

8 fruits 512 512×  Public Domain 

9 girl 768 512×  Public Domain 

10 goldhill 512 512×  Public Domain 

11 lena 512 512×  Public Domain 

12 line 1024 640×  Generated by the Authors 

13 monarch 768 512×  Public Domain 

14 mountain 640 480×  Public Domain 

15 peppers 512 512×  Public Domain 

16 sails 768 512×  Public Domain 

17 strawberry 1024 640×  Collected Separately 

18 tulips 768 512×  Public Domain 

19 watch 1024 768×  Public Domain 

20 zelda 512 512×  Public Domain 
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In the experiments performed, we compared the relationship between the 
compression ratio and the MSSIM value. Initially, Table 2 presents different 
strategies for choosing the iσ  eigenvalue. The first strategy, used in other ap-
proaches available in the literature [34], considers a minimum variance to be 
preserved in the image. Thus, the eigenvalue iσ  is chosen so that the variance 
maintained by the eigenvalues 1, , iσ σ  is greater than or equal to the mini-
mum variance, whereas the second strategy chooses an optimal eigenvalue iσ , 
as defined in Equation (2). 

We can notice that the results obtained by the optimal choice have a compres-
sion ratio always greater than 1, in order to obtain a smaller image in all cases, 
and with high MSSIM values. Since different images have different variance, re-
quiring different amounts of eigenvalues to obtain the same variance, as dis-
cussed in Section 0, the minimum variance cannot be used as a fixed value. For 
example, for images #1 and #5, the compression ratio is less than 1 with variance 
0.95, whereas, for image #14, maintaining a variance of 0.9 has already caused 
the compression ratio to be less than 1. This demonstrates the need to make an 
adaptive choice. Figure 4 compares the different versions obtained for image 
#17. 

 
Table 2. Comparison between minimum variance and optimal choice.  

# 
Minimum Variance: 0.8 Minimum Variance: 0.85 Minimum Variance: 0.9 Minimum Variance: 0.95 Optimal Choice 

Compression MSSIM Compression MSSIM Compression MSSIM Compression MSSIM Compression MSSIM 

1 4.677 0.917 3.250 0.944 2.119 0.964 1.498 0.973 3.032 0.952 

2 1.585 0.932 1.268 0.956 1.016 0.974 0.848 0.983 1.501 0.940 

3 2.609 0.828 2.079 0.869 1.559 0.915 1.195 0.941 1.937 0.881 

4 2.779 0.840 2.062 0.880 1.470 0.916 1.142 0.932 2.325 0.866 

5 1.693 0.930 1.327 0.952 1.091 0.967 0.926 0.976 2.716 0.886 

6 2.774 0.799 2.059 0.844 1.520 0.884 1.073 0.924 2.553 0.813 

7 290.867 0.982 203.934 0.884 102.158 0.847 47.563 0.948 41.744 0.949 

8 3.292 0.921 2.412 0.943 1.639 0.962 1.241 0.970 2.600 0.939 

9 3.474 0.933 2.274 0.954 1.659 0.967 1.306 0.973 3.360 0.936 

10 2.691 0.885 1.908 0.920 1.390 0.941 1.093 0.951 2.435 0.896 

11 3.170 0.945 2.237 0.964 1.585 0.978 1.210 0.984 2.600 0.959 

12 2.385 0.959 1.831 0.925 1.485 0.936 - - 4.799 0.947 

13 3.448 0.948 2.684 0.963 1.891 0.978 1.446 0.985 2.661 0.963 

14 1.481 0.806 1.176 0.851 0.968 0.889 0.823 0.917 1.465 0.808 

15 3.008 0.935 1.972 0.957 1.423 0.970 1.113 0.977 2.950 0.941 

16 2.074 0.927 1.558 0.957 1.243 0.974 1.033 0.983 2.065 0.928 

17 130.700 0.970 60.448 0.975 24.205 0.984 8.696 0.991 16.393 0.986 

18 3.698 0.926 2.816 0.949 1.934 0.973 1.471 0.983 2.877 0.949 

19 2.616 0.957 2.015 0.972 1.639 0.979 - - 1.424 0.983 

20 5.326 0.890 3.455 0.919 2.062 0.943 1.470 0.953 3.551 0.917 
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Figure 4. Result comparison for image #17.  

 
It can be observed that, despite a considerably high result in the MSSIM of the 

global version with variance 0.8 (0.970), the visual result, shown in Figure 4(b), 
is very poor, whereas the results are superior with the optimal choice, however, 
still having some problems. 

The artifacts that can be seen in Figure 4(c) occur mainly due to the rounding 
and linear transformation defined in Equations (7) and (8). This problem can be 
overcome by a more local strategy, such as the one adopted in this work and 
with the result shown in Figure 4(d). This improvement probably occurs since 
the values obtained from the matrices after the decomposition are in a smaller 
range and closer to 0 to 255, because they have a smaller variation in the image. 

As discussed in Section 0 and observed from the previous results, the SVD 
technique applied globally may not be adequate. Thus, Table 3 presents the re-
sults obtained by considering the image divided into square blocks of different 
sizes. In addition, it presents the results obtained with the method presented in 
this work, that is, with the adaptive choice of blocks and eigenvalues. 

Comparing the results obtained with those shown in Table 2, overall, the 
compression rates of the images increased, maintaining high MSSIM values. 
This demonstrates the validity of the local division strategy which, in addition to 
the reduction of the artifacts shown in Figure 4(c), obtains better quantitative 
results. 

The compression and MSSIM values obtained with the adaptive division are 
generally similar to those obtained with the fixed block size. However, for image 
#7, which consists of a chessboard, the result obtained is considerably superior 
in terms of compression ratio, which demonstrates superiority of the adaptive 
division. This result can vary considerably in different images with the change of 
the constant values given in Equation (6). The values used were chosen empiri-
cally in order to obtain a good result in all images. 

Figure 5 illustrates the result obtained for image #4 considering the different 
local versions. We can observe, through the resized region, that some fine details 
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of the image are lost in the compression process. In this case, this occurs most 
notably with a smaller block size. This is an apparent limitation of our adaptive 
division, which could select a larger block size in those regions, in order to pre-
serve more detail. In order to circumvent this problem, we could choose a more 
suitable value for α , used in Equation (2), or limit the minimum size of the 
block adaptively. 

 

 
Figure 5. Result comparison for image #4.  

 
Table 3. Comparison between fixed and adaptive block partitioning.  

# 
Fixed Division: 64 Fixed Division: 32 Fixed Division: 16 Fixed Division: 8 Adaptive Division 

Compression MSSIM Compression MSSIM Compression MSSIM Compression MSSIM Compression MSSIM 

1 6.037 0.951 5.909 0.949 4.017 0.944 1.735 0.948 3.759 0.941 

2 2.304 0.906 2.610 0.883 2.500 0.850 1.570 0.823 1.755 0.823 

3 3.253 0.898 3.575 0.894 2.994 0.880 1.588 0.845 2.591 0.877 

4 3.881 0.848 4.407 0.829 3.573 0.823 1.701 0.856 2.506 0.833 

5 2.799 0.901 2.996 0.894 3.034 0.878 2.087 0.857 2.323 0.856 

6 3.268 0.871 3.665 0.876 3.127 0.877 1.603 0.901 2.407 0.893 

7 18.811 0.999 10.745 0.999 4.780 1.000 1.755 1.000 75.827 0.996 

8 4.647 0.926 5.102 0.919 3.835 0.920 1.696 0.940 2.948 0.926 

9 3.950 0.958 4.116 0.958 3.684 0.953 2.137 0.949 2.991 0.950 

10 3.844 0.872 4.258 0.852 3.649 0.828 1.742 0.851 2.338 0.834 

11 4.496 0.955 4.907 0.949 3.661 0.945 1.702 0.948 2.838 0.947 

12 14.258 0.974 13.081 0.976 6.860 0.989 3.309 0.989 14.846 0.988 

13 4.206 0.969 4.398 0.969 3.703 0.969 2.122 0.965 3.102 0.967 

14 1.921 0.814 2.012 0.822 2.190 0.807 2.146 0.782 2.233 0.779 

15 4.349 0.942 4.589 0.940 3.478 0.940 1.658 0.947 2.509 0.942 

16 2.583 0.908 2.848 0.895 3.008 0.868 2.135 0.839 2.150 0.840 

17 25.406 0.994 15.686 0.995 7.985 0.996 3.354 0.996 26.559 0.995 

18 3.099 0.950 3.120 0.949 2.966 0.940 2.019 0.931 2.339 0.934 

19 2.733 0.976 3.264 0.975 3.525 0.974 2.754 0.970 3.218 0.971 

20 5.453 0.917 5.340 0.911 3.854 0.907 1.737 0.924 3.076 0.906 
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It is noteworthy that the requirements for storing the compressed images 
could still be reduced. For example, a flag used to determine the node type could 
be only 1 bit long, instead of 1 byte as employed in our implementation for sim-
plification purposes. 

5. Conclusions  

This work described and implemented a new lossy image compression method 
based on the singular value decomposition. The proposed approach used an op-
timal choice of eigenvalues computed in the decomposition, as well as an adap-
tive block partitioning. We also presented a protocol for storing the SVD ma-
trices. 

Experiments were conducted on a dataset composed of twenty images—se- 
venteen extracted from a public domain repository and commonly used in the 
evaluation of image processing tasks, the other three images collected separately. 
The results obtained show that the optimal choice of eigenvalues is relevant due 
to differences in different image contents. 

Due to rounding performed in the compression process, the overall approach 
achieved lower compression rate and added artifacts to the images. In addition, 
the adaptive partitioning strategy obtained, in some cases, considerably superior 
results in terms of compression ratio. However, some fine image details may be 
lost in the compression process based on local strategy. 
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