
Journal of Signal and Information Processing, 2019, 10, 1-11
http://www.scirp.org/journal/jsip

ISSN Online: 2159-4481
ISSN Print: 2159-4465

DOI: 10.4236/jsip.2019.101001 Dec. 4, 2018 1 Journal of Signal and Information Processing

Pre-Processing Images of Public Signage for
OCR Conversion

Amber Khan, Mariam Nida Usmani, Nashrah Rahman, Dinesh Prasad*

D/o Electronics & Communication Engineering, Jamia Millia Islamia (JMI), New Delhi, India

Abstract
In this paper, we propose a novel method to enhance the OCR (Optical Cha-
racter Recognition) readability of public signboards captured by smart-phone
cameras—both outdoors and indoors, and subject to various lighting condi-
tions. A distinct feature of our technique is the detection of these signs in the
HSV (Hue, Saturation and Value) color space, done in order to filter out the
signboard from the background, and correctly interpret the textual details of
each signboard. This is then binarized using a thresholding technique that is
optimized for text printed on contrasting backgrounds, and passed through
the Tesseract engine to detect individual characters. We test out our tech-
nique on a dataset of over 200 images taken in and around the campus of our
college, and are successful in attaining better OCR results in comparison to
traditional methods. Further, we suggest the utilization of a method to auto-
matically assign ROIs (Regions Of Interest) to detected signboards, for better
recognition of textual information.

Keywords
Image Processing, HSV, Binarization, OCR

1. Introduction

We currently live in a world where phones have become smarter, with the ability
to run fully functional operating systems, access the Internet, and capture
photographs. The latter has been a recent development, making cameras more
accessible and ubiquitous, due to the in-built cameras in smart-phones these
days.

These in-built cameras can be put to better use for recognizing text in public
spaces, especially signage—street signs, milestones or signboards inside buildings.
OCR engines (Optical Character Recognition) have already accomplished this task

How to cite this paper: Khan, A., Usmani,
M.N., Rahman, N. and Prasad, D. (2019)
Pre-Processing Images of Public Signage
for OCR Conversion. Journal of Signal and
Information Processing, 10, 1-11.
https://doi.org/10.4236/jsip.2019.101001

Received: October 18, 2018
Accepted: December 1, 2018
Published: December 4, 2018

Copyright © 2019 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsip
https://doi.org/10.4236/jsip.2019.101001
http://www.scirp.org
https://doi.org/10.4236/jsip.2019.101001
http://creativecommons.org/licenses/by/4.0/

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 2 Journal of Signal and Information Processing

on paper manuscripts and ancient documents [1], and are adept at it [2].
On the other hand, there is a dearth of software that can convert public

signage into text. For this reason, we have chosen to build a unique workflow
that can efficiently extract text from captured images of public signage, and save
it as a text file. The benefits of such a methodology are tremendous, since it
becomes a useful aid for visually impaired individuals, when text-to-speech
capabilities are added to it. This may also be used in translation software, where
foreign users take snapshots of signage, which are then converted into text in
real time, and translated into the language the user is familiar with. It may also
be viewed as an add-on feature in driverless vehicles, in which most of the
navigation is done solely on the basis of input feed supplied by the various
cameras mounted onto it, and GPS inputs. Hence, this ability to “read” public
signage would be extremely useful in case of GPS failure, helping the autonomous
vehicle to safely navigate to its destination.

All the program codes involved in the methodology are implemented in
Python 3, in a virtualized Ubuntu environment. These programs are executed
via commands passed through its Terminal program. For processing the dataset
images, we have used OpenCV, an open-source library with state-of-the-art
computer vision capabilities [3], allowing for quick implementation of our
algorithm.

Our workflow generates a .txt file as an output, in which all characters in the
captured image are correctly identified, with their relative positions somewhat
retained in the text file.

This has the capacity to “compress” the image to a file over 10,000 times
smaller than itself. Given the limited storage one faces with saving high
resolution images on his or her smart-phone, this is an added advantage, apart
from the text detection feature.

In our research, we have created and utilized two datasets of images, with the
first one containing 133 images of signage around the college campus, and the
second one comprising of 135 images of signage inside the girls’ hostel. Both
provide a variety of images to test out our technique on, with the former dataset
containing mostly blue signboards, and the latter one containing brown
signboards. As seen in Figure 1, these images have been fed into our algorithm,
which takes one signboard image as input, and generates a corresponding text
file as its output. The intermediate and final outputs of both the datasets have
been compared, and explanations for these formulated. We find that our
methodology significantly improves upon existing techniques, giving rise to
better OCR output.

2. Previous Work

Our research builds upon work previously conducted by other researchers, the
most notable being the seminal work of T. Kasar et al. [4]. Their work itself is
based on the Canny Edge Detector, first developed by John F. Canny [5], in
order to detect edges in images.

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 3 Journal of Signal and Information Processing

Figure 1. Expected output from implemented
workflow.

Following are the steps involved in Canny Edge Detection:

1) Image smoothing
The image is blurred to remove noise, using a Gaussian filter.

2) Finding gradients
In this smoothed image, the gradient of each pixel calculated using the Sobel

operator [6] in the x and y directions. This gives us the values Gx and Gy.
After this, the gradient magnitude “G” (also called edge strength) is calculated

using the formula

x yG G G= +

Further, its angle “θ” is determined using the formula

1tan y

x

G

G
θ −

 
 =
 
 

The edges are then marked where the values of G are large enough. These
edges will be blurry, and need to be fine-tuned, before further processing.
3) Non-maximum suppression

The blurred edges are sharpened here, by deleting all except the local maxima
of the entire image.

For this, θ is rounded to the nearest 45˚, and the corresponding pixel is
compared with the edge strengths of pixels in the positive and negative θ
directions.

If edge strength of the current pixel is largest, its value is preserved, else
suppressed. The edges of the resultant image will be marked with a pixel-wise
strength.
4) Double thresholding

The noise generated in the previous step is removed here. Two thresholds are
used by the Canny detector—a “high” threshold, and a “low” threshold. Hence,
edge pixels stronger than the high threshold are labelled as “strong”, edge pixels
weaker than the low threshold are suppressed, and edge pixels between the two
thresholds are labelled as “weak”.
5) Edge tracking

In edge tracking, the strong edges are immediately included in the final edge
image. The weak ones are included only if they are connected to strong edges.

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 4 Journal of Signal and Information Processing

3. Methodology

The input here is an image captured by a smart-phone camera—either a JPEG or
PNG file. In the first step of our technique, the “text area” of the image—the
signboard—is identified, and masked off from the background. This filtering out
of the signboard is done on the basis of the HSV [7] range of the signboard, a
technique known to perform quite effectively for images take in natural
environments [8]. This masked image is then zoomed automatically, to retain
only the signboard(s).

In the binarization process, the zoomed image is converted to a monochrome
(black-and-white) one. This is carried out using the CBDAR_KASAR binarization
method [4].

Finally, as seen in Figure 2, text characters are extracted from this binarized
image using Tesseract, an open-source OCR engine. Originally developed by
Hewlett Packard and presented in 1995 by S. V. Rice et al. [9], its development is
now sponsored by Google.

A) HSV Separation
The input, a colour image captured using a smart-phone, is first sent for HSV

separation, a technique already in use in meteorology [10] and medicine [11].
Here, the signboard(s) in each image is/are detected, and a resultant ROI created
for each image. For each dataset, a separate HSV range was used, as follows:
• (91, 42, 0) - (124, 255, 255) for the blue signboards (in the campus dataset);

and
• (0, 135, 50) - (180, 255, 255) for the brown signboards (in the hostel dataset).

The output generated here is an image with everything blacked out, except the
signboard(s), which are retained by virtue of their colour. This filtered image is
then sent for automatic zooming.

B) Automatic Zooming
Here, the image is cropped, leaving behind an output with only the signs in it.

The first step is to perform Canny filtering on the image, to detect the edges of
the ROIs in it. After this contour detection, binary dilation is done in the
horizontal and vertical directions, and a corresponding bounding box created,
that is expected to overlap with the text area. This area is then cropped out and
optimally resized, while conserving the aspect ratio of the cropped area. Hence,
the text area is segregated from the remaining background, making it ready for
binarization and subsequent OCR conversion.

C) Binarization
This technique is useful for converting a grayscale image into a version of less

wider intensity range of the image pixels. There are many segmentation
techniques which are utlized for the same. After converting to grayscale, the
images are then binarized using the algorithm of CBDAR_KASAR [4].

Here, the character areas are shaded black, while the rest is coloured white,
irrespective of the original polarities of the foreground and background shades.
This makes it apt for our workflow; hence, it has been included after the
perspective correction stage.

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 5 Journal of Signal and Information Processing

Figure 2. Workflow for extracting text characters from images.

The following steps are carried out in this binarization method:

1) Canny edge detection on R, G, B channels of image
The image is first divided into its component R (red), G (green) and B (blue)

channels, and Canny edge detection is applied on each of them.
2) Edge mapping of each channel

The edge images obtained will generate a total of 3 edge images—ER, EG and
EB.
3) OR all edge maps together

The edge images are logically O Red together, to form a composite edge map
“E”.

R G BE E E E= ∨ ∨

4) Generation of bounding boxes
Following the generation of “E”, an 8-connected component of labelling is

carried out, corresponding to which an edge-box (EB) is created. The aspect
ratios of the EBs obtained are limited to a range between 0.1 and 10, in order to
remove highly elongated regions. This filters out the obvious non-text areas.

These EBs will be processed further only if their sizes are more than 15 pixels
as well as less than 1/5th of the dimensions of the image, excluding very large
character areas.
5) Create a closed figure from the edges inside the map/box

Situations may arise where an EB has one or more EBs inside it, since both the
internal and external boundaries of the characters are detected. For instance, the
letter “O” is seen to give rise to two components—EBint (due to its internal
boundary) and EBout (due to its external boundary).

If an EB completely encloses one or two EBs, these internal EBs may be
ignored, since they correspond to the internal boundaries of the text characters.
However, if the number of EBs enclosed are more than two, only the internal
EBs are preserved; the external EB is ignored, as this component would not
correspond to a text character.

Therefore, by placing the following restrictions on each edge component, the

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 6 Journal of Signal and Information Processing

undesirable components are filtered out:

()
{ }

{ }

int

int out

out int

if 3

Reject EB , Accept EB
else
Reject EB , Accept EB

N <

where EBint denotes the EBs completely enclosed by the current EB under
consideration, and Nint is the number of EBint. These constraints help retain all
the text-like elements, while removing the non-text elements. As a result, only
the preserved EBs are carried forward for binarization.
6) Closed figures are coloured black, background is coloured white

For this, the foreground and background intensities of each EB is estimated.
Taking the estimated foreground intensity as the threshold, each EB is binarized,
assuming that each character is uniformly coloured. Inversion of each binarized
output BWEB is carried out in order to colour the foreground (text) black, and
the background white. This depends on whether the intensity of the foreground
is higher or lower than that of the background. In other words.

()
()

0, ,

1, ,
EB

EB EB
EB

EB

I x y F
B BW

I x y F
F

 ≥ > ⇒ =  
<  

()
()

0, ,

0, ,
EB

EB EB
EB

EB

I x y F
B BW

I x y F
F

 ≥ < ⇒ =  
<  

where
FEB = local foreground intensity of EB,
BEB = local background intensity of EB,
BWEB = binarized output of EB, and
I (x, y) = intensity value at pixel (x, y)
D) OCR Analysis (using Tesseract)
For the final stage, the Tesseract OCR engine is used. This detects and extracts

characters from the HSV filtered, zoomed and binarized image, and saved to a
text file. Although it may be used to detect characters in multiple languages, we
have restricted Tesseract to look only for characters in English, and generate a
text file corresponding to the image.

4. Conclusions

Our method works well on most images in each dataset. As seen in Figure 3,
most of the images in both datasets are properly filtered by their colour, and
zoomed properly. The colour separation has worked on around 90% of all
images, aiding in the OCR process.

The automatic zooming helps in minimizing the number of ghost characters,
which are background elements that would otherwise be detected as characters.
It has worked well on both blue and brown signs, correctly zooming almost 70%
of the filtered images.

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 7 Journal of Signal and Information Processing

(a)

(b)

Figure 3. Percentage of correctly processed images from the Blue and
Brown datasets, for (a) colour separation and automatic zooming, and (b)
binarization with and without automatic zooming.

The CBDAR_KASAR binarization technique reduces the number of garbage

characters, which are incorrectly recognized characters, since it is optimized for
text detection. To gauge the effectiveness of our method, we compared the
CBDAR_KASAR results of the signs without automatic zooming with the
zoomed ones. Contrary to expectations, it is observed that automatic zooming
does not aid the binarization method; rather, it seems to reduce its efficacy, as
seen in Figure 3(b).

Despite this, there is a visible improvement in the text files generated, since
ghost characters are reduced. This leads to a more accurate output file, albeit an
incomplete one.

Character extraction heavily depends on the existing lighting conditions.
Therefore, if the captured signage is dimly lit, the characters will not be correctly
recognized, if at all any character can be discerned. Similarly, signage in close
vicinity to light sources emitting a high glow may be distorted beyond readability,
as seen in Figure 4.

In most cases, these images do not give any text output, since they are not
sharp enough for the OCR engine to detect any text.

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 8 Journal of Signal and Information Processing

(a)

(b)

Figure 4. (a) A hostel sign distorted by light emitted by an overhead
tube light, and (b) its HSV separated and automatically zoomed image.

Moreover, low resolution images perform poorly. Only high resolution,

well-focused images work properly, as text detection is heavily dependent on
this.

Angle variation is also a problem in capturing signage. This happens due to
the sign being at a higher elevation w.r.t. the observer, causing a rectangular sign
or billboard to be captured as a trapezoidal one, causing the characters to be
misread, or located incorrectly, as seen in Figures 5(d)-(f).

Although our HSV separation stage is supposed to deal with this problem, it is
not a perfect solution. Better algorithms need to be devised in order to
completely remove perspective distortions.

When Canny edge detection was applied to Figure 6(a), the output generated
by Tesseract was different from expected. This method works well for sheets of
paper set against a plain contrasting background, allowing for a 4-point
perspective correction, and subsequent removal of distortion. On signboards,
however, it does not work, since multiple edges are detected, by virtue of their
thickness. For this reason, we resorted to automatic zooming on our dataset.
Although this algorithm too is optimized for scanned manuscript pages, it seems
to work well on a reasonable number of images, particularly the hostel dataset.

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 9 Journal of Signal and Information Processing

(a) (b) (c)

(d) (e) (f)

Figure 5. (a) and (d) Original images and corresponding OCR text , (b) and (e) HSV separated images and corresponding OCR
text, and (c) and (f) Automatically zoomed images and corresponding OCR text.

(a)

(b)

(c)

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 10 Journal of Signal and Information Processing

(d)

Figure 6. (a) Original image of Drawing Hall and Reading Room
signs, (b) its Canny filtered image, (c) its CBDAR_KASAR bina-
rized image, and (d) the final text output.

5. Future Work

As illustrated in Figures 5(a)-(f), our method has been effective in removing
both ghost and garbage characters, hence improving the overall efficiency. These
can be suppressed by training the engine further, so that character areas of the
binarized image may be identified, and noisy areas ignored.

Further, a more rigorous understanding of the lighting conditions at work is
required, and variables used in the CBDAR_KASAR method must be tweaked
accordingly, to improve the final output.

It seems that auto-zooming does not work very well on signs (or a group of
signs) having varying text sizes. If they are not uniform, our program code tends
to zoom only on a particular portion of the signage in the image. Future
improvements to this might include adaptive zooming, which crops the different
text areas in an image, and stitches them together.

Acknowledgements

We thank Prof. Mirza Tariq Beg, HOD of Department of Electronics and
Communication Engineering, JMI, for his encouragement to pursue our
research.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Koistinen, M., Kettunen, K. and Pääkkönen, T. (2017) Improving Optical Character

Recognition of Finnish Historical Newspapers with a Combination of Fraktur& An-
tiqua Models and Image Preprocessing. Proceedings of the 21st Nordic Conference
on Computational Linguistics, NoDaLiDa, Gothenburg, Sweden, May 2017,
277-283.

[2] Lefevere, F. and Saric, M. (2009) Detection of Grooves in Scanned Images, Assigned
to Google. US Patent Number 7508978B1, 24 March 2009.

https://doi.org/10.4236/jsip.2019.101001

A. Khan et al.

DOI: 10.4236/jsip.2019.101001 11 Journal of Signal and Information Processing

[3] Kaehler, A. and Bradski, G. (2016) Learning OpenCV 3: Computer Vision in C++
with the OpenCV Library. O’Reilly Media, 1-2.

[4] Kasar, T., Kumar, J. and Ramakrishnan, A.G. (2007) Font and Background Color
Independent Text Binarization. Second International Workshop on Camera-Based
Document Analysis and Recognition on Camera-Based Document Analysis and
Recognition, 3-9.

[5] Canny, J. (1986) A Computational Approach to Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8, 679-698.
https://doi.org/10.1109/TPAMI.1986.4767851

[6] Sobel, I. and Feldman, G. (1968) A 3x3 Isotropic Gradient Operator for Image
Processing. At the Stanford Artificial Intelligence Project (SAIL).

[7] Tektronix, Inc. (1991) Display-Based Color System. US Patent Number 4,985,853,
January 1991.

[8] Schwarz, M.W., Cowan, W.B. and Beatty, J.C. (1987) An Experimental Comparison
of RGB, YIQ, LAB, HSV, and Opponent Color Models. ACM Transactions on
Graphics (TOG), 6, 123-158. https://doi.org/10.1145/31336.31338

[9] Rice, MS.V., Jenkins, F.R. and Nartker, T.A. (1995) The HP Research Protoype. The
Fourth Annual Test of OCR Accuracy, Technical Report 95-03, Information Science
Research Institute, University of Nevada, Las Vegas.

[10] Liu, C., Lu, X., Ji, S. and Geng, W. (2014) A Fog Level Detection Method Based on
Image HSV Color Histogram. 2014 IEEE International Conference on Progress in
Informatics and Computing, Shanghai, 373-377.
https://doi.org/10.1109/PIC.2014.6972360

[11] Zheng, X.X., et al. (2016) RGB and HSV Quantitative Analysis of Autofluorescence
Bronchoscopy Used for Characterization and Identification of Bronchopulmonary
Cancer. Cancer Medicine, 5, 3023-3030. https://doi.org/10.1002/cam4.831

https://doi.org/10.4236/jsip.2019.101001
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1145/31336.31338
https://doi.org/10.1109/PIC.2014.6972360
https://doi.org/10.1002/cam4.831

	Pre-Processing Images of Public Signage for OCR Conversion
	Abstract
	Keywords
	1. Introduction
	2. Previous Work
	3. Methodology
	4. Conclusions
	5. Future Work
	Acknowledgements
	Conflicts of Interest
	References

