
Journal of Signal and Information Processing, 2014, 5, 191-197
Published Online November 2014 in SciRes. http://www.scirp.org/journal/jsip
http://dx.doi.org/10.4236/jsip.2014.54020

How to cite this paper: Zhang, H.M. (2014) Tree Matrix Algorithm of LDPC Codes. Journal of Signal and Information Pro-
cessing, 5, 191-197. http://dx.doi.org/10.4236/jsip.2014.54020

Tree Matrix Algorithm of LDPC Codes
Huanming Zhang
Electronics and Information Engineering Institute, Foshan University, Foshan, China
Email: huanmingzhang@126.com

Received 16 September 2014; revised 15 October 2014; accepted 8 November 2014

Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
LDPC codes are finding increasing use in applications requiring reliable and highly efficient in-
formation transfer over bandwidth. An LDPC code is defined by a sparse parity-check matrix and
can be described by a bipartite graph called Tanner graph. Loops in Tanner graph prevent the
sum-product algorithm from converging. Further, loops, especially short loops, degrade the per-
formance of LDPC decoder, because they affect the independence of the extrinsic information ex-
changed in the iterative decoding. This paper, by graph theory, deduces cut-node tree graph of
LDPC code, and depicts it with matrix. On the basis of tree matrix algorithm, whole depictions of
loops can be figured out, providing of foundation for further research of relations between loops
and LDPC codes’ performance.

Keywords
LDPC, Belief Propagation (BP), Graph, Iterative Decoding, Loop, Cycle

1. Introduction
Probability distributions defined by graphs are used in literature of various fields, such as coding theory, artifi-
cial intelligence, and system theory.

LDPC [1] code can be depicted by its parity-check matrix H [2], { }T 0nC x F xH= ∈ = and its degree dis-
tribution of polynomial [3]:

() 1

1

vd
d

d
d

x xλ λ −

=

= ∑ (1)

() 1

1

cd
d

d
d

x xρ ρ −

=

= ∑ (2)

Computing distributions of variable and check nodes in a Tanner graph is relatively efficient without cycle,

http://www.scirp.org/journal/jsip
http://dx.doi.org/10.4236/jsip.2014.54020
http://dx.doi.org/10.4236/jsip.2014.54020
http://www.scirp.org
mailto:huanmingzhang@126.com
http://creativecommons.org/licenses/by/4.0/

H. M. Zhang

192

but complex with cycles, even difficult when cycles are short for large graph.
The belief propagation algorithm [4], or known as the sum-product algorithm [5] is decoding algorithm for

graphical codes, such as convolution code, turbo code and LDPC code.
Belief propagation (BP) algorithm is optimal and produces exact solutions on a tree just in a finite number of

iterations. Otherwise, BP algorithm may not converge. Moreover, when it doses converge, it provides approx-
imate solution and the results vary in different conditions.

2. Background
In most common sense of the term, an undirected graph [6] consists of a set of vertices or nodes V together with
a set of edges E, which are 2-element subsets of V (i.e., an edge is related with two vertices, and the relation is
represented as an unordered pair of the vertices with respect to the particular edge). See Figure 1.

{ }1,2,3,4,5,6V =

{ } { } { } { } { }{ }1,2 , 1,5 3,4 , 2,5 , 5,6E = ，

n = 6
m = 5
Let (),G V E= be an undirected graph.
The following statements are equivalent,
1. G is a tree
2. Any two vertices in G are connected by a unique simple path
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected
4. G is connected, and 1E V= −

5. G is acyclic, and 1E V= −
6. G is acyclic, but if any edge is added to E, the resulting graph contains a loop.
In fact, a tree is a connected graph without any cycles; a leaf is a vertex of degree 1. An internal vertex is a

vertex of degree at least 2.
In coding theory, Tanner graph, named after Michael Tanner, is a bipartite graph used to state constraints or

equations which specify error correcting codes. See Figure 2. They are used to construct longer codes from
smaller ones. Both encoders and decoders employ these graphs extensively.

Figure 1. An example of a graph ,G V E= .

Figure 2. Tanner graph of an LDPC code (a cycle represented by 4 bold lines in figure).

1

2

3

4

5
6

3c2c1c

5x4x3x2x1x

4c 5c

1x 6x 7x 9x8x

H. M. Zhang

193

In communication system, the transmitted random vector { }1, , Nx x x=  is not observed; instead received

noisy vector { }1, , Ny y y=  .

N is the length of codeword, Parity check equation vector is { }1 2, , , Mc c c c=  , M is the number of equations.

{ }1 , ,a a
Nf f f=  represents initial information about transmitted codeword.

where, iv is the ith variable node, jc , jth check equation.
The belief propagation (BP) of LDPC code states as follows [7]-[11]:

a
jiR is check information from check node jc to variable node iv , and a

ijQ variable information from iv
to check node jc . See Figure 3.

() ()()
()

0 1

\

11 1 1 2
2ji ij

j N i j
R t Q t′

′∈

 
+ = + −  

 
∏ (3)

() ()1 01 1 1ji jiR t R t+ = − + (4)

() () ()
()

0 0

\
1 1 1ij ij i ji

i M j i
Q t P R tα

′∈

+ = − +∏ (5)

() ()
()

1 1

\
1 1ij ij i ji

i M j i
Q t P R tα

′∈

+ = +∏ (6)

where ijα denotes a normalization constant, () ()0 11 1 1ij ijQ t Q t+ + + = . And message updating rule see Figure
4 [12].

Figure 3. Iterative decoding algorithm.

Figure 4. Updating rule for message passing.

1c 2c jc Mc

1v
2v iv Nv

af1
af2

a
if a

Nf

a
jiR a

ijQ

a
if

••• •••

••••••

••••••

a
jiR

a
ijQ

a
jga

if

(){ }iMiiivi ∈≠ ','|'

iv jc
•••

•••

(){ }jN'j,j'j|c 'j ∈≠

H. M. Zhang

194

3. Principle of Cut-Node Tree
In order to solute loops of LDPC code, Tanner graph is re-drew as following principle: Choosing an element “1”
in H, its variable (or check) node considered root node, check (or variable) nodes connected to the variable (or
check) node as 1st order child-nodes, a current node, once appearance in ancestor node or sibling node, will be
cut and forbid to grow and become a end node like a leaf, but not a leaf actually. And so forth, at last a cut-node
tree can be get. If all nodes are connected, a single cut-node tree can be get, otherwise it is forest. Repeating this
process until all end nodes are either cut-node or leaf node. See Figure 5.

HH is mark matrix, every element in HH is zero represents end of algorithm.

Figure 5. Flow process chart of algorithm.

Start

Inputting H
Initialing T,mark

matrix HH=H

Searching root node
Corresponding

element in HH equal
0

Searching son nodes
Corresponding
elements in HH

equal 0

Checking nodes
if once

appearance
before

Ceasing to grow and
counting

Searching next level
nodes

Corresponding
elements in HH

equal 0

HH=0?

Giving out loops:
number,paths,

lengths

End

yes

no

yes

no

H. M. Zhang

195

4. Implement of Principle and Results
First, a node (variable node or check node), for instance, variable node , 1i ijv h = , is choosed as root node, its
son nodes are those which connect to it, according to this principle, we can obtain all child-nodes. This process
can be implemented by computer simulation in matlab’s celluar array, and express H by means of cut-node tree.

An example: for

1 0 1 0 1 0 1 0
1 0 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 1

H

 
 
 =
 
 
 

 (7)

has following cut-node tree graph (Figure 6).
Another example: For instance, an LDPC code with check matrix H:

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1 0 1

H

 
 
 
 =
 
 
  

 (8)

Following tree matrix expressed by matlab can be get:

[]
[]
[] [] []
[] [] []
[] [] [] [] [] [] [] [] []
[] [] [] [] [] [] [] [] []

1 1 0 0

2 1 1 1

2 5 2 1 2 6 2 1 2 7 2 1

3 5 2 5 4 6 2 6 5 7 2 7

3 2 3 5 3 8 3 5 3 9 3 5 4 3 4 6 4 8 4 6 4 10 4 6 5 4 5 7 5 9 5 7 5 1 0 5 7

1 2 3 2 4 8 3 8 1 5 9 3 9 1 1 3 4 3 3 8 4 81 5 10 4 10 1 1 4 5 4 3 9 5 91 4 10 5 10 1

1[] [] [] [] [] [] [] [] [] 1 1 2 1 1 3 1 2 1 1 4 1 2 1 1 1 1 3 2 1 2 1 3 1 1 4 1 3 2 1 1 1 4 3 1 2 1 4 2 1 3 1 4 3

 (9)

In fact, tree matrix matches along with Tree of Graph, [i j k l m], [i j] states current node, [k l] states father
node, m states times being cut.

So, searched by a computer, all loops can be get:

Figure 6. Tree graph of LDPC codes.

Cf

1c

Af

5x

4x

3x

2x

1x

Df

2c

7x

4x 6x

3c 4c 3c

4c 3c

8x 2x 6x 7x 2x 4x 8x

4c4c

H. M. Zhang

196

Loop 1: [4 8]-[3 8]-[3 5]-[2 5]-[2 6]-[4 6]-[4 8]
Loop 2: [5 9]-[3 9]-[3 5]-[2 5]-[2 7]-[5 7]-[5 10]
Loop 3: [5 10]-[4 10]-[4 6]-[2 6]-[2 7]-[5 7]-[5 10]
Loop 4: [1 1]-[1 2]-[3 2]-[3 5]-[2 5]-[2 1]-[1 1]
Loop 5: [1 3]-[1 2]-[3 2]-[3 5]-[2 5]-[2 6]-[4 6]-[4 3]-[1 3]
Loop 6: [1 4]-[1 2]-[3 2]-[3 5]-[2 5]-[2 7]-[5 7]-[5 4]-[1 4]
Loop 7: [1 1]-[1 3]-[4 3]-[4 6]-[2 6]-[2 1]-[1 1]
Loop 8: [1 1]-[1 3]-[4 3]-[4 6]-[2 6]-[2 5]-[3 5]-[3 2]-[1 2]-[1 1]
Loop 9: [1 4]-[1 3]-[4 3]-[4 6]-[2 6]-[2 5]-[3 5]-[3 2]-[1 2]-[1 4]
Loop 10: [1 4]-[1 3]-[4 3]-[4 6]-[2 6]-[2 7]-[5 7]-[5 4]-[1 4]
Loop 11: [1 1]-[1 4]-[5 4]-[5 7]-[2 7]-[2 1]-[1 1]
Loop 12: [1 1]-[1 4]-[5 4]-[5 7]-[2 7]-[2 5]-[3 5]-[3 2]-[1 2]-[1 1]
Loop 13: [1 1]-[1 4]-[5 4]-[5 7]-[2 7]-[2 6]-[4 6]-[4 3]-[1 3]-[1 1]
Loop 14: [1 2]-[1 4]-[5 4]-[5 7]-[2 7]-[2 5]-[3 5]-[3 2]-[1 2]
Loop 15: [1 2]-[1 4]-[5 4]-[5 7]-[2 7]-[2 6]-[4 6]-[4 3]-[1 3]-[1 2]
Loop 16: [1 3]-[1 4]-[5 4]-[5 7]-[2 7]-[2 5]-[3 5]-[3 2]-[1 2]-[1 3]
Here, H is just a situation of single tree, with 15 cut-nodes, no leaf node and 16 loops. See Table 1. Further,

Message-passing form for cut-node tree has following rule:
In a tree, Message-passing fellows a two-pass form, first sweeping upwards from leaves to a node designated as

the root, and then downwards from the root to leaves.
In a graph with cycle, Cut-node tree graph can be get by cutting all loops, See Figure 7.
Cut node tree has all same characters with Tanner graph.

Figure 7. Message passing over cut-node tree graph.

CfBf

Af

4x2x1x

Bf

3x

Cf

Cf

3x2x

Bfx →µ
2

1xf B →
µ

Bfx →µ
3

1xf A →
µ

Afx →µ
4

4xfC →
µ

Afx →µ
2

H. M. Zhang

197

Table 1. Features of loops about above example.

Sparsity Loops Total length of loops Average length Girth Maximum length Loop relativity

0.4 16 108 6.75 6 10 3.18

5. Conclusion
This paper provides a new method to describe graph of LDPC codes, it aims to solute loops of LDPC codes and
message passing over cut node tree. For a large matrix H, it is difficult to solute loops, because loops convolve
each other. Features of loops have certain relationship with performances. In this paper, a cut node tree can be
expressed by a certain matrix. By computer simulation, cut-node tree can get right answer and give out method
to calculate loops of LDPC codes and cut node tree graph, its results assist to further research this relationship.

References
[1] Gallager, R.G. (1963) Low-Density Parity Check Codes. MIT Press, Cambridge.
[2] Mackay, D.J.C. (1999) Good Error-Correcting Codes Based on Very Sparse Matrices. IEEE Transactions on Informa-

tion Theory, 45, 399-431. http://dx.doi.org/10.1109/18.748992
[3] Tanner, R.M. (1981) A Recursive Approach to Low Complexity Codes. IEEE Transactions on Information Theory, 27,

533-547. http://dx.doi.org/10.1109/TIT.1981.1056404
[4] Kschischang, R., Frey, B.J. and Loeliger, H.A. (2001) Factor Graphs and the Sum-Product Algorithm. IEEE Transac-

tions on Information Theory, 47, 498-519. http://dx.doi.org/10.1109/18.910572
[5] Wiberg, N. (1996) Codes and Decoding on General Graphs, Linkoping Studies in Science and Technology. Ph.D. Dis-

sertation, No. 440, Linköping University, Linköping.
[6] Reinhard, D. (1997) Graph Theory. Springer-Verlag, New York.
[7] Wainwright, M.J. (2007) Sparse Graph Codes for Side Information and Binning. IEEE Signal Processing Magazine, 47,

47-57.
[8] Forney Jr., G.D. (2001) Codes on Graphs: Normal Realizations. IEEE Transactions on Information Theory, 47, 520-

548. http://dx.doi.org/10.1109/18.910573
[9] Loeliger, H.A. (2004) An Introduction to Factor Graph. IEEE Signal Processing Magazine, 28-41.
[10] Kschischang, F.R. (2003) Codes Defined on Graphs. IEEE Communications Magazine, 118-125.
[11] Vontobel, P.O. (2004) A Factor-Graph Approach to the Context-Tree Weighting Method. Proceedings of the Data Com-

pression Conference (DCC’04), 571.
[12] Wainwright, M., Jaakkola, T. and Willsky, A. (2002) Tree-Based Reparameterization Analysis of Belief Propagation

and Related Algorithms for Approximate Inference on Graphs with Cycles. ISIT2002, Lausanne, 30 June-5 July 2002.

http://dx.doi.org/10.1109/18.748992
http://dx.doi.org/10.1109/TIT.1981.1056404
http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1109/18.910573

http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Tree Matrix Algorithm of LDPC Codes
	Abstract
	Keywords
	1. Introduction
	2. Background
	3. Principle of Cut-Node Tree
	4. Implement of Principle and Results
	5. Conclusion
	References

