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Abstract 
LDPC codes are finding increasing use in applications requiring reliable and highly efficient in-
formation transfer over bandwidth. An LDPC code is defined by a sparse parity-check matrix and 
can be described by a bipartite graph called Tanner graph. Loops in Tanner graph prevent the 
sum-product algorithm from converging. Further, loops, especially short loops, degrade the per-
formance of LDPC decoder, because they affect the independence of the extrinsic information ex-
changed in the iterative decoding. This paper, by graph theory, deduces cut-node tree graph of 
LDPC code, and depicts it with matrix. On the basis of tree matrix algorithm, whole depictions of 
loops can be figured out, providing of foundation for further research of relations between loops 
and LDPC codes’ performance. 
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1. Introduction 
Probability distributions defined by graphs are used in literature of various fields, such as coding theory, artifi-
cial intelligence, and system theory. 

LDPC [1] code can be depicted by its parity-check matrix H [2], { }T 0nC x F xH= ∈ =  and its degree dis-
tribution of polynomial [3]: 

( ) 1

1

vd
d

d
d

x xλ λ −

=

= ∑                                       (1) 

( ) 1

1

cd
d

d
d

x xρ ρ −

=

= ∑                                       (2) 

Computing distributions of variable and check nodes in a Tanner graph is relatively efficient without cycle, 

http://www.scirp.org/journal/jsip
http://dx.doi.org/10.4236/jsip.2014.54020
http://dx.doi.org/10.4236/jsip.2014.54020
http://www.scirp.org
mailto:huanmingzhang@126.com
http://creativecommons.org/licenses/by/4.0/


H. M. Zhang 
 

 
192 

but complex with cycles, even difficult when cycles are short for large graph. 
The belief propagation algorithm [4], or known as the sum-product algorithm [5] is decoding algorithm for 

graphical codes, such as convolution code, turbo code and LDPC code. 
Belief propagation (BP) algorithm is optimal and produces exact solutions on a tree just in a finite number of 

iterations. Otherwise, BP algorithm may not converge. Moreover, when it doses converge, it provides approx-
imate solution and the results vary in different conditions. 

2. Background 
In most common sense of the term, an undirected graph [6] consists of a set of vertices or nodes V together with 
a set of edges E, which are 2-element subsets of V (i.e., an edge is related with two vertices, and the relation is 
represented as an unordered pair of the vertices with respect to the particular edge). See Figure 1. 

{ }1,2,3,4,5,6V =  

{ } { } { } { } { }{ }1,2 , 1,5 3,4 , 2,5 , 5,6E = ，  

n = 6 
m = 5 
Let ( ),G V E=  be an undirected graph. 
The following statements are equivalent, 
1. G is a tree 
2. Any two vertices in G are connected by a unique simple path 
3. G is connected, but if any edge is removed from E, the resulting graph is disconnected 
4. G is connected, and 1E V= −  

5. G is acyclic, and 1E V= −  
6. G is acyclic, but if any edge is added to E, the resulting graph contains a loop. 
In fact, a tree is a connected graph without any cycles; a leaf is a vertex of degree 1. An internal vertex is a 

vertex of degree at least 2. 
In coding theory, Tanner graph, named after Michael Tanner, is a bipartite graph used to state constraints or 

equations which specify error correcting codes. See Figure 2. They are used to construct longer codes from 
smaller ones. Both encoders and decoders employ these graphs extensively. 

 

 

Figure 1. An example of a graph ,G V E= . 

 

 
Figure 2. Tanner graph of an LDPC code (a cycle represented by 4 bold lines in figure).       
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In communication system, the transmitted random vector { }1, , Nx x x=   is not observed; instead received 

noisy vector { }1, , Ny y y=  . 

N is the length of codeword, Parity check equation vector is { }1 2, , , Mc c c c=  , M is the number of equations. 

{ }1 , ,a a
Nf f f=   represents initial information about transmitted codeword. 

where, iv  is the ith variable node, jc , jth check equation. 
The belief propagation (BP) of LDPC code states as follows [7]-[11]: 

a
jiR  is check information from check node jc  to variable node iv , and a

ijQ  variable information from iv  
to check node jc . See Figure 3. 
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where ijα  denotes a normalization constant, ( ) ( )0 11 1 1ij ijQ t Q t+ + + = . And message updating rule see Figure 
4 [12]. 

 

 
Figure 3. Iterative decoding algorithm.                                              

 

 
Figure 4. Updating rule for message passing.                                         
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3. Principle of Cut-Node Tree 
In order to solute loops of LDPC code, Tanner graph is re-drew as following principle: Choosing an element “1” 
in H, its variable (or check) node considered root node, check (or variable) nodes connected to the variable (or 
check) node as 1st order child-nodes, a current node, once appearance in ancestor node or sibling node, will be 
cut and forbid to grow and become a end node like a leaf, but not a leaf actually. And so forth, at last a cut-node 
tree can be get. If all nodes are connected, a single cut-node tree can be get, otherwise it is forest. Repeating this 
process until all end nodes are either cut-node or leaf node. See Figure 5. 

HH is mark matrix, every element in HH is zero represents end of algorithm. 
 

 
Figure 5. Flow process chart of algorithm.                               
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4. Implement of Principle and Results 
First, a node (variable node or check node), for instance, variable node , 1i ijv h = , is choosed as root node, its 
son nodes are those which connect to it, according to this principle, we can obtain all child-nodes. This process 
can be implemented by computer simulation in matlab’s celluar array, and express H by means of cut-node tree.  

An example: for 

1 0 1 0 1 0 1 0
1 0 0 1 0 1 0 1
0 1 1 0 0 1 1 0
0 1 0 1 1 0 0 1

H

 
 
 =
 
 
 

                              (7) 

has following cut-node tree graph (Figure 6).  
Another example: For instance, an LDPC code with check matrix H: 

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1 0 1

H

 
 
 
 =
 
 
  

                          (8) 

Following tree matrix expressed by matlab can be get: 

[ ]
[ ]
[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

1 1 0 0

2 1 1 1

2 5 2 1 2 6 2 1 2 7 2 1

3 5 2 5 4 6 2 6 5 7 2 7

3 2 3 5 3 8 3 5 3 9 3 5 4 3 4 6 4 8 4 6 4 10 4 6 5 4 5 7 5 9 5 7 5 1 0 5 7

1 2 3 2 4 8 3 8 1 5 9 3 9 1 1 3 4 3 3 8 4 81 5 10 4 10 1 1 4 5 4 3 9 5 91 4 10 5 10 1

1[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] 1 1 2 1 1 3 1 2 1 1 4 1 2 1 1 1 1 3 2 1 2 1 3 1 1 4 1 3 2 1 1 1 4 3 1 2 1 4 2 1 3 1 4 3

  (9) 

In fact, tree matrix matches along with Tree of Graph, [i j k l m], [i j] states current node, [k l] states father 
node, m states times being cut. 

So, searched by a computer, all loops can be get: 
 

 
Figure 6. Tree graph of LDPC codes.                                               
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Loop 1: [4 8]-[3 8]-[3 5]-[2 5]-[2 6]-[4 6]-[4 8] 
Loop 2: [5 9]-[3 9]-[3 5]-[2 5]-[2 7]-[5 7]-[5 10] 
Loop 3: [5 10]-[4 10]-[4 6]-[2 6]-[2 7]-[5 7]-[5 10] 
Loop 4: [1 1]-[1 2]-[3 2]-[3 5]-[2 5]-[2 1]-[1 1] 
Loop 5: [1 3]-[1 2]-[3 2]-[3 5]-[2 5]-[2 6]-[4 6]-[4 3]-[1 3] 
Loop 6: [1 4]-[1 2]-[3 2]-[3 5]-[2 5]-[2 7]-[5 7]-[5 4]-[1 4] 
Loop 7: [1 1]-[1 3]-[4 3]-[4 6]-[2 6]-[2 1]-[1 1] 
Loop 8: [1 1]-[1 3]-[4 3]-[4 6]-[2 6]-[2 5]-[3 5]-[3 2]-[1 2]-[1 1] 
Loop 9: [1 4]-[1 3]-[4 3]-[4 6]-[2 6]-[2 5]-[3 5]-[3 2]-[1 2]-[1 4] 
Loop 10: [1 4]-[1 3]-[4 3]-[4 6]-[2 6]-[2 7]-[5 7]-[5 4]-[1 4] 
Loop 11: [1 1]-[1 4]-[5 4]-[5 7]-[2 7]-[2 1]-[1 1] 
Loop 12: [1 1]-[1 4]-[5 4]-[5 7]-[2 7]-[2 5]-[3 5]-[3 2]-[1 2]-[1 1] 
Loop 13: [1 1]-[1 4]-[5 4]-[5 7]-[2 7]-[2 6]-[4 6]-[4 3]-[1 3]-[1 1] 
Loop 14: [1 2]-[1 4]-[5 4]-[5 7]-[2 7]-[2 5]-[3 5]-[3 2]-[1 2] 
Loop 15: [1 2]-[1 4]-[5 4]-[5 7]-[2 7]-[2 6]-[4 6]-[4 3]-[1 3]-[1 2] 
Loop 16: [1 3]-[1 4]-[5 4]-[5 7]-[2 7]-[2 5]-[3 5]-[3 2]-[1 2]-[1 3]  
Here, H is just a situation of single tree, with 15 cut-nodes, no leaf node and 16 loops. See Table 1. Further, 

Message-passing form for cut-node tree has following rule: 
In a tree, Message-passing fellows a two-pass form, first sweeping upwards from leaves to a node designated as 

the root, and then downwards from the root to leaves.  
In a graph with cycle, Cut-node tree graph can be get by cutting all loops, See Figure 7. 
Cut node tree has all same characters with Tanner graph. 

 

 
Figure 7. Message passing over cut-node tree graph.                      
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Table 1. Features of loops about above example.                                                   

Sparsity Loops Total length of loops Average length Girth Maximum length Loop relativity 

0.4 16 108 6.75 6 10 3.18 

5. Conclusion 
This paper provides a new method to describe graph of LDPC codes, it aims to solute loops of LDPC codes and 
message passing over cut node tree. For a large matrix H, it is difficult to solute loops, because loops convolve 
each other. Features of loops have certain relationship with performances. In this paper, a cut node tree can be 
expressed by a certain matrix. By computer simulation, cut-node tree can get right answer and give out method 
to calculate loops of LDPC codes and cut node tree graph, its results assist to further research this relationship. 
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