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ABSTRACT 

The classical TV (Total Variation) model has been applied to gray texture image denoising and inpainting previously 
based on the non local operators, but such model can not be directly used to color texture image inpainting due to cou- 
pling of different image layers in color images. In order to solve the inpainting problem for color texture images effec- 
tively, we propose a non local CTV (Color Total Variation) model. Technically, the proposed model is an extension of 
local TV model for gray images but we take account of the coupling of different layers in color images and make use of 
concepts of the non-local operators. As the coupling of different layers for color images in the proposed model will in- 
crease computational complexity, we also design a fast Split Bregman algorithm. Finally, some numerical experiments 
are conducted to validate the performance of the proposed model and its algorithm. 
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1. Introduction 

Image inpainting, sometimes referred as image comple- 
tion or disocclusion, has become one of the fundamental 
problems in image processing and computer vision due 
to its broad applications in image editing, compression, 
object removal from a scene, text or scratch removal and 
old photo restoration etc.. Its aim is to restore the tar-
nished/missing parts of a broken image using the existing 
data, which is a typical ill-posed problem in applied 
mathematics. There are several possible ways to solve 
this problem and here we focus on solving this problem 
with Partial Differential Equations (PDEs) or variational 
methods due to its outstanding performance [1-4,6,8-11]. 
In this branch of methodology, the exiting approaches 
can be classified into two categories: the geometry-ori- 
ented methods [2-11] and the texture-oriented methods 
[12-22,27]. 

For inpainting those gray non-texture images with 
small scale broken areas, researchers in [2] proposed a 
third order PDE model to propagate the surrounding in- 
formation to the inpainted regions based on a heat diffu- 
sion equation. Authors in [3] coped with the similar 
problems by solving Navier-Stokes equations and inves- 
tigators in [4] proposed total variation (TV) inpainting 
model inspired by [5]. In [6] the researchers studied the 
same problem for binary image via using the Cahn-Hil- 
liard model. For inpainting those gray non-texture im-  

ages with large scale broken areas, a third order PDE 
method is proposed in [8] based on curvature-driven dif- 
fusions (CDD) mechanism, and in fact this work is in- 
spired by the concept of elastic and principle of con- 
tinuation in computer vision [7]. Also researches in [9-11] 
solved the same problem using the variational framework 
including elastic terms. 

The above-mentioned approaches are all the geome- 
try-oriented methods and they only used local informa- 
tion, but failed to solve the problems of broken texture 
inpainting and object removal. The inpainting problem 
for texture images must resort to the texture-oriented 
methods. Up to now, there are three categories of meth- 
ods to solve the inpainting problem for texture images. 
The first type of approaches is the texture synthesis pro- 
posed in [12] based on patches, which has been acted as 
the fundamental tool for texture image inpainting, and 
also numerous examplar-based variational models [13-16] 
have been proposed using the patch similarities. The 
second type of approach is based on image decomposi- 
tion in the original domain or transformed frequency 
domain. For example, the investigators in [17-19] inves- 
tigated texture image inpainting with the geometry and 
texture information separately. Typically, in [18], the 
images to be inpainted are first transformed into the 
framelet domain so that it is represented by a set of 
framelet coefficients; then one performs thresholding on  
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framelet coefficients to propagate the information from 
outside of broken region into it. Finally, one transforms it 
back to image domain. This framelet-based image in- 
painting can remove the random noise in an image and 
enhance the edges and high frequency features of the 
image. This is one of the state of the art algorithms cur- 
rently and we will use it for comparison in our experi- 
ments. The third type of approaches for texture image 
inpainting comes from the idea of non local means (NLM) 
for image denoising with texture preserving [20]. In [21] 
the authors not only defined the non local gradient and 
divergence systematically, but also proposed the NL-TV 
(Non Local Total Variation) models as extensions to 
their local counterparts for image denoising and inpaint- 
ing. The elegance for the non local operators in [21] 
leads to very similar manipulations between non local 
models and local models in image processing. For exam- 
ple, the authors in [22] used TV with non local graphs for 
gray image inpainting and super-resolution, and re- 
searchers in [23] applied the NL-TV for gray image de- 
blurring. Moreover, authors in [24] used NL-TV for 
compressive sensing and [25], [26] proposed some image 
enhancement models involving an NL-TV regularization 
term. Though the above mentioned algorithms are all 
based on TV model for image restoration, there is an- 
other way for image restoration based on Mumford-Shah 
model [28], which is usually used for image segmenta- 
tion. The authors in [27] combined the MTV regularizer 
term and non local operators in [21] to implement this 
Gamma-convergence approximated model for color tex- 
ture image restoration. This motivates us to consider 
problem in this paper. As we know, such segmenta- 
tion-based image restoration model suffers from two 
problems. First, it contains two variables: one is a piece- 
wise smooth function used for the approximation of the 
original image, and the other is a piecewise function that 
represents the image edge and equals 0 on the edge sets 
and 1 on the smooth region, which makes the numerical 
implementation complicated, which logically results a 
low computation efficiency. Second, there are three pen- 
alty parameters setting up in this model, so the choice of 
those parameters will become more difficult. In conclu- 
sion, there are too many parameters to solve and tune in 
such model. 

The NL-TV model only includes one variable and one 
penalty parameter in its energy functional and this model 
always brings much easier computational process and 
also provides excellent results in preserving texture of 
gray images. However, to our best of knowledge, this 
popular model has not been used for color image in- 
painting. In this paper, we will focus on the NL-TV 
model and revise this model for inpainting color texture 
image by combining the non local operators and CTV 
(Color Total Variation) model proposed in [29]. The  

proposed model can make use of the good performance 
of the non local operators in texture image processing as 
demonstrated for gray images and CTV model in edge 
preserving for color images. We observed from [31] that 
the TV model can preserve edges for denoised images, 
but would fail to preserve color image edges when used 
to defuse different layers separately. However, the Mul- 
tichannel Total Variation (MTV) [30] and CTV [29] can 
have excellent performance in color image edge preserv- 
ing. Numerous experiments reported in [31] demon- 
strated that the CTV model outperforms the MTV model, 
so we adopt the CTV regularizer as the foundation for 
the proposed model in this paper. We also observed from 
[31] that CTV has higher complexity than MTV in im- 
plementation. In order to overcome the disadvantage of 
low efficiency associated with CTV in the proposed 
model, we will also design a fast Split Bregman algo- 
rithm for the proposed model.  

Technically, the standard Split Bregman algorithm for 
TV model in [32] is redeveloped through introducing an 
auxiliary variable and a Bregman iterative parameter 
with an aim to transform the original model into two 
simple sub problems. These two sub problems can be 
solved via alternating optimization technique; further the 
previous Euler-Lagrange equation with curvature associ- 
ated with the CTV regularizer term is replaced with a 
simple one only associated with the Laplacian [31]. 
Though a generalized soft thresholding formula is de- 
rived in an analytical form for TV model in [32], and this 
simplifies the computation complexity significantly there. 
However, we noted that for the Split Bregman algorithm 
of the proposed CTV model, the exact generalized soft 
thresholding formula can not be derived as elegantly as 
in [32], and here we design an approximate one to sim- 
plify the calculations.  

In summary, the contributions of this paper can be 
summarized as follows. First, we propose a model which 
can solve the inpainting problem for color texture images 
by using the CTV model in [29] and the non local opera- 
tors in [21]. This model combines the advantages of the 
CTV and the non-local operators nicely and can produce 
a high performance. Second, In order to improve the im- 
plementation efficiency of the proposed model, we de- 
velop a fast Split Bregman algorithm based on a simple 
discrete finite difference scheme. Also we found that the 
direct application of NL-TV model to color images for 
inpainting does not work properly. Finally, we validate 
the proposed model and algorithm via extensive experi- 
ments.  

2. NL-TV Model for Image Inpainting and 
Its Split Bregman Algorithm 

In this section, we first introduce some important con- 
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cepts, definitions and technical algorithms used in the 
remaining parts of this paper. First we present the con- 
cept of non-local operators.  

2.1. The Non Local Operators and the Split 
Bregman Algorithm 

Due to the significance of the non local operators played 
in this paper, we first present the relevant definitions 
provided in [21]. 

Let nR   be the domain of a gray image and x , 
  :u x R  is a real function defined on   to 

represent the pixel values of an image. The non local 
gradient for two points x and y in the image is defined as  

        , ,NLu x y u y u x w x y         (1.1)  

where,  , :w x y R  is a non-negative, symmetric 
weight between points x ,  for any pair y  ,x y   
and it measures the similarities of these two points. It 
should be noted that eq (1.1) is not a vector field in the 
standard sense, it is only a mapping: R


 . Now 

we denote any NL mapping as , :y R p p


x . 
For a pair of NL mappings, their dot product is defined 
as follows. 

      1 2 1 2, ,p p x p x y p x y dy


 
         (1.2) 

And their inner product is defined as 

   1 2 1 2 1 2, ,1 , ,p p p p p x y p x y dxdy


  
     (1.3) 

The magnitude of a NL mapping will be given by 

      2
,p x p p p x y dy


  

         (1.4) 

With the above inner product, the non local divergence 
  :NL p x  


 will be defined as the adjoint of 
the non local gradient, which is given by 

         , , ,NL p x p x y p y x w x y dy


  
    (1.5) 

Finally, the Laplacian of a point x in an image can be 
defined now by 

    

      

1

2

,

NL NL NLu x u x

u y u x w x y dy


   

 


   (1.6) 

Based on the above mentioned definitions, we can give 
the NL norm of the NL gradient for a function u as 
follows. 

        2
,NLu x u y u x w x y dy


        (1.7) 

All above preliminaries are for a function of an image. 
Next we explain the NL-TV models for gray images and 
their Split Bregman algorithm. For a broken scalar 
texture image   :f x  R , let  denote the 

domain to be inpainted, the proposed NL-TV model for a 
gray image inpainting reported in [21] is given as follow. 

D  

     21

2NL D
u

Min E u u x dx u f dx
 

     
     (2) 

where,  
0

1 /D

x D
x

x D



  

 is the mask function to  

represent the broken region. This problem aims to find u 
in the already known broken region D such that (2) is 
minimized.   

The computation of local TV model utilizing the non 
local operators becomes very expensive, which will be 
demonstrated in experiment section. In order to improve 
its computational efficiency, authors in [21] designed a 
dual method for NL-TV models. Such dual metod is not 
suitable for our proposed NL-CTV model in this paper 
due to a fact that it involves complicated coupling feature 
in CTV regularizer term. Here, we alternatively extend 
the Split Bregman algorithm reported in [32] to our 
proposed NL-CTV model which is much easier than the 
dual method. 

The author in [33] proposed the Split Bregman 
algorithm for NL-TV denosing model. Here, we first 
present their algorithm for the NL-TV inpainting model 
as reported in [32]. To present the Split Bregman 
algorithm for (2), an NL auxiliary variable 

 , :v v x y R 


is introduced and the objective 
function is transformed into the following:  

      2

,

1
,

2 D
u v

Min E u v v x dx u f dx
 

    
  

 
    (3) 

s.t. NLv u 


                 (4) 

The constraint NLv u 


 is enforced using the 
efficient Bregman iteration by introducing a Bregman 
parameter  , :y b b x R


 as reported in [32]. 

Then we can transform (3) into the following iterative 
optimization formulation.  

     

 

2

2
1

1
,

2

2

D

k
NL

E u v v x dx u f dx

v u b x dx




 





  

  

 



 


       (5) 

with constraints 1 0,k k k k
NLb b u v b v 0 0    

   
. By 

using the same technique as reported in [32], first fixing 
v


 for u , and then fixing  for  v , we can obtain the 
solution of Euler-Lagrange equation of u and the gener- 
alized soft thresholding formula of  via such alternat- 
ing minimization process as stated in (6) and (7). A fast 
approximate solution of (6) is provided by a Gauss- 
Seidel iterative scheme, and it is very convenient to find 
an analytic solution of (7) without any iteration. However, 
when it comes to NL-CTV model, such exact soft 
thresholding formula as (7) can not be directly derived 
that we could not extend the efficient Split Bregman 

u


v

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algorithm to our proposed model directly. Therefore, in 
the next section, we will focus on this tough problem. 

   1 0k k
D NL NLu f v u b        

         (6) 

1 1
1 1 1

1

1
,0

k k
k k k NL

NL k k
NL

u b
v Max u b

u b

 
  

 

      
  

 
1

   (7) 

2.2. The NL-CTV Model and Its Split Bregman 
Algorithm 

The previous model (2) is for gray images and if we use 
(2) directly to different layers separately for color image 
denoising or inpainting, and we found that this will lead 
to smear edges as demonstrated in Figure 6, though it 
can be solved via coupled regularizers such as MTV 
regularizer [30] or CTV regularizer [29]. The MTV and 
CTV have excellent performance in color image edge 
preserving as reported in [31]. However, numerous ex- 
periments reported in [31] demonstrated that the CTV 
model outperforms the MTV model, so we adopt the 
CTV regularizer as the foundation for the proposed 
model. Therefore, in this paper, we extend the CTV to 
NL-CTV model for color texture image inpainting. For 
color image denoising, the authors in [29] have proposed 
the following CTV model 

      
2 2

1 12

n n

i i
u

i i
iMin E u u x dx u f dx


 

 

      
  

   (8) 

where  1 2, ,..., n f f f f
 ,..., nu u

 is the original image, 
1 2  is the restored image. Based on these 

results, we propose the following NL-CTV model by 
combining (2) and (8) for color texture image inpainting. 

,u u

      
2 2

1 1

1

2

n n

NL i D i i
u

i i

Min E u u x dx u f dx
 

 

      
  

  
 (9) 

It should be noted that (2) is an NL-TV model and can 
only use to deal with the inpainting problem for gray 
images. By taking account of the coupling of different 
layers of color images and introducing the coupled 
NL-CTV regularizer term  

  2

1

n

NL i
i

u x dx




              (10) 

which is inspired by (8), we proposed the model (9). One 
can see that the differences between models (8) and (9) 
are as follow: First, model (8) is a denosing model and (9) 
is a inpainting model, and   in (8) is a penalty parame- 
ter that ensures that the denoised image is as close as 
possible to the original image; but D  in (9) is a mask 
function that labels the broken region of image. Second, 
model (8) replaces the local CTV regularizer term 

  2

1

n

i
i

u x dx




               (11) 

with NL-CTV regularizer term (10) by using the non 
local gradient operator NL . Such choice is done since 
the NL-CTV regularizer term will lead to an extremely 
complicated Euler-equation similar to (9), which is very 
difficult for discrete numerical calculation.  

u

In order to solve (9) efficiently, we need to design a 
new Split Bregman algorithm similar to that reported in 
[32]. For such purpose and by using the same manner as 
reported in last section, we introduce an auxiliary 
variable  1 2, ,..., nv v v v

     and a Bregman iterative 
parameter  1 2, ,..., nb b b b

   
, and then transform (9) into the 

following iterative optimization formulation.   

      

 

2 2

1 1

2
1

1

1
,

2

2

n n

i D i
i i

n
k

i NL i i
i

iE u v v x dx u f dx

v u b x dx





 
 






 

  

  



 





0 .

(12) 

With constraints 1 0, 0k k k k
i i NL i i i ib b u v b v      
   

v

By 
using the alternating minimization strategy, we can ob- 
tain the Euler-Lagrange equations for u and 


 sepa- 

rately as follows.  

   1 0k k
D i i NL i NL i iu f v u b        


      (13) 

   

    
1 1

2

1

0
ik k i

i NL i i n
i

i
i

v x dx v
v u b

v x
v x dx

   




   

 

 



  (14) 

In order to show how to implement (13) in detail, we 
give the discrete version of (13) as follows.  

    1 0k k
Dl l l NL NL NL NL

l
u f v u b           


 (15) 

According to (1.5) and (1.6), we have 

   , , ,
k k k

NL l h h l l hl
h

v v v    w
        (161) 

   1 1 1
, , ,

k k k
NL l h h l l h

l
h

b b b       w


      (16.2) 

     ,2NL NL h l h ll
h

u u u     w       (16.3) 

where the non-negative weight  ,w x y  is chosen as  

 
    2

2
, exp

G u x u y
w x y

r


         
  

     (17) 

In which G  is the Gaussian kennel function,  is 
the thresholding parameter for similarities between two 
patch windows, and its discrete version is given by  

r

    2

, 2
expl h

G u l u h
w

r


         
  

     (18) 
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In order to present the algorithm clearer, we use the 
following diagram (Figure 1) to demonstrate the idea. 
When given a point l in the image, we can have a square 
search window and a patch window, in which l is center 
point of them. h represents any pixel point in the search 
window. When h is fixed in the search window, a square 
patch window is created subsequently and the weight 

,l h  between l point and h point can be computed as (18), 
in which their respective patch windows are needed.  
w

 

 

Figure 1. Illustration of patch window and search window. l 
and h are the position of two pixel points in the image, but h 
is only fixed at the search window in which l is the center 
point. In addition, the two patch windows in which l and h 
are the center points respectively are used to compute the 
weight wl,h. 

 
Then the discrete iterative scheme of  can be ob-

tained by 

1k
lu 

   

1
,

,

1 1
, , , , , ,

1
2

2
k k
l h l h

hD l l h
h

k k k k
D l l l h h l l h l h h l l h

h h

u u w
w

f v v w b b w


 

 



 


  

 
     

  



 

(19) 

Now considering the equation (14), we can obtain 
v^{k+1} as follows. 

 

  
1 1 1
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Obviously, (20) is not the exact generalized soft 
thresholding formulas as one should expect. In order to 
calculate it effectively, we propose the above approxi- 
mate formulations to simplify implementation of (14) 
and speed up computation. Although (20) is not the ana- 
lytic solution for  and may cause a little error, the 
Bregman iterations may correct it automatically. This 

issue is confirmed in our experiments in section 4 Figure 
6. By using the same manner as (19), (20) can be also 
rewritten in a discrete version as below. 
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where,  
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Now it is time for us to give the NL-CTV algorithm in 
detail.  
 

NL-CTV Algorithm 

1.  Initialization: 0k  , 0 0 0i ib v 
 

, ; for i = 1, …, n; 0
i iu f 0

k

2.  Repeat  
3.       Update each weight  by (18); iw

4.       Compute each 1 ;k k k
i i NL i ib b u v   
  

 

5.       Compute each 1k
iu   from (19);  

6.       Compute each 1k
iv   from (21); 

7.        k=k+1; 
8.  Until a stopping criterion is satisfied. 

 
In above NL-CTV Algorithm, the stopping criterion is 

usually chosen as 1k k kE E E    , where  is the 
energy in the proposed model and 

E
  is a very small 

tolerance parameter. 

3. Numerical Experiments and Analysis 

In this section, we will present several numerical ex- 
periments to show the effectiveness and performance of 
the NL-CTV model proposed in this paper for color tex- 
ture image inpainting in terms of vision and peak signal 
to noise ratio (PSNR). PSNR is defined as in (23), and all 
experiments are performed using the Matlab 2010 b on a 
Windows 7 platform with an Intel Core 2 Duo CPU at 
2.33 GHz and 2GB memory. 

2

10
2
2

1

10log
|| ||

n

i i
i

nMN MAX
PSNR

f u






          (23) 

where  stands for the layers of the color image. n M  
and N  are respective the height and width of the origi- 
nal image. MAX is 255.  is the restored image, and u
f  is the original image. 
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(a)                (b)                 (c) 

  
(d)                     (e) 

Figure 2. Original image. (a) Color chess board Image. (b) 
Color cloth Image. (c) Color bar image.(d) River of Wisdom 
Image. (e) Monalisa Image. 

 
We first present the original images in Figure 2 and 

we can make visual comparisons with the inpainted im- 
ages subsequently and then compute their exact PSNRs. 
Figure 2 (a) is a synthetic color texture image and Fig- 
ure 2(b) is real color texture image. These two images 
are set up for testing the capability of our proposed 
model for color texture image inpainting. Figure 2(c) is a 
color bar image presented here to observe the edge pre- 
serving phenomenon. The last two images are two real 
famous images blended with texture and non-texture, and 
we will use them to further demonstrate their inpainting 
results in the subsequent experiments.  

 

   
(a)                (b)                (c) 

   
(d)                (e)                (f) 

Figure 3. Color chess board inpainting. (a) Image with 
mask marked by black square; (b)-(c) Intermediate results 
by proposed NL-CTV model; (d) Final result by proposed 
NL-CTV model; (e) Final result by TV inpainting method 
[4]; (f) Final result by elastica inpainting method [11]. 

   
(a)              (b)             (c) 

   
(d)              (e)             (f) 

Figure 4. Color cloth inpainting. (a) Image with mask 
marked by white rectangle; (b)-(c) Intermediate results by 
proposed NL-CTV model; (d) Final result by proposed 
NL-CTV model; (e) Final result by TV inpainting method 
[4]; (f) Final result by elastica inpainting method [11]. 

 
In the first experiment as shown in Figure 3, we aim 

to restore a toy image with regular grids and a large black 
broken region. Here we also show the inpainting results 
of TV model proposed in [4] and elastica inpainting 
model reported in [11]. The advantages of TV inpainting 
model are its simple manipulation and fast computation, 
but the major drawback of this model is that it does not 
restore satisfactorily a single object when the discon- 
nected remaining parts are separated far apart by the in- 
painting domain. One can observe in Figure 3(e) that 
one cannot get a desirable result when dealing with the 
non-texture images of large broken domain. In order to 
overcome this problem, the elastica inpainting model [11] 
is subsequently tested. Remind that this is a model only 
suitable for non-texture images with large broken domain, 
and the result is shown in Figure 3(f). In fact, the model 
in [11] has meaningful statistical fluctuations in textures 
and the textures are often smoothed out by its PDEs. In 
conclusion, we notice that the proposed NL-CTV using 
the non local information can obtain a perfect result as 
shown in Figure 3(d) in comparison with the original 
image in Figure 2(a). In fact, the TV inpainting model [4] 
and elastica inpainting model [11] cannot find the 
changes of the texture and thus could not recover this 
large broken texture region as shown Figures 3(e) (f).  

In order to validate our proposed model with the pro- 
posed fast algorithm on real texture images and demon- 
strate a further illustration, we now set up the second 
experiment properly. In this experiment, the regions of 
missing data are quite large with respect to textures as 
shown in Figure 4 (size is ). The size of missing 
region in Figure 4(a) is  above and 

81 81
10 23 8 46  be- 

low, and that means the proportion of total texture miss- 
ing part is about 10% of the original image. Here, we use 
41 41  of search window to inpaint the missing region. 
In this case, the proposed NL-CTV model can obtain 
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perfect results while the other two approaches failed as 
shown in Figure 4. Next we will show that choosing a 
suitable search window for our model is a very crucial 
issue. In Figure 5, several approximations of Figure 4(a) 
have been calculated with different sizes of search 
windows and they are listed for comparison with each 
other. When the sizes of search windows are 11 11  and 

, the inpainting results are obviously not 
satisfactory as shown in Figures 5(a) and (b). So two 
relative larger ones such as sizes of  and 

21 21

31 31 41 41  
are used further and we can see better visual results in 
Figures 5(c) and (d). However, the final PSNR values 
from Table1 tell us that the best result comes from 
implementation with the largest search window. 
However, the computation time becomes much more 
expensive with increase of the search window size 
consequently as demonstrated in Table 1. In conclusion, 
for these diverse search windows, we find that small 
search window is not sufficient to the success of 
inpainting the large missing part of the texture image, 
and usually a large search window is needed, which is 
usually time consuming. In order to show time 
complexity, the time of constructing the weight function 

 and the total computation time in the experi- 
ments are shown in Table 1. In fact, in our experiment to 
obtain Figure 5, we update  every 30 iterative 
steps in order to improve their computational efficiency, 
and the total iterative numbers are set to be 300. Techni- 
cally, decreasing the updating frequency of the weight 
function  will lead to increasing of iteration steps, 
and how to balance them is our future research topic.  

 ,w x y

 ,w x y 

 ,w x y 

Except for the visual results, we can calculate the 
quantity evaluations for our inpainting results in Figure 
3, Figure 4 with different techniques as shown in Table 
2. The results in this Table show a great success of our 
proposed model in inpainting both the synthetic and real 
images with color texture.  

 

    
(a)            (b)            (c)            (d) 

Figure 5. Test the effect of different search windows on 
inpainting results. (a)-(d) are results with search windows of 
11 × 11, 21 × 21, 31 × 31 and 41 × 41, respectively. 

 
The NL-TV model is for gray images and if we use it 

directly to different layers separately for color image 
inpainting, we find that this will lead to smear edges as 
demonstrated in Figure 6(b). However, considering the 
coupling of different layers of color images and using the 
NL-CTV regularizer term in our proposed model, one 
can observe that the edge is perfectly preserved as shown 

in Figure 6(c). Moreover, Figure 6(d) presents the en- 
ergy function with each iteration of the proposed algo- 
rithm and it shows the convergence of the proposed algo- 
rithm in this simulation. This experiment not only proves 
that our model does an excellent job in color image edge 
preserving but also shows that the Split Bregman de- 
signed for the proposed model is convergent. 

 
Table 1. Comparisons of PSNRs and computation time us- 
ing different search windows. 

Images 
Figure 

2(a) 
Figure 

2(b) 
Figure 

2(c) 
Figure 

2(d) 

Size of the search 
window 11 11 21 21  31 31  41 41  

PSNR of the  
restored image 
using different 
search window 

30.076 32.601 36.581 40.054 

Time(s) of  
constructing the 
weight function

15.054 47.464 96.659 149.508 

Total computation 
time(s) 

623.867 1510.226 2786.269 4666.216

 
Table 2. Comparisons of PSNRs using different methods. 

Experiments Figure 3 Figure 4 

PSNR of the damaged image 11.795 17.873 

PSNR of the restored image using 
NL-CTV model 

36.059 40.054 

PSNR of the restored image using 
TV inpainting method 

15.147 26.665 

PSNR of the restored image using 
elastica inpainting method 

16.842 28.862 

 

   
(a)            (b)           (c)           ( d) 

Figure 6. Edge preserving test using different non local 
model and show convergence of NL-CTV. (a) Damaged 
image; (b) Final result by NL-TV directly using to different 
layers of color image; (c) Final result by proposed NL-CTV. 
(d) Energy decreasing plot of NL-CTV. 

 
In the next two experiments, we will compare the 

proposed model with the state-of-the-art method pro- 
posed in [18] both quantitatively and visually. Figure 7 
presents the picture of River of Wisdom inpainting in 
different cases, while Figure 8 shows the picture of 
Monalisa inpainting. In Figure 7, We made the damage 
types marked by varied color paintings to illustrate that 
our model can adaptively inpaint such complicated con- 
tamination effectively. Though we cannot see visual dif- 
ferences between Figures 7(b) and (c) but the PSNR val- 
ues acquired by the proposed method is about 4.3 higher 
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than that obtained by the state-of-the-art method [18]. In 
order to see the detailed difference, we crop a small 
block from the damaged images in two cases as shown in 
Figures 7(e)-(f) and Figures 8(e)-(f), we can see that the 
proposed NL-CTV performs better in micro structures 
for the poles of the ship in Figure 7(f). Similarly, the 
visual effect and PSNR value show the benefit of the 
proposed model and the micro structures in hand show 
the edge persevering differences in Figures 8(e)-(f). 
These experiments demonstrate the advantages of the 
proposed model in color texture image inpainting. 

In the above experiments, the damaged areas D are 
different one can see that in all cases, the proposed model 
works well with extraordinary performance. Also the 
types of damages are different.  

 

   
(a)                  (b)                 (c) 

    
(d)                  (e)                 (f) 

Figure 7. The River of Wisdom inpainting. (a) Damaged 
image; (b) Final result by [18], PSNR = 31.58; (c) Final re-
sult by proposed NL-CTV model, PSNR = 35.89; (d)-(f) 
Zoomed small subregions (indicated by black rectangle in 
(a)) of the images in (a)-(c) for detail comparison. 

 

    
(a)                  (b)                 (c) 

    
(d)                  (e)                 (f) 

Figure 8. Monalisa inpainting. (a) Damaged image; (b) final 
result by method in [18], PSNR = 36.15; (c) final result by 
proposed NL-CTV model, PSNR = 39.85; (d)-(f) zoomed 
small subregions (indicated by black rectangle in (a)) of the 
images in (a)-(c) for detail comparison. 

4. Conclusions 

In this paper, by using the relevant concepts of non local 
operators and the CTV model, we proposed the NL-CTV 
model for color texture image inpainting as an extension 
of CTV model for color image denoising. In this model, 
the mask is automatically assigned. Then we design a 
new Split Bregman algorithm and provide their 
implementations in detail. Numerical experiments 
validate the performance of the proposed model for color 
texture image inpainting in different cases.   
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