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Abstract 

A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image 
reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation In-
variant Wavelet Transforms (TIWT) have been shown to perform exceedingly well 
in CS by reducing repetitive line pattern image artifacts that may be observed when 
using orthogonal wavelets. To further establish its validity as a good sparsifying 
transform, the TIWT is comprehensively investigated and compared with Total Var-
iation (TV), using six under-sampling patterns through simulation. Both trajectory 
and random mask based under-sampling of MRI data are reconstructed to demon-
strate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction 
performs well for all varieties of under-sampling patterns tested, even for cases where 
TV does not improve the mean squared error. This improved Image Quality (IQ) 
gives confidence in applying this transform to more CS applications which will con-
tribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of 
flight MRI CS reconstructions are also analyzed showing how partial Fourier acquisi-
tions must be carefully addressed in CS to prevent loss of IQ. In the spirit of repro-
ducible research, novel software is introduced here as FastTestCS. It is a helpful tool 
to quickly develop and perform tests with many CS customizations. Easy integration 
and testing for the TIWT and TV 1  minimization are exemplified. Simulations of 
3D MRI datasets are shown to be efficiently distributed as a scalable solution for 
large studies. Comparisons in reconstruction computation time are made between 
the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant 
time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, 
portable and reproducible simulation aid for CS research. 
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1. Introduction 

Magnetic Resonance Imaging (MRI) is a diagnostic modality used to create in-vivo im-
ages of 3-Dimensional (3D) biological tissue utilizing magnetic fields, gradients and re-
ceivers. When MR signal k-space data are fully sampled based on the Nyquist sampling 
criteria, some typical high resolution scans take five minutes, allowing time for patient 
and biologic movement, which negatively impacts Image Quality (IQ). Therefore, it is 
of great desire to accelerate the data acquisition and achieve better diagnostic images of 
the body. A promising theory is Compressed Sensing (CS) to under-sample k-space 
below what the Nyquist criteria requires without compromising IQ. Candès et al. in-
troduce theory and experiments for the general CS problem [1]. Lustig et al. apply CS 
to the MRI setting with in-depth and practical design descriptions and experiments [2]. 

Under-sampling for CS must be carefully designed so that artifacts and errors can be 
minimized and incoherent. Parallel imaging is another speed-up technique that com-
bines the signals from multiple coils at the same time allowing some under-sampling of 
k-space to boost the IQ. Deshmane et al. discuss the effects of under-sampling and ad-
vantages of using parallel imaging that allows faster acquisition [3]. 

CS MRI reconstruction problems are extremely computationally intensive and would 
have taken orders of magnitude longer to perform even a couple decades ago. Sparsi- 
fying transforms that perform well in CS can be a wide variety from orthogonal to re-
dundant to adaptive dictionaries, each with varying degrees of complexity and applica-
bility. Ning et al. investigate the patched-based trained directional wavelets and extend 
them into the translation invariant domain to enhance MRI image features [4]. Com-
putationally, orthogonal transforms will operate faster than redundant or adaptive dic-
tionaries which can add considerable time to CS simulations and reconstructions. Sa-
deghi et al. compare redundant dictionary learning algorithms for computational bur-
den and quality [5]. Now many of these experiments and simulations are able to be im-
plemented and performed fairly quickly due to advances in computer technology and 
resources. Practical experimentation and application as proof of theory underlay engi-
neering progress. The need for comparing other researcher’s software code and algo-
rithms is essential for prototyping ideas. There is a huge body of research in CS for 
MRI. How does one evaluate what is the best practical technique for a CS MRI product? 
Advanced simulation software is necessary for trying techniques and making compari-
sons. 

In previous works, the Translation Invariant Wavelet Transform (TIWT) has been 
shown to perform exceedingly well in CS against other transforms [6] [7]. Various im-
age types were compared and theoretical analysis of sparsifying by frames was demon-
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strated [8]. Based on the generalized Dictionary Restricted Isometry Property (D-RIP) 
for CS, the use of redundant sparsifying transforms like the TIWT are allowed. Candès 
et al. generalize the RIP for redundant dictionaries in CS [9]. Coifman et al. present the 
value of the TIWT for de-noising images to suppress visual artifacts that might occur 
when using a typical wavelet [10]. This transform was found to be advantageous for CS 
because it also eliminates repetitive line pattern artifacts which may occur when apply-
ing a standard decimated orthogonal wavelet transform. 

Contribution 

The focus here contributes a thorough analysis of the TIWT using under-sampling pat-
terns for use in CS with MRI, not previously provided. The Total Variation (TV) mi-
nimization vs. the TIWT sparsifying transform are compared in CS reconstruction for 
IQ improvements. TV is a calculation of the pixel by pixel finite differences in both ho-
rizontal and vertical directions across an image. The TIWT is a redundant circularly 
shifted wavelet calculation that achieves translational invariance, which is lacking in the 
standard orthogonal wavelet. Various trajectories that cover a wide range of options 
and possibilities are used as a testing strategy for proving the TIWT is robust for vari-
ous noise and under-sampling artifacts. The six different under-sampling patterns ana-
lyzed are: uniform random, 1D variable density with large and small center, 2D variable 
density with and without fully sampled center, uniform radial, and logarithmic spiral. 
The process of developing and comparing these different measurement matrices also 
involves processing a number of permutations. Through checking several types of ap-
plicable under-sampling patterns in simulation, the goal of proving the robustness of 
this technique is established. This technique can enhance the reconstruction quality of 
the CS MRI result and therefore enable the use of less data and acquisition time. 

Novel software, FastTestCS, is introduced here for the purpose of reducing computa-
tion time in CS reconstruction simulation and testing. It is a tool that can be custo-
mized for CS reconstructions using different images, sampling patterns, sparse trans-
forms and optimization techniques. It also is written in the compiled language of C++ 
that can allow for quick runtime of simulations. Additionally, compute performance 
and time can be measured more in line with an expected fast product implementation. 
The FastTestCS executable is designed with a full set of versatile arguments to custom-
ize all the needed functionality to run several different simulations. 

In summary, a comprehensive analysis of the robustness of the TIWT in CS applica-
tions is presented through simulations involving six different under-sampling patterns 
for MRI. Comparisons in reconstruction compute time are made between the Wavelab 
toolbox in Matlab and Gnu Scientific Library (GSL) in C++ that show a significant time 
savings factor of 60×. This transform is computationally feasible as it is shown to be 
only one order of magnitude more computation than the orthogonal wavelet, yet pro-
duces higher fidelity image reconstructions. FastTestCS software is introduced and 
demonstrated as useful for researchers interested in CS simulations using different im-
ages, sparsifying transforms, objective functions and under-sampling patterns in a 
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quick development and test environment that can scale to large studies. 
The format consists of five main parts. Section 1 and 2 are introductory and back-

ground of theory and pertinent literature on under-sampling in CS for MRI. Section 3 
details the methods used for the simulations and development of FastTestCS. This in-
cludes under-sampling pattern formula and the CS simulation setup. Section 4 presents 
results from the simulations of TIWT vs TV CS including images and tables of mea-
surements. Finally, Section 5 discusses these results with the use of FastTestCS. 

2. Background: Under-Sampling, Sparsity and Optimization in CS  
for MRI 

The three main ingredients of CS are correct under-sampling, sparsity and optimiza-
tion. Candès et al. and Lustig et al. state a CS requirement of incoherence between the 
under-sampling domain and the sparse representation domain [1] [2]. This means that 
under-sampling in k-space must have artifacts that are incoherent in the linear image 
reconstruction. A primary aspect of this requirement is determining the best under- 
sampling technique. Using a uniform random under-sampling matrix could seem ap-
propriate, however, k-space packs a majority of discernible frequency content at its ori-
gin which trails off at its periphery. Additionally, just sampling individual points of 
k-space randomly is non-standard for MRI and may not be as efficient. Sampling is 
costly in time, therefore, determining the shortest sample trajectory path is desired. 

For quick adoption of CS in MRI, patterns that follow existing sequences and trajec-
tories with some under-sampling should be used. Both Cartesian and non-Cartesian 
under-sampling patterns, such as radial and spiral trajectories, have already been inves-
tigated for CS in MRI. Lustig et al. utilize a 1D variable density under-sampling [2]. Bi-
got et al. investigate a random block of sensing vectors [11]. Castets et al. develop an 
interleaved golden angle spiral for imaging at high magnetic fields [12]. Chan et al. 
utilize CS with different radial sampling schemes [13]. Polak et al. consider how the 
performance of CS is bounded when grouped sampling is necessary [14]. For MRI, 
sampling speed is somewhat constrained to human physiology and pulse sequence de-
sign. 

Radial and spiral sampling techniques are used for their advantages. For example, 
radial acquisitions reduce structural and motion artifacts over standard Cartesian ac-
quisition, while keeping the requirement of artifact incoherence. King improves non- 
Cartesian spiral scanning with an anisotropic field of view where acquistion is fast and 
reconstruction improves IQ utilizing gridding [15]. Liu et al. develop a circular Carte-
sian under-sampling strategy for CS that does not require griding [16]. Ersoz et al. also 
analyze a Cartesian based radial sampling trajectory for MRI [17]. In many of these 
cases, due to computational simplicity, the Fast Fourier Transform (FFT) is desired, 
which operates on a Cartesian grid. Griding and inverse griding with interpolation are 
often needed to transform from a non-Cartesian sample space to a Cartesian space and 
back again, adding significant computation when repeated for iterative optimization in 
CS. However, there are spiral and radial linogram Cartesian based trajectories which do 
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not require griding and interpolation which easily make use of the FFT directly. There-
fore, careful selection of sampling patterns does have an impact on reconstruction time. 

Sparsity is the amount of an image or signal that can be represented with informa-
tion. When a signal is n-sparse, the signal has p elements, but only has n elements of 
valuable information, in some cases, n p

. MRI data and images are not typically 
sparse, however, a sparsifying transform is used which will compress the image making 
it sparse in the transform coefficient domain and thereby allowing CS. 

Due to under-sampling, the signal recovery in Equation (1) is under-determined. 
The signal pRβ ∈  is recovered from corrupted or incomplete measurements ny R∈  
and a sampling matrix n pR ×Φ∈ . An error z is to accommodate real world systems 
with noise. The error must be sufficiently small with respect to the measurement 
magnitude, where   is at most proportional to the noise level [18]. 

2,   where    y z zβ= Φ + ≤                         (1) 

The solution is non-linear and exponentially complex, therefore an alternative 1  
constraint is utilized. The problem is now convex and can be minimized with quadratic 
programming, see Equation (2). 

1

2

minimize : 

subject to :   

Wx

x yΦ − ≤ 
                        (2) 

W represents the sparsifying transform and x is the signal approximation. In order to 
practically implement this sparse recovery problem, an unconstrained formulation is 
utilized as shown in Equation (3). 

2 1minimize x y WxλΦ − +                       (3) 

λ  is a regularization parameter for balancing data consistency and sparsity. This can 
be solved in many ways; in this work, a Non-Linear Conjugate Gradient (NLCG) 
method is used, as in [2] [19]. 

3. Methods 

3.1. MRI Under-Sampling Trajectory Simulation 

To prove the effective use of the TIWT as a robust technique for CS MRI, several 
under-sampling patterns are developed and compared with simulation. The goal of an 
under-sampling pattern for CS is to provide incoherent and minimal noise like artifacts. 
Developing under-sampling patterns for MRI trajectories that preserve the data at the 
center and less at the periphery are of great interest, because the sampling domain is 
k-space and the majority of the signal power is at the center. The design of these 
trajectories are described next. 

The radial under-sampling technique is calculated in a circular pattern, see Figure 
1(a) and Equations (4) and (5). Each line has a unique angle a of π L . Where L is the 
number of lines, N is the length of one dimension of the sampling space and n 
represents a point on that line. 
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(a)                            (b)                           (c) 

 
(d)                            (e)                           (f) 

Figure 1. Under-sampling patterns at 25%: (a) Radial with 70 lines; (b) Spiral; (c) Random; (d) 
2D variable density; (e) 2D variable density with 25 point fully sampled center radius; (f) 1D 
variable density with 32 line fully sampled center. 
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The spiral technique presented here is logarithmic, meaning it will grow from the 
origin as the distance increases, see Figure 1(b) and Equations (6) and (7). Where a 
and b are constants that control the radius and expansion of the spiral and t is a point 
along the spiral 

( ) ( )e cosbtx t a t=                             (6) 

( ) ( )e sinbty t a t=                             (7) 

Several random distributions are utilized, a basic uniform random under-sampling is 
used as in Figure 1(c). The variable density random under-sampling in Figure 1(d) 
uses a 2D radial distance x calculation between the origin and any particular point. This 
distance is then used in a calculation of a random variable based on a 1D Probability 
Distribution Function (PDF), that takes a standard deviation (σ ) and a distance (x), 
see Equation (8). 
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The resulting random distribution matrix can be thresholded to any desired reduction 
factor %. Additionally, a fully sampled center can be applied to this technique by setting 
the probability of the points within the center diameter to 100%, see Figure 1(e). 

A 1D variable density under-sampling technique with a fully sampled center is seen 
in Figure 1(f). This is achieved in much the same way as the 2D variable density 
calculation, using a 1D distance from the origin of k-space and sampling the entire line. 

An analysis is performed for the question of whether to reconstruct CS at a low vs 
high resolution for the case of a Time of Flight (TOF) Maximum Intensity Projection 
(MIP). The input high resolution MRI TOF k-space dataset is 256 × 224. It is centered 
by the highest peak in a 512 × 512 matrix, see Figure 3(a). Notice that this dataset is a 
partial Fourier encoding, where the center of k-space is fully sampled, and a portion of 
k-space is not sampled. For simulation of CS, this dataset presents a challenge for 
reconstruction at low resolution, see Figure 3(b). To use this k-space dataset in simu- 
lation, it would need to be cropped at 256 × 256 having the peak centered. This does 
impact IQ of high resolution details, due to the fact that some fine details are deleted in 
the periphery of k-space. For the simulations performed here, shifting of the k-space 
peak avoids any cropping of data, and thus minimizes this negative impact to IQ.  
 

 
(a)                            (b)                           (c) 

 
(d)                            (e)                           (f) 

Figure 2. CS reconstructions of T1 MRI with 25% samples. (a) Radial; (b) Spiral; (c) Random; (d) 
2D variable density; (e) 2D variable density with 25 point fully sampled center radius; (f) 1D 
variable density with 32 line fully sampled center. 
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(a)                            (b)                           (c)                             (d) 

Figure 3. TOF MRI k-space data (1 receiver) and MIP reconstruction zoomed in (a) High resolution 512 × 512 data; (b) Cropped 
low resolution 256 × 256; (c) High resolution reconstruction; (d) Cropped low resolution reconstruction. 
 

Additionally, a shifting of the under-sampling pattern to correlate with the center of 
k-space is also performed. For CS MRI acquisition, the under-sampling needs to be 
centered at the k-space peak to be effective and not lose important information at the 
k-space center and periphery. 

3.2. “FastTestCS”, A Fast Software Framework for Testing  
under-Sampling and Sparsifying Transforms in CS 

A new CS testing framework called FastTestCS is proposed here. It is fully written in 
C++, is modular, with simple methods that can be used similar to functions used in 
Matlab [20] or other object oriented programs. FastTestCS is built upon the under- 
standing that CS takes considerably more computation and memory than standard 
cases of MRI reconstruction. FastTestCS addresses the need to have a more efficient 
compiled programming environment over prototype Matlab software. 

Matlab is a rich scientific programming language, ideal for algorithm development, 
however, having the best optimized performance of simulations may be limited due to 
abstraction and additional language internal processing. Wavelab [21], a collection of 
wavelet implementations, including the TIWT, is written in Matlab. However, when 
performing many wavelet transforms, it is observed that the TIWT in Wavelab is 
prohibitively slow. 

The speed of the TIWT was tested by comparing the transform reconstruction wall 
time difference between the Wavelab Matlab implementation vs. the transform written 
in C++. Two resolutions of an image were chosen, 256 × 256 and 512 × 512. The test 
code was developed by isolating the transform setup, data memory transfers, compu- 
tation and tear down of the method. These timing tests are performed without the 
overhead of other CS processing. This time measurement includes calculating 10 for- 
ward and inverse transforms on both real and imaginary parts of the image for a total 
of 40 calls to the TIWT method. 

This number of transform calculations is comparable to the minimum that must be 
performed in a CS program. However, often the number of transforms are much 
greater, such is the case for the NLCG with a quadratic line search and Wolfe con- 
ditions. Many extra iterations must be performed to determine appropriate search dire- 



C. Baker 
 

260 

ctions and step sizes. 
Four different implementations are tested for the standard orthogonal wavelet and 

the TIWT. The translational invariance is achieved by performing circular shifts of the 
data. The orthogonal wavelet provided by Matlab as “WAVEREC2” and “WAVEDEC2”, 
is compared with the GSL C++ implementation “gsl_wavelet2d_nstransform_matrix”. 
The TIWT, provided by Wavelab as “FWT2_TI” and “IWT2_TI”, is compared with the 
FastTestCS implementation “TIDWT” and “ITIDWT”. 

The FastTestCS approach implements CS and several sparsifying transforms that run 
faster in C++ than in Matlab. Algorithms can be prototyped for accuracy first in Matlab, 
and then re-implemented in C++. The simulations are run in C++ in less time and in 
parallel across multiple cores and machines. Additionally, FastTestCS has image com- 
parison tools such as Mean Square Error (MSE), as well as other useful image 
operations like Normalize, ReadImg or Write Data. It is a Microsoft Visual Studio 
project and can be compiled for Windows or Linux. It allows sharing code for easy 
algorithm prototyping, comparison and dataset manipulation. It is a portable and 
customizable simulation tool to benefit CS research. 

There are many required permutations of several parameters and reconstruction tests 
to run in order to prove robustness. It is apparent that efficiency can be improved by 
parallelizing computations and simulations, compared with running on just one 
machine with one thread. Since some CS routines could run over a week to a month, it 
would be impractical to try many different options serially. 

In response, FastTestCS executable is designed with very versatile arguments to 
implement all the needed functionality and parameters to run several different 
simulations from the command line. Multiple machines are used to easily distribute 
many simulations. Simple scripts are used to tar up the software and unique calling 
parameters, send the package to the specified machine, build and run the package, save 
the results and transfer the images and results back to a single archiving repository for 
review. With this method, there are no limits to the number of machines that can be 
used and simulations that can be achieved more quickly in parallel. 

Distribution is achieved for these tests with a small cluster of five individual quad 
core machines, with one being the source and archive, in addition to having its own 
portion of processing. Meta-data in the image identifies what simulation parameters 
produced the image for distinction. Once all the resulting images are together, 
quantitative and qualitative image comparisons are performed with a “golden” fully 
sampled image. An executable loads the reconstructed images and the golden image, 
and makes several calculations for each image such as MSE. The program can then 
output results to a comma separated table with one line for each image that is easily 
viewed in a spreadsheet. 

MRI k-space data is generated by a General Electric (GE) Healthcare MRI scanner 
and saved as a “P”-file. GE provided Matlab software to read the P-file and make a 
k-space matrix. Due to this data being on a Cartesian grid, a fully sampled recon- 
struction is simply an Inverse FFT. This fully sampled dataset is input to the under- 
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sampling process used in FastTestCS reconstruction by way of a Comma Separated 
Value (CSV) file. The resulting CS reconstruction is compared to the original fully 
sampled dataset and measured by MSE to verify its fidelity. 

The MSE is defined as a measure of pixel intensity error between ix  and ˆix , which 
are the original and reconstructed image. The smaller this value is, roughly correlates to 
less measured error and better IQ. MSE is used extensively in this work as a consistent 
numeric measure of image differences. However, it is important to note that it does not 
directly correlate to a clinical setting of perceived IQ, where a radiologist’s expertise is 
needed. 

1 2

0

1 ˆMSE
N

i i
i

x x
N

−

=

= −∑                            (9) 

Three image types are used in the analysis. A phantom image, see Figure 4(a), is a 
Shepp-Logan phantom, created by Matlab where a 2D FFT converts the image to 
k-space and saves the CSV. A T1 MRI image, see Figure 4(b), is a single channel T1 
MRI brain image where k-space is directly saved to CSV. A TOF MIP Image is a multi 
slice 8 channel 3D volume TOF brain MRI k-space dataset where each slice and channel 
image is reconstructed individually and used to generate the MIP, as seen in Figure 
4(c) and Figure 4(d). Multiple channels in images are combined using sum of squares. 

An important way to analyze different parameters and IQ results of CS recon- 
structions is to keep all parameters the same in the CS algorithm and just change the 
transform or sampling pattern. The analysis and results here are done with individual 
transforms without a combination of other transforms. This is to measure the error of 
each sampling pattern independently and identify the transform quality. 

The steps of the CS reconstruction simulation are as follows and in Figure 5: 
1) Start with fully sampled k-space data. 
2) Sample the k-space data using a desired under-sampling pattern. 
3) Perform the iterative non-linear optimization technique. 
4) Compare the error between the fully sampled image and the CS reconstruction to 

measure the quality of the reconstruction. 
The CS reconstruction optimization in FastTestCS is the NLCG with backtracking  

 

 
(a)                            (b)                            (c)                           (d) 

Figure 4. Fully sampled reconstruction simulation images: (a) Shepp-Logan phantom 256 × 256; (b) T1 MRI image 256 × 256; (c) 
TOF MRI MIP image 192 × 512 × 512 8 channel; (d) TOF MRI (one slice) image 512 × 512. 
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Figure 5. Implementation of CS image reconstruction simulation. 
 
line search and Wolfe conditions. The formulation of the objective function ( )f x  in 
Equation (3) requires the calculation of the gradient ( ( )f x∇ ), which Lustig, et al. [2] 
define as Equation (10). 

( ) ( )*
12f x x y Wxλ∇ = Φ Φ − + ∇                      (10) 

where 1Wx∇  can be approximated with the sign function as in Equation (11). The 
star (*) symbol represents the complex conjugate transpose. 

( ) ( )* *
1 r iWx W sign Wx W sign Wx∇ = +                   (11) 

This unconstrained formulation is versatile when dealing with non-orthonormal 
transforms. The calculation of the gradients in the unconstrained approach requires the 
inverse of the transform. For an orthonormal transform, that is simply a multiplication 
of the coefficients by a transpose of the wavelet dictionary. However, for a non- 
orthonormal transform, like the TIWT and many of the other transforms, a separate 
calculation of the inverse transform is used rather than a transpose of the dictionary. In 
FastTestCS, a transform method is created that calls the forward or inverse of the 
transform. All coding for the transform is easily integrated, segregated and tested. Real 
and imaginary parts of MRI data are treated separately throughout all of the 
optimization. 

4. Results 

Performance measurements show a big speed up in computation time with optimized 
C++ code vs Wavelab. See Table 1, where the orthogonal wavelet is optimized in a 
Matlab toolbox vs in C++ using GSL [22] in FastTestCS, the computational time is very 
similar. However, when using the TIWT from Wavelab in Matlab vs C++ where the 
TIWT implementation is coded for FastTestCS, the difference is quite dramatic. 
FastTestCS is 60 times faster! This shows that coding some computationally time 
consuming algorithms in C++ would be most beneficial. 

Tables 2-8, show a comparison of TIWT vs TV CS with several sampling patterns 
for IQ analysis on three sample images from Figure 4. These images are diverse in 
several practical qualities. The Shepp-Logan phantom is commonly used in analysis and  
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Table 1. Time measurement (seconds) comparison of 40 wavelet transforms (10 complex, 
forward and reverse), O = Orthogonal, with C++ and Matlab implementations. 

Transform Function Language 256 × 256 512 × 512 

O Wavelet WAVEREC2 & WAVEDEC2 Matlab toolbox 0.75 2.9 

O Wavelet gsl_wavelet2d_nstransform_matrix C++ GSL FastTestCS 0.33 2.21 

TIWT FWT2_TI & IWT2_TI Matlab Wavelab 342 1380 

TIWT TIDWT & ITIDWT C++ GSL FastTestCS 4.6 22.83 

 
Table 2. Radial under-sampling pattern IQ comparison with MSE between CS reconstructed 
images and reduction factors (%) with 10, 100 and 500 NLCG iterations. 

Samples Phantom T1 MRI TOF MIP 

% (itr) Lin TI TV Lin TI TV Lin TI TV 

25% (10) 355 55.2 145 449 65.6 362 194 135 140 

25% (100) 355 4.68 3.00 449 65.3 59.5 194 27.2 81.5 

25% (500) 355 0.450 0.033 449 64.0 49.7 194 25.3 67.9 

38% (10) 197 22.6 25.7 256 12.1 50.0 132 36.0 73.4 

38% (100) 197 1.34 0.0244 256 13.0 34.8 132 10.9 38.5 

38% (500) 197 0.004 0.02 256 14.5 21.2 132 9.52 27.2 

50% (10) 132 10.6 2.95 86.2 13.0 29.0 37.8 6.00 20.6 

50% (100) 132 0.163 0.0112 86.2 15.6 14.6 37.8 3.45 15.9 

50% (500) 132 0.0018 0.0122 86.2 14.0 23.1 37.8 3.69 14.4 

75% (10) 53.6 3.11 0.021 4.6 1.94 2.51 3.67 0.92 2.66 

75% (100) 53.6 0.033 0.0064 4.6 1.96 2.65 3.67 0.73 2.52 

75% (500) 53.6 0.0007 0.0052 4.6 2.34 2.60 3.67 0.77 2.48 

 
Table 3. Spiral under-sampling pattern IQ comparison with MSE between images and reduction 
factors. 

Samples Phantom T1 MRI TOF MIP 

% Lin TI TV Lin TI TV Lin TI TV 

25% 216 28.9 1.91 354 18.8 25.3 138 39.6 85.8 

38% 164 3.2 0.0221 80 12.0 14.0 70.2 10.4 33.0 

50% 118 0.492 0.0194 34.6 6.75 19.6 30.9 4.81 14.8 

75% 54.9 0.061 0.0077 2.98 2.0 2.92 4.12 0.93 2.23 

 
demonstrates low noise and simple structures. The T1 and TOF MRI brain images 
portray practical medical images which have differences in noise and fine structure 
throughout. The 3D TOF additionally represents a sparse image domain which should  
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Table 4. Random under-sampling pattern IQ comparison with MSE between images and 
reduction factors. 

Samples Phantom T1 MRI TOF MIP 

% Lin TI TV Lin TI TV Lin TI TV 

25% 2629 1029 1128 3709 2077 3125 389 304 2684 

38% 1910 837 1033 3251 2121 2823 281 196 310 

50% 1518 789 922 1346 519 837 154 95.5 145 

75% 1099 603 824 409 146 269 33.2 10.1 33.9 

 
Table 5. 1D variable density with small (32 line) center under-sampling pattern IQ comparison 
with MSE between images and reduction factors. 

Samples Phantom T1 MRI TOF MIP 

% Lin TI TV Lin TI TV Lin TI TV 

25% 594 129 164 354 124 135 1128 457 631 

38% 408 15.0 29.0 277 66.6 108 562 85.8 266 

50% 291 1.23 13.5 252 26.7 35.6 444 50.8 216 

75% 85.3 0.033 1.97 43.4 3.41 6.87 29.2 3.01 15.8 

 
Table 6. 1D variable density with large (60 line) center under-sampling pattern IQ comparison 
with MSE between images and reduction factors. 

Samples Phantom T1 MRI TOF MIP 

% Lin TI TV Lin TI TV Lin TI TV 

25% 336 264 182 169 85.3 89.0 370 188 276 

38% 222 60.7 75.8 145 31.7 57.9 217 82.6 114 

50% 174 11.0 2.24 136 27.5 76.6 134 41.4 67.1 

75% 64.6 0.014 0.386 28.5 2.66 4.72 12.9 1.94 7.70 

 
Table 7. 2D variable density under-sampling pattern IQ comparison with MSE between images 
and reduction factors. 

Samples Phantom T1 MRI TOF MIP 

% Lin TI TV Lin TI TV Lin TI TV 

25% 1429 770 960 1956 848 1696 87.8 31.9 84.9 

38% 1092 568 808 1618 768 1541 59.5 23.7 52.5 

50% 910 581 750 1496 797 1505 22.2 4.03 11.8 

75% 59.6 0.702 0.008 3.74 1.99 2.61 2.45 1.53 1.87 

 
lend well to CS due to the use of TV and wavelet 1  minimization functions. Figure 2 
portrays the effect each under-sampling pattern has on the linear reconstruction of 
Figure 4(b). 
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Table 8. 2D variable density with small (25 pixel radius) center under-sampling pattern IQ 
comparison with MSE between images and reduction factors. 

Samples Phantom T1 MRI TOF MIP 

% Lin TI TV Lin TI TV Lin TI TV 

25% 286 65.4 3.42 280 31.7 27.1 187 32.3 56.1 

38% 221 14.3 0.0211 186 11.1 20.4 124 4.96 37.4 

50% 167 0.0328 0.0132 101 7.50 10.3 61.4 2.87 20.1 

75% 54.2 0.0596 0.0035 10.3 2.32 3.25 4.37 0.84 2.69 

 
In Table 2, there is a linear vs CS reconstruction IQ comparison with a variable 

density radial under-sampling pattern across the three images. There is also an analysis 
of stopping criteria where MSE results of 10 iterations are compared with 100 and 500 
iterations. Note for the phantom, the CS reconstruction with the TIWT has a much 
lower MSE than that of TV at 10 NLCG iterations and at a lower under-sampling rate 
of 25%. However, at 100 and 500 iterations the MSE is similar. This shows that 10 
iterations is insufficient and performing more than 100 iterations may not change the 
image substantially. Through this data, there also appears to be different iteration limits 
to improving IQ for certain image types and transforms. When looking for a robust 
general solution, this experiment highlights how important it is to have an analysis to 
determine good iteration stopping criteria. Given this challenge, in order to have a 
consistent analysis, 100 iterations are chosen as the stopping criteria for all the other 
simulations. 

In Table 3 for spiral under-sampling, comparisons can be made with radial sampling 
in terms of MSE. For instance, in the TOF MIP at 38% samples for TIWT and TV, the 
MSE is 10.4 and 33.0, respectively, which is similar to the results shown in Table 2. 
Looking at the same under-sampling ratios, a better IQ is achieved in an initial linear 
reconstruction. However, this does not always correlate to a better CS reconstruction, 
as seen in some results of this table. 

Table 4 shows results using a uniform random under-sampling pattern. Much higher 
MSE is observed in all linear and CS reconstructions. These results show it is important 
to have dense sampling at the center of k-space for reconstruction. Notice the range of 
MSE at lower % vs high %, even at 75% samples, the MSE of the recon- struction is 
similar with radial under-sampling at 25%. However, even with this poor choice of 
under-sampling, the TIWT does operate effectively. 

In Table 4, according to the MSE of the TOF MIP, it appears that the IQ does not 
improve very much when CS is utilized, and in some cases for TV, even degrades. This 
highlights the problem using a uniform random under-sampling in MRI. The majority 
of large structure information is at the center of k-space, and some of that information 
is not being recovered which can drastically change reconstruction. Although, this 
analysis is not entirely negative, as seen by inspecting intermediate CS reconstructed 
TOF images that make up the MIP. Figure 6(b) and Figure 7(a) show a 38% under- 
sampling linear reconstruction of the TOF slice and MIP. A fully sampled slice is shown 
in Figure 6(a). Intense noise has clouded the TOF and MIP image. After a TIWT or TV  
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(a)                           (b)                             (c)                           (d) 

Figure 6. TOF reconstruction with 38% random under-sampling, receiver 1, slice 1. (a) Fully sampled; (b) Linear; (c) TIWT CS; 
(d) TV CS. 
 

 
(a)                                      (b)                                     (c) 

Figure 7. TOF MIP reconstruction with 38% random under-sampling. (a) Linear; (b) TIWT CS; (c) TV CS. 
 
CS reconstruction, the noise is significantly reduced, see Figure 6(c), Figure 7(b), 
Figure 6(d) and Figure 7(c). Notice that comparing these results and the fully sampled 
MIP, Figure 4(c), shows a large difference in background intensity. This is greatly 
reduced in the CS reconstruction and may be a desired trait because it intensifies the 
Signal to Noise Ratio (SNR). It is important to note that some fine details and other 
large structure intensities are reconstructed slightly different between TV and TIWT. In 
terms of the robustness in MSE of the TIWT, it outperforms TV in all cases. 

Table 5 and Table 6 represent the use of several 1D variable density under- 
samplings of k-space for good IQ and simple adoption into standard Cartesian MRI 
pulse sequences. In Table 6, a larger center of 2D fully sampled k-space contributes to a 
much better linear reconstruction, which in turn, produces an improved CS recon- 
struction over the smaller center shown in Table 5. Additionally, these consistent 
improvements do bolster a robust use of TIWT for CS. 

Table 7 shows the use of a random variable density 2D under-sampling. Similar to 
the fully uniform random under-sampling cases of Table 4, there are drastic differences 
in MSE for reconstructions at different under-sampling percentages. Lower sampling 
results in less improvement in the CS reconstructions, however, this result improves 
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when more samples are taken. Notice that for both these cases when a low percentage 
of samples are taken, the center of k-space is not fully sampled and the image recon- 
structions suffer a large loss of quality in major image structures and intensity. It 
appears that this under-sampling pattern should also be avoided. 

Table 8 shows improved results over Table 7 by modifying the 2D under-sampling 
pattern with the addition of a center that is fully sampled. These results are very 
promising and show that this under-sampling pattern produces some of the best 
reconstructions. The TIWT also performs quite well with this sampling pattern. 

Figure 3(c) and Figure 3(d) represent an enlarged portion of the fully sampled TOF 
MIP. A high resolution (512 × 512) linear reconstruction is compared with a cropped 
k-space low resolution (256 × 256) reconstruction zipped to 512 × 512 for MIP 
calculation, The MSE difference between the two results is about 3.0, which is small 
compared to some under-sampled linear reconstructions. However, in a visual analysis 
of the images, some very fine vessels are missing or blurred in the low resolution 
reconstruction causing an IQ impairment. 

To mitigate this, the MIP simulations shown in the tables are all done by shifting the 
k-space data so that it is not cropped, but rather has the center of k-space and the 
sampling center match slightly off center. The MSE difference in this case is 0.11, which 
is negligible, and verifies the assumption that there is no visible difference in IQ 
between low and high resolution fully sampled reconstructions. With this accuracy, 
there is confidence in running these tests at low resolution with a shifted k-space. 

Performing all reconstructions at a high resolution would come at a high compu- 
tation cost of about 5× longer, therefore, lower resolution reconstructions are perfor- 
med. As a time comparison, a 512 × 512 8 channel 192 slice MIP CS reconstruction with 
the TIWT for 10 iterations takes 20 hours, whereas, the same reconstruction at 256 × 
256 takes 4 hours, single threaded, with an Intel Core i7 computer. 

5. Discussion 

5.1. Good under-Sampling Patterns 

Here it is shown that the choice of good under-sampling patterns clearly has a 
correlation to the data being gathered. The center of k-space visually has a more intense 
magnitude of data, therefore, sampling density at the center contributes to a better SNR 
and a lower MSE. The radial, spiral, 1D and 2D variable density with the center fully 
sampled performs good, compared to the other patterns that did not sample with a 
dense center. The balancing of image quality with how the under-sampling pattern 
dissipates, is a complex analysis that requires visual as well as error analysis. 

5.2. CS Reconstruction for MRI 

As seen in the synthetic phantom error tables, some CS reconstructions may perform 
exceptionately well in comparison to real in-vivo MRI data. The lack of noise and the 
few distinct edges in the original phantom data contribute to a high success for the 
TIWT and especially TV, which measures differences between pixels. With that in 
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mind, care must be taken for each MRI imaging application that uses CS due to likely 
differences in noise statistics and image types affecting the IQ performance of the CS 
reconstruction. This hightlights the value of having a broad spectrum of tests so that 
the correct CS parameters can be chosen and used. 

5.3. Reconstruction of MIP 

CS reconstruction of TOF data used in a MIP can be performed at a lower acquisition 
resolution and then transformed to a higher resolution because there are no visible 
differences in smaller vessels. The analysis of IQ with MSE is challenging for MIP 
because the error measurement may not pick up the changes in small vessels being of 
little numerical error. Additionally, changes in the background intensity of the image 
do contribute to larger error. Having a larger MSE may be misleading compared to 
what is observed with a visual analysis. 

Special care must be taken for under-sampling with partially encoded Fourier k-space 
data. Visually, the image generated without small amounts of data at the periphery does 
have a negative impact on small vessel details of the MIP CS reconstruction. Therefore, 
adjusting the k-space center is needed to prevent cropping any data and have more 
meaningful IQ comparisons. 

5.4. Stopping Criteria 

The stopping criteria is determined by analyzing the IQ after a certain number of 
iterations. This proves to be a very challenging issue due to the fact that different image 
types will require a different number of iterations to produce the best reconstructions. 
Image types with very little noise require many more iterations, however, the recon- 
struction IQ improves greatly as well. This improvement is probably due to the 
fundamental aspect of CS reconstruction theory of sparsity. When higher sparsity can 
be achieved in transforming these images, CS has a greater probability of better recon- 
structions with less data. However, most real images do have noise. 

Despite this dilemma, a solution can be observed where enough iterations can be 
achieved that produces a result that will not change IQ significantly if more iterations 
are performed. Then this number can be used for other similar tests. This aspect of CS 
highlights the importance of performing an analysis for determining the best stopping 
criteria for specific image types and algorithms. 

5.5. Computation Time with FastTestCS 

The choice to develop FastTestCS came out of the necessity to speed up reconstructions 
using a more complex TIWT in CS with larger 3D data sets. Table 1 proves a conside- 
rable speedup is achieved by coding in a compiled language like C++ which is a more 
realistic time measurement of reconstruction than using less optimized software. The 
use of the TIWT vs a standard orthogonal wavelet is 10× more processing, achieving an 
improvment of reconstruction IQ. Although, this is at a high compute burden, it is less 
than more complex algorithms that incorporate dictionary learning. Having faster 
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software contributes to more research opportunities such as being able to compare 
more sampling patterns, finding better stopping criteria, and performing higher 
resolution experiments with more images. For instance, comparing the CS recon- 
struction time of the TOF MIP, which uses +1500 images (256 × 256), the Wavelab 
TIWT implementation in Matlab would have taken approximately 10 days to recon- 
struct, whereas, with FastTestCS, this same reconstruction takes 4 hours on a single 
compute core. Additionally, by adding parallelization, with five quad-core machines, 
this reconstruction takes less than 15 minutes. There is also great value in FastTestCS to 
assess true performance of sparsifying transforms because it is better to compare a fast 
compiled language implementation vs a non-optimized version. This is the case in the 
use of the TIWT from Wavelab resulting in a 60x longer compute time compared with 
FastTextCS. 

5.6. Use of FastTestCS 

FastTestCS may be customized to include any image or signal, objective function, 
sampling pattern and sparsifying transform to test different scenarios and compare 
reconstructions. Additionally, any libraries or algorithms available in C++ can be 
incorporated into FastTestCS. Having consistent CS input data and algorithms to test 
various options provides a clear analysis and simulation tool with unlimited possibilities 
for future enhancements and tests. The executable and command line interface provides 
a convenient way to parallelize on different compute cores and machines to quickly test 
across various inputs and options in an automated way. Contact the author for software 
availability to obtain reproducible results, usage and advancement,  
http://people.uwm.edu/gxu4uwm/fasttestcs. 

5.7. Future Work 

The applicability of using the TIWT for CS MRI is wide spread due to the variety of 
image types and sampling patterns encountered in MRI. Therefore, there are many 
applications along those lines that could be researched in the future. Additionaly, 
different wavelet filters and settings could be investigated to find which applications 
perform best with which filters to produce better IQ. Also, future expansions to 
FastTestCS are possible to add functionaltiy for testing other images, sparse transforms, 
sampling patterns and objective functions. 

6. Conclusions 

By simulation of CS reconstructions and measurement of IQ differences, results 
indicate robustness of the TIWT. Several comprehensive under-sampling patterns are 
designed to compare the TIWT with TV as sparsifying transforms in CS MRI recon- 
struction. The TIWT performs consistently well in terms of MSE for all under- 
sampling patterns. An in-depth look at high and low resolution TOF MIP CS recon- 
struction is evaluated for IQ differences. Analysis shows that careful under-sampling 
must be performed at the center of k-space to preserve important data for better recon- 

http://people.uwm.edu/gxu4uwm/fasttestcs
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struction. With the TIWT, good k-space under-sampling and a reliable CS recon- 
struction algorithm, improved IQ and greater speed-up for CS MRI can be achieved. 

FastTestCS software is introduced and demonstrated as a helpful tool for CS 
reconstruction research that offers the needed speedup with process distribution to 
perform experiments with large datasets. In the case of the TIWT, a 60× time improve- 
ment was achieved. FastTestCS also is easily customized with each under-sampling 
pattern used in this investigation.  
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