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Abstract 
In this paper, we propose a novel method to enhance the OCR (Optical Cha-
racter Recognition) readability of public signboards captured by smart-phone 
cameras—both outdoors and indoors, and subject to various lighting condi-
tions. A distinct feature of our technique is the detection of these signs in the 
HSV (Hue, Saturation and Value) color space, done in order to filter out the 
signboard from the background, and correctly interpret the textual details of 
each signboard. This is then binarized using a thresholding technique that is 
optimized for text printed on contrasting backgrounds, and passed through 
the Tesseract engine to detect individual characters. We test out our tech-
nique on a dataset of over 200 images taken in and around the campus of our 
college, and are successful in attaining better OCR results in comparison to 
traditional methods. Further, we suggest the utilization of a method to auto-
matically assign ROIs (Regions Of Interest) to detected signboards, for better 
recognition of textual information. 
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1. Introduction 

We currently live in a world where phones have become smarter, with the ability 
to run fully functional operating systems, access the Internet, and capture 
photographs. The latter has been a recent development, making cameras more 
accessible and ubiquitous, due to the in-built cameras in smart-phones these 
days. 

These in-built cameras can be put to better use for recognizing text in public 
spaces, especially signage—street signs, milestones or signboards inside buildings. 
OCR engines (Optical Character Recognition) have already accomplished this task 
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on paper manuscripts and ancient documents [1], and are adept at it [2]. 
On the other hand, there is a dearth of software that can convert public 

signage into text. For this reason, we have chosen to build a unique workflow 
that can efficiently extract text from captured images of public signage, and save 
it as a text file. The benefits of such a methodology are tremendous, since it 
becomes a useful aid for visually impaired individuals, when text-to-speech 
capabilities are added to it. This may also be used in translation software, where 
foreign users take snapshots of signage, which are then converted into text in 
real time, and translated into the language the user is familiar with. It may also 
be viewed as an add-on feature in driverless vehicles, in which most of the 
navigation is done solely on the basis of input feed supplied by the various 
cameras mounted onto it, and GPS inputs. Hence, this ability to “read” public 
signage would be extremely useful in case of GPS failure, helping the autonomous 
vehicle to safely navigate to its destination.  

All the program codes involved in the methodology are implemented in 
Python 3, in a virtualized Ubuntu environment. These programs are executed 
via commands passed through its Terminal program. For processing the dataset 
images, we have used OpenCV, an open-source library with state-of-the-art 
computer vision capabilities [3], allowing for quick implementation of our 
algorithm. 

Our workflow generates a .txt file as an output, in which all characters in the 
captured image are correctly identified, with their relative positions somewhat 
retained in the text file. 

This has the capacity to “compress” the image to a file over 10,000 times 
smaller than itself. Given the limited storage one faces with saving high 
resolution images on his or her smart-phone, this is an added advantage, apart 
from the text detection feature. 

In our research, we have created and utilized two datasets of images, with the 
first one containing 133 images of signage around the college campus, and the 
second one comprising of 135 images of signage inside the girls’ hostel. Both 
provide a variety of images to test out our technique on, with the former dataset 
containing mostly blue signboards, and the latter one containing brown 
signboards. As seen in Figure 1, these images have been fed into our algorithm, 
which takes one signboard image as input, and generates a corresponding text 
file as its output. The intermediate and final outputs of both the datasets have 
been compared, and explanations for these formulated. We find that our 
methodology significantly improves upon existing techniques, giving rise to 
better OCR output.  

2. Previous Work 

Our research builds upon work previously conducted by other researchers, the 
most notable being the seminal work of T. Kasar et al. [4]. Their work itself is 
based on the Canny Edge Detector, first developed by John F. Canny [5], in 
order to detect edges in images. 
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Figure 1. Expected output from implemented 
workflow. 

 
Following are the steps involved in Canny Edge Detection: 

1) Image smoothing 
The image is blurred to remove noise, using a Gaussian filter. 

2) Finding gradients 
In this smoothed image, the gradient of each pixel calculated using the Sobel 

operator [6] in the x and y directions. This gives us the values Gx and Gy. 
After this, the gradient magnitude “G” (also called edge strength) is calculated 

using the formula 

x yG G G= +  

Further, its angle “θ” is determined using the formula 
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The edges are then marked where the values of G are large enough. These 
edges will be blurry, and need to be fine-tuned, before further processing. 
3) Non-maximum suppression 

The blurred edges are sharpened here, by deleting all except the local maxima 
of the entire image.  

For this, θ is rounded to the nearest 45˚, and the corresponding pixel is 
compared with the edge strengths of pixels in the positive and negative θ 
directions.  

If edge strength of the current pixel is largest, its value is preserved, else 
suppressed. The edges of the resultant image will be marked with a pixel-wise 
strength.  
4) Double thresholding 

The noise generated in the previous step is removed here. Two thresholds are 
used by the Canny detector—a “high” threshold, and a “low” threshold. Hence, 
edge pixels stronger than the high threshold are labelled as “strong”, edge pixels 
weaker than the low threshold are suppressed, and edge pixels between the two 
thresholds are labelled as “weak”. 
5) Edge tracking 

In edge tracking, the strong edges are immediately included in the final edge 
image. The weak ones are included only if they are connected to strong edges. 
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3. Methodology 

The input here is an image captured by a smart-phone camera—either a JPEG or 
PNG file. In the first step of our technique, the “text area” of the image—the 
signboard—is identified, and masked off from the background. This filtering out 
of the signboard is done on the basis of the HSV [7] range of the signboard, a 
technique known to perform quite effectively for images take in natural 
environments [8]. This masked image is then zoomed automatically, to retain 
only the signboard(s). 

In the binarization process, the zoomed image is converted to a monochrome 
(black-and-white) one. This is carried out using the CBDAR_KASAR binarization 
method [4]. 

Finally, as seen in Figure 2, text characters are extracted from this binarized 
image using Tesseract, an open-source OCR engine. Originally developed by 
Hewlett Packard and presented in 1995 by S. V. Rice et al. [9], its development is 
now sponsored by Google. 

A) HSV Separation 
The input, a colour image captured using a smart-phone, is first sent for HSV 

separation, a technique already in use in meteorology [10] and medicine [11]. 
Here, the signboard(s) in each image is/are detected, and a resultant ROI created 
for each image. For each dataset, a separate HSV range was used, as follows: 
• (91, 42, 0) - (124, 255, 255) for the blue signboards (in the campus dataset); 

and 
• (0, 135, 50) - (180, 255, 255) for the brown signboards (in the hostel dataset). 

The output generated here is an image with everything blacked out, except the 
signboard(s), which are retained by virtue of their colour. This filtered image is 
then sent for automatic zooming. 

B) Automatic Zooming 
Here, the image is cropped, leaving behind an output with only the signs in it. 

The first step is to perform Canny filtering on the image, to detect the edges of 
the ROIs in it. After this contour detection, binary dilation is done in the 
horizontal and vertical directions, and a corresponding bounding box created, 
that is expected to overlap with the text area. This area is then cropped out and 
optimally resized, while conserving the aspect ratio of the cropped area. Hence, 
the text area is segregated from the remaining background, making it ready for 
binarization and subsequent OCR conversion. 

C) Binarization 
This technique is useful for converting a grayscale image into a version of less 

wider intensity range of the image pixels. There are many segmentation 
techniques which are utlized for the same. After converting to grayscale, the 
images are then binarized using the algorithm of CBDAR_KASAR [4]. 

Here, the character areas are shaded black, while the rest is coloured white, 
irrespective of the original polarities of the foreground and background shades. 
This makes it apt for our workflow; hence, it has been included after the 
perspective correction stage. 
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Figure 2. Workflow for extracting text characters from images. 

 
The following steps are carried out in this binarization method: 

1) Canny edge detection on R, G, B channels of image 
The image is first divided into its component R (red), G (green) and B (blue) 

channels, and Canny edge detection is applied on each of them. 
2) Edge mapping of each channel 

The edge images obtained will generate a total of 3 edge images—ER, EG and 
EB. 
3) OR all edge maps together 

The edge images are logically O Red together, to form a composite edge map 
“E”. 

R G BE E E E= ∨ ∨  

4) Generation of bounding boxes 
Following the generation of “E”, an 8-connected component of labelling is 

carried out, corresponding to which an edge-box (EB) is created. The aspect 
ratios of the EBs obtained are limited to a range between 0.1 and 10, in order to 
remove highly elongated regions. This filters out the obvious non-text areas.  

These EBs will be processed further only if their sizes are more than 15 pixels 
as well as less than 1/5th of the dimensions of the image, excluding very large 
character areas.  
5) Create a closed figure from the edges inside the map/box 

Situations may arise where an EB has one or more EBs inside it, since both the 
internal and external boundaries of the characters are detected. For instance, the 
letter “O” is seen to give rise to two components—EBint (due to its internal 
boundary) and EBout (due to its external boundary).   

If an EB completely encloses one or two EBs, these internal EBs may be 
ignored, since they correspond to the internal boundaries of the text characters. 
However, if the number of EBs enclosed are more than two, only the internal 
EBs are preserved; the external EB is ignored, as this component would not 
correspond to a text character. 

Therefore, by placing the following restrictions on each edge component, the 
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undesirable components are filtered out: 

( )
{ }
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where EBint denotes the EBs completely enclosed by the current EB under 
consideration, and Nint is the number of EBint. These constraints help retain all 
the text-like elements, while removing the non-text elements. As a result, only 
the preserved EBs are carried forward for binarization. 
6) Closed figures are coloured black, background is coloured white  

For this, the foreground and background intensities of each EB is estimated. 
Taking the estimated foreground intensity as the threshold, each EB is binarized, 
assuming that each character is uniformly coloured. Inversion of each binarized 
output BWEB is carried out in order to colour the foreground (text) black, and 
the background white. This depends on whether the intensity of the foreground 
is higher or lower than that of the background. In other words. 
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where  
FEB = local foreground intensity of EB, 
BEB = local background intensity of EB, 
BWEB = binarized output of EB, and 
I (x, y) = intensity value at pixel (x, y) 
D) OCR Analysis (using Tesseract)  
For the final stage, the Tesseract OCR engine is used. This detects and extracts 

characters from the HSV filtered, zoomed and binarized image, and saved to a 
text file. Although it may be used to detect characters in multiple languages, we 
have restricted Tesseract to look only for characters in English, and generate a 
text file corresponding to the image. 

4. Conclusions 

Our method works well on most images in each dataset. As seen in Figure 3, 
most of the images in both datasets are properly filtered by their colour, and 
zoomed properly. The colour separation has worked on around 90% of all 
images, aiding in the OCR process.  

The automatic zooming helps in minimizing the number of ghost characters, 
which are background elements that would otherwise be detected as characters. 
It has worked well on both blue and brown signs, correctly zooming almost 70% 
of the filtered images.  
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(a) 

 
(b) 

Figure 3. Percentage of correctly processed images from the Blue and 
Brown datasets, for (a) colour separation and automatic zooming, and (b) 
binarization with and without automatic zooming. 

 
The CBDAR_KASAR binarization technique reduces the number of garbage 

characters, which are incorrectly recognized characters, since it is optimized for 
text detection. To gauge the effectiveness of our method, we compared the 
CBDAR_KASAR results of the signs without automatic zooming with the 
zoomed ones. Contrary to expectations, it is observed that automatic zooming 
does not aid the binarization method; rather, it seems to reduce its efficacy, as 
seen in Figure 3(b).  

Despite this, there is a visible improvement in the text files generated, since 
ghost characters are reduced. This leads to a more accurate output file, albeit an 
incomplete one.  

Character extraction heavily depends on the existing lighting conditions. 
Therefore, if the captured signage is dimly lit, the characters will not be correctly 
recognized, if at all any character can be discerned. Similarly, signage in close 
vicinity to light sources emitting a high glow may be distorted beyond readability, 
as seen in Figure 4.  

In most cases, these images do not give any text output, since they are not 
sharp enough for the OCR engine to detect any text.  
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(a) 

 
(b) 

Figure 4. (a) A hostel sign distorted by light emitted by an overhead 
tube light, and (b) its HSV separated and automatically zoomed image. 

 
Moreover, low resolution images perform poorly. Only high resolution, 

well-focused images work properly, as text detection is heavily dependent on 
this. 

Angle variation is also a problem in capturing signage. This happens due to 
the sign being at a higher elevation w.r.t. the observer, causing a rectangular sign 
or billboard to be captured as a trapezoidal one, causing the characters to be 
misread, or located incorrectly, as seen in Figures 5(d)-(f). 

Although our HSV separation stage is supposed to deal with this problem, it is 
not a perfect solution. Better algorithms need to be devised in order to 
completely remove perspective distortions. 

When Canny edge detection was applied to Figure 6(a), the output generated 
by Tesseract was different from expected. This method works well for sheets of 
paper set against a plain contrasting background, allowing for a 4-point 
perspective correction, and subsequent removal of distortion. On signboards, 
however, it does not work, since multiple edges are detected, by virtue of their 
thickness. For this reason, we resorted to automatic zooming on our dataset. 
Although this algorithm too is optimized for scanned manuscript pages, it seems 
to work well on a reasonable number of images, particularly the hostel dataset. 
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(a)                                     (b)                                         (c) 

 
(d)                                           (e)                                       (f) 

Figure 5. (a) and (d) Original images and corresponding OCR text , (b) and (e) HSV separated images and corresponding OCR 
text, and (c) and (f) Automatically zoomed images and corresponding OCR text. 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 6. (a) Original image of Drawing Hall and Reading Room 
signs, (b) its Canny filtered image, (c) its CBDAR_KASAR bina-
rized image, and (d) the final text output. 

5. Future Work 

As illustrated in Figures 5(a)-(f), our method has been effective in removing 
both ghost and garbage characters, hence improving the overall efficiency. These 
can be suppressed by training the engine further, so that character areas of the 
binarized image may be identified, and noisy areas ignored. 

Further, a more rigorous understanding of the lighting conditions at work is 
required, and variables used in the CBDAR_KASAR method must be tweaked 
accordingly, to improve the final output. 

It seems that auto-zooming does not work very well on signs (or a group of 
signs) having varying text sizes. If they are not uniform, our program code tends 
to zoom only on a particular portion of the signage in the image. Future 
improvements to this might include adaptive zooming, which crops the different 
text areas in an image, and stitches them together. 
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