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ABSTRACT 

In our research on the density fluctuations of a supersonic jet we were confronted with a quite difficult problem. In the 
power spectrum obtained either with a spectrum analyzer, the peaks of the two of the modes that we wanted to identify 
overlapped. We needed to find a signal processing method that would resolve the two main frequencies. We made a 
thorough investigation of several methods and thought that parametric periodograms were the appropriate tool. The use 
of parametric periodograms in signal processing requires constant training. The proper application of this tool depends 
on the determination of the number of parameters that has to be used to best model a real signal. The methods generally 
used to determine this number are subjective, depending on trial and error and on the experience of the user. Some of 

these methods rely on the minimization of the estimated variance of the linear prediction error , as a function of the 

number of parameters n. In many cases, the graph  vs n doesn’t have a minimum, and the methods cannot be used. 

In this paper, we show that there is a strong relationship between  and the frequency resolution 
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modify fΔ , we obtain graphs of  vs n that present at least one minimum. The spectrum obtained with this opti- 

mal number of parameters, always reproduces the frequency information of the original signal. In this paper, we present 
basically the signal processing of the data obtained in a Rayleigh scattering experiment on a supersonic jet that has also 
been designed by the authors. 
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1. Introduction 

Kovasznay in 1953, in a perturbation analysis of Navier 
Stokes equations, classified weak fluctuations in three 
independent modes: vortical, acoustic and entropic. 
Acoustic and entropic modes in a jet are studied by ana- 
lyzing density fluctuations inside and outside the flow 
[1-3]. 

The traditional way to study aero-acoustic noise pro- 
duced by a jet is through correlations of signals acquired 
by a three dimensional microphone array in a far-field 
[4-6], and from there extrapolate to locate the acoustic 
sources inside the jet.  

Besides the extreme complexity of the method, the in- 
verse problem in acoustics does not allow to determine 
uniquely the source. Also, the diffraction of the acoustic 
waves by the mixing layer cannot be taken into account. 

In the late seventies at the Ecole Polytechnique in 
France, a non-intrusive optical technique was developed. 
It can be used as a microphone for a single wave vector 
[4]. Information about the density fluctuations can be 
obtained by means of the light scattered by the molecules 
(Rayleigh scattering) of a transparent gas in motion [4-9]. 

The signal that is obtained from the photo detector is 
proportional to the spatial Fourier transform as a function 
of time of the density fluctuation, for a wave vector given 
by the optical set-up. 

Originally these signals were processed by using a 
spectrum analyzer. The acoustic and entropic modes 
should appear as two distinct peaks. The entropic mode 
corresponds to fluctuations carried by the flow; the acous- 
tic mode should propagate at the speed of sound. 

Figure 1 shows the spectrum for fluctuations travel-  
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Figure 1. Spectrum obtained by means of the spectrum ana- 
lyzer. Starting at zero, a lobe describing the density fluctua- 
tions within the bandwidth studied may be observed. 
 
ling perpendicular to the flow. In this case, entropic 
fluctuations should be random about zero, and acoustic 
wave, for the specific set up, should be at around 2 MHz. 
The spectrum analyzer did not resolve the peaks [5-7]. 

To ameliorate the resolution, Burg’s parametric pe- 
riodograms were used as a processing tool. Figure 2 
shows a comparison between the spectral density ob- 
tained by the spectrum analyzer and the one obtained 
with Burg’s periodograms.  

The use of the periodograms allowed the identification 
of both peaks [7-10]. 

However, the determination of the optimal number of 
parameters is not an easy task. The methods that exist are 
based on the number of parameters, which minimize the 
estimated variance of the prediction error . But there 
is not always a minimum. We show that it is possible to 
optimize these methods, when the frequency resolution is 
considered. 
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2. Spectral Density with Periodograms 

Much has been written about periodograms. In 1988, 
Kay in his book Modern Spectral Estimation, Theory & 
Application [12] shows the characteristics of periodo- 
grams with examples and programs. In his article Spec- 
trum Analysis, a Modern Perspective [13], he describes a 
detailed summary of periodograms and explains their 
properties, advantages and disadvantages. Other authors 
have also written about periodograms [14-17], highlight- 
ing their properties in most of the literature. 

John G. Proakis [14] states that “The experimental re- 
sults given in the references just cited indicate that the 
model-order selection criteria do not yield definitive re- 
sults.” On the other hand, he states that “It is apparent 
that in the absence of any prior information regarding 
the physical process that resulted in the data, one should 
try different model orders and different criteria and, fi-  

 

Figure 2. Comparison of spectra. The spectrum analyzer 
clearly shows one lobe, while the spectrum obtained with 
the Burg parametric periodogram shows three lobes. 
 
nally, consider the different results”. Likewise, Steven M. 
Kay mentions in his article [13] that “Thus the prediction 
error power alone is not sufficient to indicate when to 
terminate the search” and his comment that led to the 
development of our work is “In the final analysis, more 
subjective judgment is still required in the selection of 
order for data from actual processes than that required 
for controlled simulated computer processes”. Proakis 
and Kay state that, even today, the use of parametric pe- 
riodograms requires the experience of the user, so the 
“trial and error” use of these techniques allows a very 
subjective manner of calculating the number of parame-
ters required to model a given signal. This work proposes  

that, by considering the frequency resolution, sf
N , and  

using parameter estimation techniques, it is possible to 
calculate the number of parameters required to model 
objectively the spectrum of a given signal. 

3. Parameter Selection Techniques 

The ARMA (Auto Regressive Moving Average), AR 
(Auto Regressive) and MA (Moving Average) models, 
used by the group of parametric methods to develop al- 
gorithms that allow us to estimate the spectral density of 
a signal are varied, but they all depend on parameter es- 
timation calculations. One of the most important aspects 
of using the AR model is the selection of the p order. As 
a general rule, very few parameters flatten the spectrum 
with few lobes and too many parameters introduce low- 
level spurious peaks in the spectrum [12-16]. 

In the continued use of periodograms, the practice and 
“trial and error”, is what, until today, makes the user 
skillful in the application of this type of tools. There are 
methods that evaluate the “optimal” number of parame-
ters for modeling a signal, based on the determination of 
the number of parameters that minimize the estimated 
variance of the prediction error . Table 1 shows 
some of the most employed methods [11] to determine 
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the number of parameters in a parametric periodogram. 
But, as we mentioned above, even by using the methods 
of selection of parameters, it is not possible to determine 
with certainty the appropriate number of parameters to 
evaluate the spectrum with parametric periodograms. 

4. Applications and Results 

The following exercise will demonstrate how vulnerable 
are the methods traditionally suggested to determine the 
number of parameters of a parametric periodogram. For 
this purpose a signal with four frequency components, 1 
MHz, 1.01 MHz, 1.05 MHz and 1.1 MHz is acquired. 
This signal was sampled at a frequency  
and has 512 samples. This sampling frequency perfectly 
meets the Nyquist theorem requirements, in addition of 
having a frequency resolution . The num- 
ber of parameters was evaluated by the methods given in 
Table 1 and proposed in the literature [11-14]. The re- 
sults are shown in Figure 3. The linear prediction error 
depends on the number of samples N, and on the number 
of parameters, p. 

5 MHzsf =

z9765 HfΔ ≅

Both the FPE and AIC methods seem to agree in the 
minimum in Figure 3; approximately 50 parameters, 
which minimize . The MDL technique shows a 
minimum at about 20 parameters.  
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Figure 4 shows the spectrum of the signal using 
Burg’s parametric periodogram which is compared to the 
FFT of the time signal. To obtain the Burg periodogram, 
the number of parameters suggested by the techniques 
described in Table 1 was used. It should be noticed, that 
the expected frequency components are not observed. 
This is the result of the frequency resolution [11,17] ob- 
tained with the selected variables, the number of samples 
and the sampling frequency; they do not allow the dif- 
ferentiation of components standing close by. 

To solve the problem, many processing experts could 
propose to increase the sampling rate or the number of 
samples. Both criteria are ambiguous and based on ex- 
perience rather than objectivity. 

Our suggestion is to consider the spectral resolution as 
stated in earlier papers [11,17]. We propose to increase 
the resolution to , and reevaluate the “op- 
timal” number of parameters. Figure 5 shows the corre- 
sponding results. From this graph it is possible to distin-  

305 HzfΔ ≅

 
Table 1. Methods for evaluation of the selection of the order p. 

FPE: Final  
Prediction Error 

( ) 2 1
ˆFPE

1wp

N p
p

N p
σ  + +=  − − 

 

AIC: A Kaike  
Information Criterion ( ) 2 2ˆAIC ln wp

pp Nσ= +  

MDL: Minimum  
Description Length 

( ) 2ˆMDL ln lnwpp N pσ= +

 

Figure 3. Evaluation of parameter selection techniques, 
Table 1, for a signal, with four frequency components, 

 and  512=N  5 MHz.f =s

 

 

Figure 4. Burg spectra using the number of parameters 
suggested by parameter evaluation methods, using Table 1 
we calculate the number of parameters, and compared 
against the spectrum obtained by FFT. 
 

 

Figure 5. Parameter prediction methods, using Table 1 we 
calculate the number of parameters, for a signal with four 
frequency components: 1 MHz, 1.01 MHz, 1.05 MHz and 
1.1 MHz. 
 
guish the minimum , which for the FPE and AIC 
techniques is around 700 parameters, while with the 
MDL technique  is minimized with 130 parameters. 
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Using both suggestions, we obtain the spectra shown 
in Figure 6. 

It is important to note two facts in this exercise. N  
1) The frequency resolution criterion, and not the tra- 
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ditional “trial and error” method, is considered when 
evaluating the number of parameters. The acquired signal 
fully meets the Nyquist criterion, but the frequency reso- 
lution had to be considered also to obtain a reliable in- 
terval of the number of parameters using the equations in 
Table 1. 

2) The frequency resolution allowed certainty in the 
techniques used to evaluate the number of parameters 
and gives a wide interval of parameters that give a good 
result. This is reflected in Figure 5, which shows a 
minimum value for all methods and in Figure 6 where 
the four peaks are identified.  

5. Frequency Resolution: In Turbulent  
Signals from a Supersonic Jet  

The previous exercise, in which we used deterministic 
signals, showed that if frequency resolution is taken into 
account, the results obtained from the parameter evalua- 
tion techniques give more precise results. In the follow- 
ing exercise, we will demonstrate that this result is also 
valid for random signals. The signals presented below 
come from the laser light scattered by a high speed jet. 

The signal that comes out of the photo detector is pro- 
portional to spatial Fourier transform as a function of 
time, of the density fluctuation for a wave vector deter- 
mined by the optical set-up. The signal should contain 
then the entropic and the acoustic modes described in 
Section 2. Figure 7 shows the spectral density of such a 
signal obtained with a spectrum analyzer. The acoustic 
peak should appear around 2 MHz. The frequency of the 
entropy peak depends on the local speed and on the di- 
rection of the wave vector. When the latter is in the di- 
rection of the flow, the frequency corresponds to the 
Doppler frequency and is higher than the acoustic. If the 
wave vector is perpendicular to the flow, the average 
frequency is around zero. Previous papers [5-11], have 
reported an unexpected third peak, which can be identi- 
fied as Mach-3C in Figure 2, and whose origin is still  
 

 

Figure 6. Spectrum of a signal with four components, ob- 
tained with the Burg parametric periodogram, using the 
parameters suggested by the prediction methods. 

-8.00
-95
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Figure 7. Spectral density displayed in a spectrum analyzer. 
 
subject of investigation. 

In Figure 7, the peaks mentioned are not easily identi- 
fied by the untrained eye. The signal was acquired with 
an oscilloscope Agilent Infinitum Model 54830B. The 
sampling frequency was  and the number 
of samples was 65,553 samples, giving a frequency 
resolution , and then fed to the spectrum 
analyzer. The acquisition parameters were automatically 
determined by the instrument, without possibility of any 
control from the user.  

40 MHzsf =

610 HzfΔ =

The techniques presented in Table 1 were applied to 
the signal; the evaluation of the number of parameters 
needed for a Burg parametric periodogram is shown in 
Figure 8. The Burg periodogram was chosen because it 
has good resolution for low-amplitude and low energy 
components [10,11]. 

In Figure 8 one can observe that for the AIC and FPE 
models, there is no tendency to minimize the estimated 
variance of the linear prediction error, while the MDL 
model predicts that the variance should show a minimum 
for around 160 parameters.  

Figure 9 shows the various spectral graphs of the 
above mentioned time signal obtained with the Burg pe- 
riodogram with different number of parameters consid- 
ering those predicted by the techniques. The interval of 
parameter variation is between 90 and 300. The number 
suggested by the MDL is within the range. Figure 9 
shows peaks that appear and disappear when the number 
of parameters changes, without any particular tendency 
in relation to the behavior of the peaks.  

The peak that we are interested in should appear at 
around 2 MHz, so following Nyquist’s Theorem, the 
signal was acquired properly. It could be suggested that 
filters and other processing tools (decimation, windows, 
etc.) might improve the acquired signal in order to obtain 
more precise frequency information. However, once the 
signal has been acquired, we cannot observe more than 
what the frequency resolution allows. Therefore, the de- 
sired frequency resolution has to be taken into account 
before the acquisition of the signal [10,11]. 
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Figure 8. Using Table 1 we calculate the number of pa- 
rameters, for the evaluation of the signal whose spectrum is 
shown in Figure 7. 
 

 

Figure 9. Burg periodograms evaluated with different pa- 
rameters; using the minimum values of the graphs pre- 
sented in Figure 8. Modeling the spectrum of Figure 7. 
 

In exactly the same experimental conditions, a new 
signal was acquired considering, this time, a frequency 
resolution of . The evaluation of the 
number of parameters in this case is shown in Figure 10. 
It is interesting to note that the three parameters predic- 
tion methods show a minimum in the estimated variance 
of the linear prediction error. Two of these predict 150 
parameters. 

122070 HzfΔ =

Figure 11 shows the corresponding spectrum calcu- 
lated with a Burg periodogram using 150 parameters. 
The three expected peaks may clearly be observed [11]. 

This result clearly shows that there must be a close re- 
lationship between the frequency resolution of the ac- 
quired signal and the number of parameters. Therefore, 
the parameter prediction methods should explicitly con- 
sider the frequency resolution. 

As a final proof of the importance of the frequency 
resolution, Figure 12 shows the spectrum of the signal 
evaluated with different number of parameters. In this 
Figure 12, the three lobes appear in a wide interval of 
parameters. The fact that three modes of density fluctua- 
tions inside the flow can be resolved is a new and impor- 
tant result. Two modes were expected and the origin of 
the third one is under study. 

 

Figure 10. Evaluation of the number of parameters for a 
turbulent signal with . Using Table 1, we 

calculate the number of parameters. 

fΔ = 122070 Hz

 

 

Figure 11. Spectrum evaluated considering the criteria re- 
ferred to in this paper. Using the minimum values of the 
graphs presented in Figure 10. 
 

 

Figure 12. Spectra of a same signal, , with 

a different number of parameters. 

fΔ = 122070 Hz

 
Figures 11 and 12 prove the importance of taking into 

account the frequency resolution before acquiring a sig- 
nal; Nyquist’s theorem alone is not enough. As it may be 
seen in Figure 12, when a good acquisition is made, the 
shape of the spectrum does not vary over a wide parame- 
ter interval, thus ensuring the shape of the spectrum. This 
is valid in turbulent as well as in deterministic signals. 

6. Summary and Conclusions 

We presented two different kinds of signals for which we 
could determine the optimal number of parameters through 
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the minimum in the graph  vs p. To do so, we had 
to choose the frequency resolution 

2
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fΔ . This choice is 
simple when the signals are well known as in the first 
example. The four frequencies of the original signal were 
clearly identified. For the second example, where the 
signal is random, the resolution depends on previous 
knowledge of the experiment. In our case, entropic and 
acoustic peaks expected from the literature, were re- 
solved. Furthermore, a third low frequency non expected 
peak, was studied with respect to the position in the jet 
where the signal came from. 

This paper gives a more objective way to determine 
the number of parameters and a better spectral density. It 
is surprising that even though it is well known that high 
temporal resolution implies low frequency resolution, when 
sampling a signal, the Nyquist theorem is applied blindly 
without taking into account the final use of the data. This 
is an important result in signal processing that can be 
seen by comparing Figure 7 with Figure 11. 

A Rayleigh scattering technique combined with the 
heterodyne detection of light scattered by the molecules 
of a transparent gas was used to detect density fluctua- 
tions. The periodograms helped resolve various frequent- 
cies and gave more insight on the internal structure of the 
jet. 

The periodograms are parametric signal processing 
tools that allow the modeling of a signal. To properly 
implement them, it is necessary to determine the optimal 
number of parameters, which ensures that the signal has 
been modeled correctly. The theory predicts that many 
parameters could add spurious peaks, and that few pa- 
rameters may not reproduce the signal properly. The 
results presented in this paper show that the resolu- 
tion fΔ could be an important factor in finding the opti- 
mal number of parameters required to model a signal by 
using parametric periodograms. 

In the future, we expect to determine clearly how to 
obtain the optimal number of parameters directly from 
the frequency resolution. 
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