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ABSTRACT 

A modal identification algorithm is developed, combining techniques from Second Order Blind Source Separation 
(SOBSS) and State Space Realization (SSR) theory. In this hybrid algorithm, a set of correlation matrices is generated 
using time-shifted, analytic data and assembled into several Hankel matrices. Dissimilar left and right matrices are 
found, which diagonalize the set of nonhermetian Hankel matrices. The complex-valued modal matrix is obtained from 
this decomposition. The modal responses, modal auto-correlation functions and discrete-time plant matrix (in state 
space modal form) are subsequently identified. System eigenvalues are computed from the plant matrix to obtain the 
natural frequencies and modal fractions of critical damping. Joint Approximate Diagonalization (JAD) of the Hankel 
matrices enables the under determined (more modes than sensors) problem to be effectively treated without restrictions 
on the number of sensors required. Because the analytic signal is used, the redundant complex conjugate pairs are 
eliminated, reducing the system order (number of modes) to be identified half. This enables smaller Hankel matrix sizes 
and reduced computational effort. The modal auto-correlation functions provide an expedient means of screening out 
spurious computational modes or modes corresponding to noise sources, eliminating the need for a consistency diagram. 
In addition, the reduction in the number of modes enables the modal responses to be identified when there are at least as 
many sensors as independent (not including conjugate pairs) modes. A further benefit of the algorithm is that identifica- 
tion of dissimilar left and right diagonalizers preclude the need for windowing of the analytic data. The effectiveness of 
the new modal identification method is demonstrated using vibration data from a 6 DOF simulation, 4-story building 
simulation and the Heritage court tower building. 
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1. Introduction 

An introduction to blind source separation applied to 
modal identification is provided in this section, along 
with a review of previous developments in the literature. 

1.1. Blind Source Separation Applied to Modal 
Identification 

In the last several years research has evolved the applica- 
tion of Blind Source Separation (BSS) techniques to 
solve the Modal ID entification (MID) problem. BSS 
attempts to find source components,   J

j t Cs , with 
prescribed properties embedded in measured data  

  I
i t Cx . The techniques applicable for modal identi- 

fication assume that the measured data is a linear mixture 
(as opposed to convolutive) of the components. 

Suppose that there are I channels of measured data and 

J components. The relation between the components and 
the measured data can be written as 

       1I I Jt
1J

t
 x A s             (1) 

where A is the (constant) mixing matrix and the dimen- 
sions have been placed parenthetically in the superscript. 
Note that all quantities are generally complex-valued. 
The objective of BSS is to simultaneously estimate the 
mixing matrix, A, and the vector of components,  ts , 
from the observed data, . Due to the number of 
variables involved, this task requires a characterization of 
the source components, 

 tx

 ts . Many BSS techniques use 
second order statistical information (e.g. correlation 
structure) to describe the components. It is appropriate to 
consider the inverse relationship of (1), 

       1
.

J J It
 s W x

1I
t


          (2) 
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The de-mixing matrix, W, is the (generalized, if nec- 
essary) inverse of the mixing matrix, A. The BSS task is 
to estimate A and . Assume that the rank of A is 
given by 

 ts
min   rank ,I JA  . This can easily be satis- 

fied by judicious choice of sensor locations. If  I J , 
then (1) is a fully determined problem for the sources, 

. If  ts   I J
  

, then (1) is an over determined problem. 
Similarly, if I J , then (1) is an under determined 
problem. Most BSS algorithms only treat the fully de- 
termined or over determined cases. 

 The potential application of BSS on vibration data is 
fairly obvious. In linear vibration, the physical responses, 

, are constructed from the modal responses,  tx  tq , 
by multiplication of the modal matrix, , Φ

   .t x qΦ t

t

               (3) 

One might consider using BSS to estimate both the 
(inverse) modal matrix and the modal responses, 

   1 .t q xΦ               (4) 

The connection with Equations (1) and (2) is immedi- 
ate. The decomposition, once achieved, allows for esti- 
mation of natural frequency and damping ratios using 
simple SDOF methods applied to . Note that the 
modal matrix and modal responses are real valued if the 
topology of the damping matrix is restricted (e.g. propor- 
tional damping) and are otherwise complex-valued. 

 jq t

1.2. Discussion of Previous Developments 

Early attempts at using BSS for MID are simply applied 
BSS methods, such as the Algorithm for Multiple Un- 
known Signal Extraction (AMUSE) [1] and Second Or- 
der Blind Identification (SOBI) [2] algorithms, directly 
to measured vibration data [3-5]. However, little insight 
was provided regarding the relationship between the 
source components identified by such algorithms to mo-
dal responses. In addition, the methods suggested were 
not capable of identifying complex-valued modes. This 
presents a problem for application to measured data as 
most physical structures and machinery exhibit complex- 
valued modes. 

Recently, a framework for Blind Modal Identification 
(BMID) was developed to perform MID using BSS 
methods [6-9]. It was first shown that the SOBI algo- 
rithm is suitable for the modal identification task for sys- 
tems with real-valued modes (diagonally damped sys- 
tems). The SOBI algorithm finds source components in 
measured physical response data that are uncorrelated 
irrespective of time shifts relative to one another. 

Specifically, the SOBI algorithm finds components 
that approximately produce diagonal time shifted corre- 
lation matrices. A complex-valued version of SOBI is 
now discussed, though the algorithm was originally pre- 

sented for the real-valued mixing model. Consider the 
time shifted correlation matrix of observed data  tx , 

      H

xx τ E t t  R x x .          (5) 

Here τ is a time shift,  • H
, represents the Hermetian 

(complex conjugate) transpose and  has been cen- 
tralized by removing the mean from each channel. SOBI 
employs Joint Approximate Diagonalization (JAD) to 
find the demixing matrix, , that approximately 
diagonalizes several time shifted correlation matrices 
with time shift 

 tx

1 AW

 ,, 1k  , 2,k K , 

  diagonal,H
xx kτ kWR W  .       (6) 

This problem can be solved by minimizing the off di- 
agonal terms of   H

x kWR W  for the K correlation ma- 
trices, 

 
1

min off .
K

H
xx k

k





W
WR W          (7) 

Joint approximate diagonalization was first solved in 
two steps: 1) prewhitening the data by transforming with 
a unitary matrix found from Principal Component Analy- 
sis (PCA); 2) applying the final rotation matrix obtained 
by applying Givens rotations on the data correlation ma- 
trix [10]. The mixing matrix was then constructed as the 
product of two unitary matrices. Several single-step al- 
gorithms were later developed (e.g., [11,12] and the ref- 
erences therein). 

By appealing to the correlation structure of the modal 
responses,  tq , the source components,  ts , where 
shown to correspond to the modal responses and the 
mixing matrix, A , was shown to correspond to the sys- 
tem mode shapes,  . Namely, the modal responses 
were stated to have nearly diagonal time-shifted correla- 
tion matrices. Damping and finite data length was shown 
to result in nonzero off-diagonals, causing the corre- 
spondence between  tq  and  ts  to be approximate, 
resulting in error in the mode shapes and modal re- 
sponses. This error was mitigated by introducing a win- 
dowing technique. A Gaussian window is applied to the 
data set before applying SOBI. Windowing the data 
causes the windowed modal responses to have diagonal 
correlation matrices, improving the quality of the esti- 
mated mixing matrix [6,7]. 

A further objective of BMID is to extend SOBI to sys- 
tems with complex-valued modes (non-diagonally damped 
systems), allowing for estimation of complex-valued 
mode shapes, natural frequencies and modal damping. 
The complex-valued mode shapes can be expressed as, 

ir i  ,                   (8) 

where i is the imaginary unit, and the subscripts r and i 
indicate the real and imaginary parts, respectively. This 
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was accomplished simply by applying SOBI on an ex- 
panded data set. The measured data set is augmented 
with its Hilbert transform to yield the double-sized mix- 
ing problem, 

 
 

 
 

.
ˆ ˆ

r r i r

r i r r

t t

t t

   
   
   

x q

x q

 
 





,

.

t

ˆ ,



        (9) 

In (9) the  symbol indicates the Hilbert transform. 
Note that though Equation (9) contains the imaginary 
part of the complex modes, the imaginary unit is not 
present. Therefore all the terms are real-valued and (9) 
may be solved using a real-valued implementation of 
SOBI. 

̂

Consider the analytic signals associated with the meas- 
ured data and the modal responses, 

         
         

ˆi i

ˆi i

r i r r

r i r r

t t t t

t t t t t

   

   

x x x x x

q q q q q




      (10) 

In [9] it was shown that the complex mixing problem, 

   
          

,

ˆi i ir r r i r r

t t

t t t t



   

x q

x x q q

 

 
   (11) 

is equivalent to the double-sized problem (9). It was also 
noted that solving (11) instead of (9) using a complex- 
valued implementation of SOBI avoids a post-processing 
step, known as the pairing routine, needed to match the 
modal responses to their Hilbert transform pairs. In addi- 
tion, it was suggested in reference [9] that a single-step 
JAD routine can be used to solve (11), and thus avoid the 
whitening step common in many of the early JAD algo- 
rithms. A complex-valued version of the high-perform- 
ance Weighted Exhaustive Diagonalization with Gauss 
itErations (WEDGE) algorithm [11-13], was used to 
solve for the complex mode shapes and modal responses. 

Many of the obstacles involved in applying BSS for 
MID were overcome by the proposed BMID framework. 
However one of the remaining limitations of the method 
is that the under determined case, where the number of 
sensors is less than the number of modes present in the 
measured data  I J , cannot be solved. In practice, 
this issue is often addressed by band-pass filtering the 
measured data into two or more bandwidths where  I J  
and applying BMID on each of the bands, separately. It is 
desirable from a time and effort standpoint to minimize 
the amount of bands necessary. In addition allowance for 
identification of more sources (modal responses) than 
sensors can allow for better quality modal parameters, as 
more noise modes can be identified and separated from 
the structural modes. 

Most of the methods thus far proposed to extend BSS 
to the underdetermined case exploited a technique from 
multilinear algebra, known as Parallel Factor analysis 
(PARAFAC) [14-16]. The PARAFAC algorithm em- 

ployed in these methods was that of [17], due to its con- 
vergence properties. In [14,15], PARAFAC was applied 
to the measured data directly for estimation of real and 
complex modes, respectively. The Blind Modal Identifi- 
cation for under determined data (BMIDUD) algorithm 
was developed by the author [16]. The algorithm applies 
PARAFAC to the analytic data set, composed of the 
measured data and corresponding Hilbert transform. Af- 
ter applying BMIDUD to two sets of simulated data, 
performance of the BMIDUD algorithm was observed to 
be fairly good in the underdetermined case. However, 
two shortcomings can be noted. First, the number of 
modes identified is limited by, 

   222 1 1J J I I   .           (12) 

The maximum number of uniquely identifiable sources 
for several values of I is listed in according to Table 1. 
Second, some residual mixing was evident in the modal 
auto-correlation functions. The first issue can be quite 
restrictive when the number of sensors is small. The 
second issue may result in error in modal parameter es- 
timates. 

Another approach to the underdetermined case is to 
assemble a large Hankel matrix from the data correlation 
matrices, as first suggested in [18]. This method does not 
suffer from the identifiability condition of Equation (12). 
In addition, the modal auto-correlation functions are eas- 
ily obtained in a post-processing step. The method was 
extended in [19], where methods from state-space reali- 
zation were combined with SOBI for improved modal 
identification. It was also shown that when dissimilar left 
and right diagonalizers are applied to the Hankel matrix, 
the correct mode shapes can be obtained without the need 
for windowing the data. In a related result, it was proven 
that the off diagonals of the modal response correlation 
are nonzero unless the system is conservative (i.e., does 
not have damping), as surmised in [6,7]. 

In the remainder of this paper, the Blind Modal Iden- 
tification using Hankel Matrices (BMIDHM) algorithm 
is developed. JAD is applied on a set of Hankel correla- 
tion matrices, generated from analytic data to estimate 
the state-space system and modal parameters. The algo- 
rithm is applied to two sets of simulated output-only data 
and one set of measured ambient response data. The first 
data set was obtained from a simulated 6 DOF mass- 
spring-dashpot system with non-diagonal damping, ex- 
cited by random noise. The second and third data sets 
represent ambient building vibration from simulation and 
real-world measurement, respectively. In each case, a 

 
Table 1. Maximum number of sources. 

I 2 3 4 5 6 7 8 

Jmax 2 4 9 14 21 30 40 
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minimal number of sensors is used to identify as many 
modes as possible. 

The method is similar to that of [19], with the excep- 
tion that the analytic signal is exploited. This leads to a 
reduction of the system order (to be identified) by a fac- 
tor of two, reducing the required Hankel matrix size. 

2. State Space System Preliminaries 

Theoretical background on second-order and state-space 
systems is provided in this section. Consider the familiar 
second order Equation of Motion (EOM) for a linear sys- 
tem, 

       1t t t  Mx Cx Kx B f  t       (13) 

 Here   Jt Rx
 

 is the displacement vector for all 
DOF, Lt Rf  is the force vector, B1 is the force in- 
fluence matrix mapping the force vector to physical co- 
ordinates, M is the positive definite mass matrix, C is the 
positive semi-definite damping matrix and K is the posi- 
tive semi-definite stiffness matrix. Matrices M, C and K 
are real valued and symmetric. Because K is positive 
semi-definite in general, the structure will have rigid 
body modes. However the rigid body modes and re- 
sponses are generally not of interest in the modal identi- 
fication problem. Therefore we will only consider oscil- 
latory responses. 

The second order EOM can be recast into a continu- 
ous-time state-space model, 

     
        ,

c c

c c

t t t

t t t

 

  

z A z B f

y C z D f ν



T

t
       (14) 

where       T T 2Jt t t R  z x x   is the state vector, 
  It y R  is the output vector and   It R

2 2
ν  represents 

measurement noise. The plant, J JR 
c , input influ- 

ence, 
A

2J L
c R B  output influence, 2I J

c R C ,and di- 
rect feedthrough, I L

c R D , matrices are given by: 

     

11 1
1

2

1 1

1
1

, ,

,or

,

.

c c

c d v c a c

c d a v a

c a

 

 



  
        
  

    


I
A B

M BM K M C

C H H A H A

C H H M K H H M C

D H M B

00

0 0 0   (15) 

The permutation matrices Hd, Hv and Ha, contain rows 
with a single unit element with all other elements null, 
such that they pick-off the measured DOF. As an exam- 
ple, for acceleration sensing at all DOF,    d v H H 0 , 
and   a H I . 

The set of differential equations can be decoupled us- 
ing the transformation, , where,    t z  t 2 2J JC   
is the matrix of eigenvectors of the plant matrix and 

      TT 2H Jt t t C q q

The matrix   takes the form, 

,


 

 
  
 

 


  
           (16) 

where J JC   is the matrix of complex-valued sys- 
tem mode shapes, J JC   is the diagonal matrix of 
independent (not including conjugate pairs) plant matrix 
eigen values, and the symbol  represents the com- 
plex conjugate. The diagonal system is given by: 

 • 

     
     

1
c

c

,

, where

.

c

c c

t t t

t t t





 

 

 
  
 

0

0

 B f

y C D f

 



 








       (17) 

The continuous-time state-space system can be trans- 
formed into a discrete-time system with sampling inter- 
val Δt by: 

 

    1

0

exp , , ,

exp d .

d c d c d c

t

d c c d

t

 
 

   

  

A A C C D D

c cB A B A I A B
    (18) 

The transformation results in the discrete-time system, 

     
       

1 ,

.

d d

d d

k k k

k k k

  

  

A B f

y C D f ν

 

 k

k

         (19) 

The set of difference equations can be decoupled 
through the transformation , yielding,    k z 

     
     

 
 

1 ,

, where

exp
.

exp

d

d d

k k k

k k k

t

t

   

 

 
  

  

0

0

B f

y C D f

 












1

      (20) 

It was shown in [18,19] that for τ sufficiently large 
(compared to the decay rate of the force and noise corre- 
lation functions), the correlation matrices take the form, 

 
 

,

, 0

H
yy

d d





 

 

R L R

R C L C R



  ,
        (21) 

as terms involving the random input force and measure- 
ment noise dissipate quickly with increasing time shift, τ. 
The matrix  0R  is the correlation of the state-space 
modal responses (at zero time shift). Reference [19] pro- 
vided the proof that  0R  is diagonal if and only if 
the system is conservative, i.e., there is no system damp- 
ing. The relative magnitude of the off diagonal terms can 
be significant when damping is present. It can also be 
seen from (21) that nondiagonality of  0R  causes 

 yy R  to be nonhermetian for   0  . 
Equation (21) can be compared directly to the JAD 

problem solved in SOBI (6). In SOBI, it is assumed that 
  is the modal state vector. 
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the data correlation matrices,  yy R , are Hermetian for 
all τ and, therefore, the right diagonalizing matrix factor 
is the Hermetian transpose of the left. In fact the non- 
hermetian part of the correlation matrices is discarded 
before application of Hermetian JAD. This leads to errors 
in the estimated mode shapes and modal responses when 
SOBI is applied. Windowing the data prior to application 
of SOBI alleviates this, as the correlation matrices of the 
windowed data are nearly Hermetian and the windowed 
modal correlation matrix is nearly diagonal, [6]. Diago- 
nalization of the nonwindowed correlation matrices, 

 yy R , is preferred but requires separate left and right 
matrix factors. 

3. Additional Preliminaries 

In this section, additional developments are provided that 
set the stage for the BMIDHM algorithm. 

3.1. Uniqueness of the Nonhermetian  
Diagonalization 

Diagonalization of nonhermetian correlation matrices with 
separate left and right matrix factors, as in (21), is essen- 
tial to estimate accurate modal parameters, while avoid- 
ing windowing the data set. However, it is known that 
such a diagonalization of a single correlation matrix is 
not unique. Consider, for example, that a single correla- 
tion matrix can be diagonalized by left and right singular 
vectors or left and right eigenvectors. Further to this 
point, an alternate set of left and right matrix factors can 
be derived that diagonalize  yy R


 to the set of arbi- 

trary diagonal matrices  , 

    1
, , where Hτ  .

    L LN R RM N M   (22) 

Here M is an arbitrary invertible matrix and the di- 
agonalization holds when N can be found satisfying the 
prescribed relationship between N and M. If we consider 
a single value of 1, =   , N can easily be obtained. 
However for multiple values of τ, a matrix N cannot 
generally be found that satisfies the above equation for 
all τ. Therefore the decomposition is unique for all prac- 
tical purposes. 

3.2. Analytic State-Space Form 

In this section the analytic state-space form will be de- 
rived considering acceleration sensing. Forms for displace- 
ment and velocity sensing are similar. The output equa- 
tion in (20) with acceleration sensing can be written as, 

 
 
     2 2 1

1 .a a

k

k
k k

k
  



            

y

q
H H M B f ν

q
 

(23) 

If the redundant conjugate pairs are removed the first 
term becomes, . Recalling that the mo- 
dal responses can be written as analytic signals, [9], and 
constructing the analytic signals of output, force and 
measurement noise, the analytic state-space output equa- 
tion is arrived at, 

 2
a k  H q

     2 1
1 .ak k k    y H q M B f ν   k    (24) 

In (24), a tilde has been placed over the modal re- 
sponses,  kq , to remind the reader that they are ana- 
lytic signals. It should be noted that though the modal 
responses are analytic signals for free response and im- 
pulse response cases, they are not strictly analytic signals 
in the general forced response case. In the case of ran- 
dom excitation however, modal responses are analytic up 
to a random additive term, which does not affect the 
cross-correlation functions. The true modal responses can 
then be substituted by their corresponding analytic sig- 
nals for modal identification purposes. 

The state equation can also be written with redundant 
conjugate pairs removed, yielding the analytic state equa- 
tion, 

     
   

 

   
   

1

1 2 1

11 1 1

11 1

1 , where,

1: ,1: exp ,and,

1: ,1: 2 , i.e.,

1: ,1: ,and,

1: , 1: 2 .

d

J J

J J

k k k

C J J t

C J J

J J

J J J





  

   

1     

  

   

 

 

   

q q B f  

  

 

     

        

(25) 

In Equation (25), Matlab® notation is used for row and 
column partitions of a matrix. It can be seen from (25) 
that the analytic state-space system order is J, while rep- 
resenting the same dynamics as the original state-space 
system of (20) with order 2J. This proves advantageous 
for modal identification, as the desired system order is 
reduced by half, requiring smaller Hankel matrix size to 
identify the desired number of modes. The analytic, dis- 
crete-time, state-space form can be summarized as, 

     
       

1

1
1

2

1 ,

, where,

displacement sensing,

velocity sensing,

acceleration sensing.

d

an a

an d

an v

an a

k k k

k k k k





  

  

 

 

 

q q B f

y C q H M B f ν

C H

C H

C H

 
  

 







 (26) 

Note that in all cases, an  consists of row partitions 
of scaled mode shapes. (Recall from properties of eigen-
vectors that mode shapes scaled by arbitrary complex- 
valued constant are still mode shapes.) 

C

The correlation functions for sufficiently large τ can be 
written as, 
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, where,

, 0

H
yy

an an qq

 

 

R L R

R C L C R



.

.t

         (27) 

In (27), the right and left matrix factors, R and L re- 
spectively, have been redefined. 

4. The BMIDHM Algorithm 

The BMIDHM algorithm is derived in this section. The 
analytic signal of measured responses is first constructed 
by adding the Hilbert transform as the imaginary part, 

     ˆir rt t y y y            (28) 

A set of K Hankel matrices,   IP IP
yy C  , is as- 

sembled, whereby the block elements are the correlation 
matrices of the analytic response data, 
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1 2
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(29) 

Here, τ is the time shift operator and P is the number 
of block rows and columns in the Hankel matrix. 

Nonhermetian JAD is applied to the set of Hankel ma- 
trices, yielding the decomposition, 

 

 

1

1

, .

P
yy

P

H
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L

L
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L
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   (30) 

The fast-converging nonhermetian JAD algorithm of 
[20] was chosen for the decomposition. The algorithm 
results in the matrices L


 and  directly, as opposed 

to the algorithm suggested in [19], which results in their 
generalized inverses, necessitating an additional inver- 
sion step. 

R


Note that dimensions of L


,  and  are  R


 IP J , 
  J J , and   IP J , respectively, where J is the system 

order,   J IP . The mode shapes (Can matrix) are ob- 
tained as the first J rows of . In practice, the system 
order may be ascertained by comparing the magnitudes 
of the diagonal elements of 

R


 . 
It was shown that by decomposing the Hankel matri- 

ces, up to IP complex modes can be identified. Because 
the analytic state-space form is used, the redundant com- 
plex conjugate modes are not included in the dynamics 
and are not identified in the decomposition. Therefore, all 
IP modes represent independent system modes (no con- 
jugate pairs), as opposed to the method of [19], where 

they represent the independent modes and the com- 
plex-conjugate pairs. Summarizing, a necessary condi- 
tion for identifying all J modes in the proposed method- 
ology is  IP J , whereas the condition of [19] is 

  2IP J . 
The approximately diagonal plant matrices can be re- 

covered for any τ by inverting (30), 

  .H
yy

   L R
 

               (31) 

A set of T samples of the modal auto-correlation func- 
tions can then be taken from the diagonal elements of, 

    0 , 1,2, ,qq qq τ T  R R  .       (32) 

Since only the diagonal elements of  qq R  are de- 
sired, and   is diagonal, the matrix  can be 
omitted without loss of generality. This is due to the fact 
that the diagonal elements of 

 0qqR

 qq R are simply equal to 
the diagonal elements of   scaled by the diagonal 
elements of  0qqR . Therefore the modal auto-correla- 
tion functions can be obtained by, 

        diag diag , 1,2, , .q qq T    r R   (33) 

Samples of the modal responses can be estimated by, 

  ,k q R
 

 Y               (34) 

where      1
TT T Tk k k P    


Y y y y . The 

estimates will contain random noise due to neglecting the 
random force (if sensors are near input locations) and 
measurement noise terms in (34). If P is large enough, 
however, random force and noise terms average out. 

A least squares estimate of the plant matrix,  , can 
be obtained by, 

    

     
1: 1 ,1: 1: ,1: , where,

1 1: ,1: H
yy

T J J J TJ J

τ J J J τ



.
 

   

  

 

 
P P

P L

R





  

 (35) 

Note that the estimated discrete-time plant and output 
influence matrices will approximately be in state-space 
modal coordinates, i.e.,   is approximately diagonal. 
Discrete time eigenvalues can be obtained as the eigen- 
values of  , and, can be converted to continuous time 
eigen-values by, 

   diag 1 ln .t eig            (36) 

Here,  •eig  is the operator that computes the ei- 
gen-values of a matrix. Natural frequencies, ωn, and mo- 
dal damping ratios, ζj, can be recovered through the rela- 
tion, 

2, i 1 .j j j nj nj j           

Alternatively, the natural frequencies and modal damp- 
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ing ratios can be computed from the modal correlation 
functions using simple SDOF methods. 

5. Application to Simulation and Measured 
Data 

In this section, results from application of the BMIDHM 
algorithm to simulated and measured data are presented. 
In each case the number of sensors utilized in the data set 
is kept low to evaluate the capabilities of the method 
when applied to the under determined problem. 

5.1. Simulated 6 DOF System with Two Sensors 

In order to investigate the effectiveness of the BMIDHM 
method, a six DOF mass-spring-dashpot system with 
non-diagonal damping was constructed. Three of the six 
DOF were chosen as sensor locations . The sys- 
tem was excited by uncorrelated, Gaussian-random, white 
noise applied to each of the six DOF. White noise was 
added to the response data with RMS equal to 10% of the 
maximum RMS among the response DOF. Figure 1 il- 
lustrates the displacement response along with the Fast 
Fourier Transform (FFT) of the displacement at each of 
the sensor locations. 

   3I  

The BMIDHM algorithm was applied to the measured 
data, selecting . The modal parameters (natural 
frequencies, modal damping ratios and mode shapes) of 
the six identified modes are compared to modal parame- 
ters of the six analytical modes in Table 2. Mode shapes 
are compared using a correlation coefficient known as the 
Modal Assurance Criterion (MAC), [21]. The MAC value 
between two modes 

  6J 

1  and 2  is given by, 

 
 2

1 2

1 2 2

1 2

MAC ,
H


 

 
  2

.         (37) 

A value near 1 indicates a good shape correlation. A 
value near 0 indicates poor correlation. 

It can be seen that natural frequency and mode shape 
estimates compare extremely well, while the estimated 
modal damping ratios exhibit slightly more error. The 
modal auto-correlation functions and their FFTs, which 
are the power spectral densities, are shown in Figures 2 
and 3. The shape observed in both the time domain and 
frequency domain indicates that the modes are complete- 
ly isolated. 

5.2. Simulated 4-Story Building Vibration 

A model of a four story building was created by the Uni- 
versity of British Columbia (UBC) as a benchmark for 
damage detection. In this section, modal identification of 
the undamaged structure with asymmetric floor mass is 
considered. The analytical model of a four story building 
mockup was modeled with Euler frame elements. The 

 

Figure 1. 6 DOF simulation-measured responses. 
 

Table 2. 6 DOF simulation-modal parameters. 

Analytical BMIDHM 

Freq. Damp. Freq. Damp. 
Mode 

(Hz) (%) (Hz) (%) 
MAC 

1 0.69 4.50 0.69 4.78 1.00 

2 1.31 2.04 1.30 2.02 1.00 

3 1.71 2.30 1.71 2.29 1.00 

4 2.37 1.53 2.37 1.86 1.00 

5 2.70 1.45 2.70 1.67 1.00 

6 3.14 0.89 3.14 1.00 1.00 

 

 

Figure 2. 6 DOF simulation-estimated modal response co- 
variance functions 1 - 3. 

 
FEM model with node numbering is shown in Figure 4. 

The floors in the mockup are fairly rigid. Notice that 
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Figure 3. 6 DOF simulation-estimated modal response cova- 
riance functions 4 - 6. 
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Figure 4. UBC building-FEM model. 
 

the FEM model does not include explicit models for each 
floor. Instead, a rigidizing constraint was applied to the 
stiffness matrix as an ad-hoc step before simulation. For 
simulation, 1% diagonal-damping is applied in the modal 
domain. The resulting model contained 120 DOF. Note 
that the modeling and simulation was done in a MAT- 
LAB® package provided by the UBC. 

The structure was excited in the transverse direction 
by a simulated diagonally oriented shaker at the top cen- 
ter of the building. Gaussian random excitation, filtered 
between 0 - 100 Hz was applied for 150 seconds. The 
time interval for integration was 0.001 seconds. Accel- 
erations were measured at 16 locations. A pair of planar 
accelerometers was simulated on each floor, adjacent to 

the center columns by outputting x and y accelerations at 
nearby nodes. Measurement noise was simulated by add- 
ing Gaussian random noise to each measurement. The 
RMS of the noise was selected as 10% of the RMS of the 
measurement with the highest response level. 

A plot of the Complex Mode Indicator Function (CMIF) 
is shown in Figure 5. The influence of 11 modes on the 
response shape can be seen as well as the additive meas- 
urement noise. Note that the first two modes are closely 
spaced modes (~9 Hz) representing the first sway modes 
in the x and y directions. The poorly excited third mode 
(~14 Hz) is the first torsional mode. The influence of 
many frequencies on the response shape can be seen as 
well as the additive measurement noise. Due to these 
characteristics, this data set presents a challenge to the 
BMIDHM algorithm. Data from five of the 16 available 
sensors were chosen as the data set .   5I 

Modal identification was performed on the response 
data (ignoring the input force data) using BMIDHM, 
selecting  13J  . Two noise modes were separated out 
based on the poor spectral and temporal shape of the 
identified modal responses and low contribution to the 
vibration response. The modal parameters of the remain- 
ing 11 modes are compared to modal parameters of the 
11 analytical modes in Table 3. Note that the frequency 
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Figure 5. UBC building simulation-first CMIF. 
 

Table 3. UBC building simulation-modal parameters. 

Analytical BMIDHM 

Freq. Damp. Freq. Damp. 
Mode

(Hz) (%) (Hz) (%) 
MAC 

1 8.47 1.00 8.48 1.15 1.00 

2 9.05 1.00 9.07 1.44 0.97 

3 14.40 1.00 14.34 0.66 0.48 

4 23.19 1.00 23.20 0.94 1.00 

5 25.63 1.00 25.62 1.06 1.00 

6 36.44 1.00 36.42 0.90 1.00 
7 41.85 1.00 41.86 1.12 1.00 
8 46.77 1.00 46.82 0.95 1.00 
9 56.55 1.00 56.56 0.85 1.00 

10 62.42 1.00 62.36 1.33 1.00 
11 80.75 1.00 80.80 1.89 1.00 
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and damping results for mode 3 were obtained by SDOF 
fitting methods using data around the peaks of the modal 
spectra. It can be seen that natural frequency and mode 
shape estimates compare well, but estimated modal damp- 
ing ratios tend to have more error. 

Modal response auto-correlation functions and their 
FFTs are shown in Figures 6-8. The shape observed in 
both the time domain and frequency domain indicates 
that the modes are completely isolated for all modes ex- 
cept for the third. A peak in the spectrum is visible for 
the poorly-excited third mode at the correct frequency of 
14.35 Hz, however another large peak is present as well 
as a high noise level above 30 Hz. Bandpass filtering the 
data from 10 - 20 Hz results in improved spectral and 
temporal shape (Figure 9). 

5.3. Heritage Court Tower Building 

The structure analyzed in this section is the Heritage 
Court Tower (HCT) building. The description of the 
building, provided in [22] is summarized here. The HCT 
is located in downtown Vancouver, British Columbia, 
Canada. It is a 15-story reinforced concrete shear core 
building. The building is essentially rectangular in shape 
with only small projections and setbacks. The building 
tower is short and stout, having a height to width aspect 
ratio of approximately 1.7 in the east-west direction and 

 

 

Figure 6. UBC building simulation-estimated modal re- 
sponse covariance functions 1 - 4. 

 

Figure 7. UBC building simulation-estimated modal re-
sponse covariance functions 5 - 8. 

 

 

Figure 8. UBC building simulation-estimated modal re- 
sponse covariance functions 9 - 11. 

 
1.3 in the north-south direction. An overview of the 
building is presented in Figure 10. Typical floor dimen- 
sions of the upper floors are about 25 meters by 31 me- 
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Figure 9. UBC building simulation-estimated modal re- 
sponse covariance functions 3 (Filtered). 

 

 

Figure 10. Photograph of Heritage Court Tower (HCT) 
building. 

 
ters, while the dimensions of the lower three levels are 
about 36 meters by 30 meters. The footprint of the build- 
ing below ground level is about 42 meters by 36 meters. 
The height of the first story is 4.7 meters, while most of 
the other levels have heights of 2.7 meters. Elevator and 
stairs corridors are concentrated at the center core of the 
building and form the main lateral resisting elements 
against potential wind and seismic lateral and torsional 
forces. The tower structure sits on top of four levels of 
reinforced concrete underground parking. A parking 
structure extends approximately 14 meters beyond the 
tower in the south direction forming an L-shape with the 

tower. The parking structure and first floors of the tower 
are fairly flush on the remaining three sides. Because the 
building sits to the north side of the underground parking 
structure, coupling of the torsional and lateral modes of 
vibration was expected primarily in the EW direction. 

Four sets of ambient response data were collected with 
eight accelerometers. Six of the accelerometers were 
roving transducers that changed location for each data set. 
Two reference accelerometers remained in a fixed loca- 
tion. This enables the mode shapes computed from the 
four data sets to be combined into one modal matrix. The 
data sets contained around 325 seconds of data, sampled 
at 40 Hz. 

The third data set was analyzed using BMIDHM as 
well as the state-space realization method, known as co- 
variance-driven Stochastic Subspace Identification (SSI). 
Covariance-driven SSI is essentially an application of 
ERA on cross-correlation functions instead of impulse 
response functions. More details of the SSI algorithm can 
be found in [23]. Channels 2, 4, 7 and 8 were chosen as 
reference channels for SSI. The BMIDHM and SSI me- 
thods were applied on the ambient responses directly. 

The first two Complex Mode Indicator Functions (CMIFs) 
are shown in Figure 11. From the CMIF plot, it can be 
seen that the first three modes are closely spaced. In fact 
the first two modes (~1.25 Hz) are so closely spaced that 
they are nearly the same frequency. As a result, the first 
CMIF does not exhibit two distinct peaks. However the 
presence of the second mode at ~1.25 Hz is indicated by 
the peak in the second CMIF. There is a sharp peak in the 
first CMIF around 8.7 Hz. This is most likely harmonic 
noise due to a mechanical device such as a motor, fan or 
pump. Also notice that above 10 Hz, there are no dis- 
tinct peaks visible. This data set presents a challenge 
to the BMID method due to the small number of sen- 
sors, presence of closely spaced modes and the pres- 
ence of noise. 

In order to evaluate the capabilities of BMIDHM for 
the underdetermined problem, the frequency band from 
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Figure 11. HCT building—The first two CMIFs. 
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0.0 - 7.5 Hz is focused on, only three of the eight avail- 
able sensors are chosen . All eight sensors are 
used in the SSI algorithm so that results from BMIDHM 
can be compared to an accurate set of modal parameters. 
Modal identification was performed on the ambient re- 
sponse data using BMIDHM, selecting . Three 
noise modes were discarded based on the poor spectral 
and temporal shape of the identified modal responses and 
low contribution to the vibration response. 

  3I  

 10J 

The SSI method was performed with several different 
Toeplitz matrix sizes, resulting in several realizations. 
Consistency diagrams were formed for each filter band, 
and the best realization was chosen. The consistency dia- 
grams can be found in [8]. 

Modal parameters from the two methods are presented 
in Table 4. Modal parameters from BMIDHM applied 
using three sensors compare quite will to those obtained 
using SSI applied on all eight sensors, though damping 
error is significant for some modes. 

Modal auto-correlation functions from the BMIDHM 
method are shown in Figures 12 and 13. Note that the 
time scale is different in the two figures. The FFTs of the 
random modal responses computed using (34) are pro- 
vided in Figure 14. The modal response autocorrelation 
functions exhibit clean, monotone decay and the spectral 
peaks are seen to be quite well-separated in the modal 
responses and modal auto-correlations. 

6. Conclusions 

Methods employed in state-space realization theory and 
second order blind source separation were combined, 
formulating an new modal identification algorithm. The 
algorithm is applied on measured vibration (output-only) 
data and results in estimates of the system: 
 complex-valued modal matrix; 
 modal responses and auto-correlation functions (even 

in the underdetermined case); 
 state-space discrete-time plant, output-influence and 

observability matrices in modal form; 
 natural frequencies and fractions of modal damp-

ing. 
 

Table 4. HCT building simulation-modal parameters. 

SSI BMIDHM 

Freq. Damp. Freq. Damp. 
Mode 

(Hz) (%) (Hz) (%) 
MAC 

1 1.23 1.25 1.23 1.13 0.96 

2 1.29 1.08 1.29 1.08 0.99 

3 1.45 0.86 1.45 0.79 1.00 

4 3.86 1.29 3.86 1.31 1.00 

5 4.26 1.74 4.25 1.46 1.00 

6 5.33 2.40 5.31 2.54 1.00 

7 6.38 1.69 6.35 1.73 0.99 

 

Figure 12. hct building-estimated modal response covari- 
ance functions 1 - 3. 

 

 

Figure 13. HCT building-estimated modal response covari- 
ance functions 4 - 7. 

 
Compared to the first practical adaptation of BSS to 

modal identification, [6], several improvements can be 
cited: 
 The whitening, windowing and pairing routines are 
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Figure 14. HCT building-FFT of estimated modal responses. 
 

precluded. 
 Application to the underdetermined problem (more 

independent modes than sensors) is effectively han- 
dled, resulting in high-quality modal parameters, mo- 
dal auto-correlation functions and modal responses 
with few sensors. 

 The state-space plant matrix and corresponding sys- 
tem eigenvalues are readily available. 
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