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ABSTRACT 

In this study, the performance of chirplet signal decomposition (CSD) and empirical mode decomposition (EMD) cou- 
pled with Hilbert spectrum have been evaluated and compared for ultrasonic imaging applications. Numerical and ex- 
perimental results indicate that both the EMD and CSD are able to decompose sparsely distributed chirplets from noise. 
In case of signals consisting of multiple interfering chirplets, the CSD algorithm, based on successive search for esti- 
mating optimal chirplet parameters, outperforms the EMD algorithm which estimates a series of intrinsic mode func- 
tions (IMFs). In particular, we have utilized the EMD as a signal conditioning method for Hilbert time-frequency rep- 
resentation in order to estimate the arrival time and center frequency of chirplets in order to quantify the ultrasonic sig- 
nals. Experimental results clearly exhibit that the combined EMD and CSD is an effective processing tools to analyze 
ultrasonic signals for target detection and pattern recognition. 
 
Keywords: Ultrasound; Hilbert Time-Frequency Representation; Empirical Mode Decomposition; Chirplet Signal 
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1. Introduction 

Different time-frequency analysis methods such as short- 
time Fourier transform (STFT), Wigner-Ville distribution 
(WVD), and wavelet transform (WT) have been utilized 
to examine nonstationary signals often encountered in 
ultrasonic imaging applications [1-4]. For example, Ber- 
riman et al., investigated ultrasonic non-destructive test- 
ing of concrete using STFT and WVD [1]. Similarly, 
Kuang et al., used STFT and wavelet packet filters for 
frequency measurement in a Doppler tracking system [2]. 
Furthermore, time-frequency analysis has been shown to 
extract critical frequency-diverse information which can 
be used to discriminate clutter and target echoes in ultra- 
sonic detection applications [3]. However, it remains a 
very significant problem to obtain a general transform 
basis which is adaptive to nonstationary and interfering 
narrowband, broadband and dispersive echoes corrupted 
by noise. Lately, as an alternative to classical time-fre- 
quency distributions, an empirical mode decomposition 
(EMD) technique [4] has been used for signal analysis. 
EMD splits the signal into a series of intrinsic mode 
functions (IMF) by using local signal attributes such as 

the location of the extreme points and zero crossings. 
Estimated IMFs are oscillatory and adaptive to the char- 
acteristics of the signal. Hence, the time-frequency dis- 
tribution of the signal can be obtained from the Hilbert 
spectrum of estimated IMFs [5,6]. 

The EMD has been explored in the applications of 
medical imaging and diagnostics [7,8], time-frequency 
analysis of encountered waves [9], underwater acoustic 
feature extraction [10], image watermarking [11], power 
systems [12], vibration analysis for structural health 
monitoring [13], audio source separation [14] and ultra- 
sonic nondestructive evaluation [15]. Although the algo- 
rithm is successfully utilized in diverse application areas, 
it lacks a well-established theoretical analysis [16-18]. 
Therefore, any new application of EMD requires rigor- 
ous verification and evaluation of the method. In this 
paper, the EMD algorithm is introduced to characterize 
ultrasonic backscattered echoes which are often intrinsi- 
cally oscillatory and nonstationary. Furthermore, the per- 
formance of EMD has been compared to the estimation 
results obtained from chirplet signal decomposition algo- 
rithm [19-22]. Chirplet is a type of signal frequently en- 
countered in ultrasonic applications. The six parameters 
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of a chirplet [19], i.e., time-of-arrival, center frequency, 
amplitude, bandwidth factor, chirp rate and phase, can be 
used to represent a broad range of ultrasonic echo shapes 
including narrowband, broadband and dispersive echoes. 
In this study, the estimated echo parameters are used to 
substantiate the sensitivity of EMD to different type of 
echoes in presence of noise. 

2. Empirical Mode Decomposition of  
Ultrasonic Chirp Echoes 

The objective of the EMD is to decompose a highly con- 
voluted, multi-component ultrasonic signal,  s t , into N 
series of IMFs. 

     
1

N

k
k

s t IMF t r


  t            (1) 

Here  r t  denotes the residue of signal reconstruc- 
tion; and  kIMF t  denotes the kth IMF function. The 
process to obtain these IMFs is an iterative decomposi- 
tion process [5]. Figure 1 shows the flowchart of EMD 
process (known as sifting process) to estimate IMFs. The 
steps involved in the sifting process of signal  s t  are: 
1) Prepare signal  x t  for sifting process, where x(t) = 

s(t), set the iteration index j = 1; 
2) Find all the local maxima and local minima of  x t ; 
3) Interpolate the local maxima to form the maxima 

envelop,  maxh t . Similarly, the minima envelop, 
 minh t , is obtained. Hence, the mean sequence, 

 m t , can be obtained from  maxh t  and  minh t ; 

     max min

2

h t h t
m t


  

4) Subtract the mean envelop,  m t , from the signal, 
 x t  such that     m t   . Check if h t x t  h t  

is an IMF (see below for IMF conditions); If  h t  
is an IMF, go to Step 5; otherwise, go to Step 2 and 
update    x t h t , repeat Steps 2-4. 

5) Save the IMF result:    jIMF t h t , update the 
iteration index 1j j  , subtract the estimated IMFs 
from signal  s t  to obtain residue 

     
1

k
k

j

x t s t IMF t


            (2) 

6) Check the residue  x t  from Step 5. If  x t  is a 
constant or monotonic function, save all IMFs and 
complete the sifting process; otherwise, go to Step 2. 

Steps 1 through 6 allow the sifting process to isolate 
time-varying signal features and obtain the intrinsic os- 
cillation. 

IMF Conditions: 
To be an IMF, the signal must satisfy the following 

conditions: 

1) extreme zero-crossingNum Num 1   

 

Figure 1. Flowchart of empirical mode decomposition esti- 
mation process. 

 
where extreme  is the number of local extreme points 
(includes local maxima and local minima), and 

 is the number of cross-zero points. 

Num

ro-crossingzeNum

2)      max min

2

h t h t
m t 


   

where  maxh t  is the envelope interpolated by all local 
maxima,  tminh  is the envelope interpolated by all 
local minima,  m t  is the mean sequence of local ma- 
xima and minima envelops, and   is a sufficiently 
small positive value close to zero. 

In practice, the signal segment and noise may override 
the realization of condition 1) and it is also problematic 
to get an absolute-zero mean sequence  for the  0  
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where  
j

f t  denotes the jth chirp echo,  denotes a 
noise. 

 n tcondition 2) of IMF. Therefore, different methods have 
been used as an alternate to conditions 1) and 2) and to 
stop the estimation searching process of IMF [6]. One 
method is to check if the mean square error of  h t  
between two successive iterations is smaller than a pre- 
defined value. A practical alternative method is to check 
if  satisfies the condition 1) of IMF for a prede- 
fined number of successive iterations. In this study, a 
predefined number of iterations are used to compensate 
for the condition 2) of IMF. 

 h t

In fact, the Gaussian-envelop chirplet echo,  f t , 
satisfies IMF conditions 1 and 2. The ultrasonic chirplet 
echo can be viewed, for all practical purposes, as a 
band-limited and time-limited function. Signals consist- 
ing of multiple partially overlapped chirplets require 
multiple IMFs and the number of IMFs not only depends 
on the number of the echoes, but also depends on the 
degree of overlap between echoes. Figure 2 shows the 
IMF results of two overlapped chirplets with the follow- 
ing parameters: 

To introduce the EMD process into ultrasonic pulse- 
echo system, it is useful to analyze the EMD effect on 
ultrasonic chirp echoes, a type of signal often encoun- 
tered in ultrasonic backscattered signal accounting for 
narrow-band, broad-band, and dispersive echoes. 

2 2
1 2.5 μs 7 MHz 1 25 MHz 20 MHz 0 rad      

and  
An ultrasonic chirp echo can be modeled as: 

2 2
2 2.2 μs 5 MHz 1 20 MHz 20 MHz 1 rad      

    
   

2

1

2

2

exp

cos 2π c

f t t

f t t

  

   

   

     
    (3) The first IMF reveals the non-overlapping portion of 

both chirplets and it takes one additional IMF with low 
frequency components to compensate for the asymmetric 
portion representing the overlapped. It is a non-paramet- 
ric process to generate IMFs. One may conclude IMFs 
tracks the oscillation within the signal, but it cannot char- 
acterize the degree of overlap among multiple echoes. 
Consequently, it cannot be used with certainty to esti- 
mate chirplet parameters. The EMD tracks the irregular- 
ity in signal instead of decomposing it into individual 
chirplets. The Fourier spectrum of these IMFs (see Fig- 
ure 2) shows that IMFs track different frequency bands 
associated with time-of-arrival of echoes. 

where  1 2cf       denotes the pa- 
rameter vector,   is the time-of-arrival, cf  is the cen- 
ter frequency,   is the amplitude, 1  is the band- 
width factor, 2  is the chirp-rate, and   is the phase. 

Similarly, a signal consisting of multiple chirp echoes 
can be simulated and decomposed using EMD. The 
simulated signal,  s t , can be written as follows 

     
1

j

M

j

s t f t n


  t          (4) 

 

 

Figure 2. EMD result of two overlapping chirplet echoes (left column: from top to bottom: simulated signal, IMF #1, IMF #2, 
and residue; right column: Fourier spectrum of the corresponding signals in left column). 
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The EMD is similar to a filter-bank process sweeping 

from higher frequency bands to lower frequency bands. 
This can be advantageous for denoising the signal. Fig- 
ure 3 demonstrates that the performance of the EMD 
when applied to chirplet echoes with the following pa- 
rameters: 

2 2
1 2.5 μs 7 MHz 1 25 MHz 20 MHz 0 rad   



 

and 
2 2

2 2.2 μs 5 MHz 1 20 MHz 20 MHz 1 rad    

plus a white Gaussian noise with SNR of 10dB. To fur- 
ther the evaluation of EMD results for ultrasonic signals, 
Hilbert spectrum, discussed in next section, is used to 
perform the time-frequency analysis. 

3. Hilbert Time-Frequency Representation 
of Chirp Echoes 

Hilbert time-frequency representation [23] provides criti- 
cal information about chirplet echoes such as the center 
frequency and time-of-arrival parameters. Therefore, Hil- 
bert transform can be successfully used in ultrasonic 
echo detection and estimation applications. In this sec- 
tion, we first discuss chirplet echo parameter sensitivity 
and then demonstrate that Hilbert transform can be used 
in conjunction with EMD for ultrasonic signal analysis. 

To explore the behavior of the chirplet parameters, a 
simulation has been conducted to examine the change of 
reconstruction error as each parameter is altered for a 
single ultrasonic chirp echo [22]. In the case of the pa- 

rameter deviation varying from −10% to 10% of the ac- 
tual value, Figure 4 shows how the reconstruction error 
evolves with the alteration of each single parameter. It 
can be seen that the time-of-arrival dominates the effects 
on reconstruction error, compared with other parameters. 
Hence, the time-of-arrival,  , is the most critical pa- 
rameter to be estimated, followed by the center frequency 

cf , the amplitude  , the chirp rate 2 , the phase  , 
and the bandwidth factor 1 . 

To analyze the time-frequency property of signal, 
 f t , Hilbert transform is applied to the signal, and the 

analytic signal,  Z t , can be defined as  

    i Z t f t H f t              (5) 

where  H  denotes the Hilbert transform. Therefore, 
the chirplet analytic signal,  Z t  can be approximated 
with reasonable accuracy (when center frequency is lar- 
ger the chirplet bandwidth [23,25-27]) as 

 
      

   

2 2

1 2
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e
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where 

    2
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    (8) 

 

 

Figure 3. EMD results of a noisy signal with two overlapping chirplet echoes (left column: from top to bottom: simulated 
signal, IMF #1, IMF #2, and residue; right column: Fourier spectrum of the corresponding signal in left column). 
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Figure 4. Parameter behavior analysis for a single noisy chirp echo. 
 

Let    ,f t HT t 


 denotes the Hilbert time-frequency 
representation of the signal,  f t , which is  

        , ,f tHT t a t t 


           (9) 

The maximum of  can be obtained by taking de- 
rivatives of the  with respect to . 

 a t
a t t

       2

1 12 exp
a t

t t
t

    


     


0  (10) 

The solution of Equation (10) leads to an estimation of 
time-of-arrival, 

t                    (11) 

and using Equation (8), the frequency at the time arrival 
represent the center frequency 

2π cf                  (12) 

Equations (11) and (12) indicates that Hilbert time- 
frequency (TF) representation can be used to analyze 
ultrasonic chirp signal and reveal the two most critical 
parameters, i.e., time-of-arrival and center frequency. 

Similarly, in a multi-component ultrasonic signal, 
 s t , which includes a linear expansion of chirp echoes, 

Hilbert TF representation can be obtained from its ana- 
lytical signal  sZ t . 
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where    
1

j

M

j

s t f


  t , which includes M  chirp ech- 

oes;  denotes the amplitude of jth chirp echo; and 
 denotes the frequency of jth chirp echo. 
 ja t

t j

To demonstrate the performance of the Hilbert TF 
representation in ultrasonic signal analysis, ultrasonic 
chirp echo is simulated in Figure 5, where positive or 

negative chirp rate models the dispersive effect in ultra- 
sonic testing of materials. This figure shows the esti- 
mated time-of-arrivals and center frequencies closely 
match the actual values used in simulating these signals. 

4. Ultrasonic Experimental Results 

To evaluate the performance of EMD in analysis of ul- 
trasonic backscattered signals, chirplet signal decomposi- 
tion (CSD) is included for the comparison purposes in 
this study. The CSD algorithm [18] is utilized to decom- 
pose the ultrasonic signal,  s t , into a linear expansion 
of chirp echoes and efficiently estimate the parameter 
vectors of these echoes. 

     
1

j

M

M
j

s t f t r


  t          (14) 

where  Mr t  denotes the residue of the signal recon- 
struction after estimating M successive ultrasonic chirp 
echoes,  

j
f t . 

An experiment is conducted to acquire ultrasonic 
backscattered signal from a steel block with a flat-bottom 
hole (i.e., target) using a 5 MHz transducer and sampling 
rate of 100 MHz. Figure 6 shows the experimental data 
superimposed with the reconstructed signal using CSD 
algorithm consisting of 6 chirplets, compared with the 
experimental data superimposed with the reconstructed 
signal using EMD consisting of 3 IMFs. It can be seen 
that both methods can successfully perform signal de- 
composition on the experimental data. Moreover, the 
parameters of the target echo are shown in the first row 
of Table 1, which lists the estimated parameters of chir- 
plets using CSD algorithm. The target echo exhibits a 
lower center frequency (Echo #1 in the table, time arri- 
val = 2.7618 s, center frequency = 4.3513 MHz) due to 
the effect of frequency-dependent attenuation compared 
to the surrounding scattering echoes that often exhibit 
higher center frequencies [28]. 

The EMD has been applied to the same experimental 
data set. The results from EMD are shown in Figure 7, 
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Figure 5. Hilbert TF representation of ultrasonic chirp (Row 2: Hilbert TF representation of the ultrasonic chirp echoes in 
Row 1; Row 4: Hilbert TF representation of the ultrasonic chirp echoes in Row 3). 

 

 

Figure 6. a) Ultrasonic experimental data superimposed with the reconstructed signal using CSD algorithm; b) Ultrasonic 
experimental data superimposed with the reconstructed signal using EMD. 

 
Table 1. Estimated parameters of chirplets (CSD method). 

Echo α1 [MHz]2 α2 [MHz]2 τ [s] c [MHz]  [rad] β 

1 4.0471 0.9305 2.7618 4.3513 −0.351 0.664 

2 4.7087 2.7232 0.4432 5.3029 −1.641 0.416 

3 2.6697 0.9354 3.7730 5.3614 2.995 0.305 

4 4.0741 1.3073 2.5763 5.8642 −0.182 0.268 

5 16.187 0.2435 1.5719 5.0293 3.790 0.300 

6 10.316 3.7598 4.7039 4.4164 −1.064 0.240 

 
where the ultrasonic experimental data, IMF #1, IMF #2, 
IMF #3 and residue function are plotted from top to bot- 
tom. It can be seen that the dominant echo location in 
IMF #1 is around 2.76 microseconds, which is close to 

the time of arrival,  , of the target echo (see parameters 
of Echo #1 in Table 1). Furthermore, the Hilbert time- 
frequency representation of the ultrasonic signal (see 
Figure 8b) shows that the target is emphasized in the 
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Figure 7. EMD results of ultrasonic backscattered signal (left column: from top to down: experimental data, IMF #1, IMF #2, 
IMF #3, and residue; right column: Fourier spectrum of the corresponding signal in left column). 

 

 

Figure 8. a) Ultrasonic backscattered signal; b) Hilbert time-frequency representation of ultrasonic backscattered signal in a); 
c) IMF #1 from EMD results of ultrasonic backscattered signal in a); d) Hilbert time-frequency representation of IMF #1 in c). 

 
Hilbert time-frequency domain. It also can be seen that 
the information of the target time-frequency characteris- 
tic is smeared by the surrounding scattered echoes caused 
by the microstructure of the test object. After the EMD 
process, by further examining the Hilbert time-frequency 
representation of the IMF #1, the useful information of 
the target, such as center frequency and time-of-arrival, 

is clearly displayed in Figure 8d. 
The center frequency of the target is around 4.4 MHz 

and the time-of-arrival of the target is around 2.76 mi- 
croseconds, which is in agreement with the estimated 
parameters using CSD algorithm. Therefore, combining 
with Hilbert time-frequency analysis, the EMD can suc- 
cessfully analyze ultrasonic backscattered signal and ob- 
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tain useful information related to the target. However, 
unlike CSD algorithm, the EMD and Hilbert time-fre- 
quency representation cannot decompose the ultrasonic 
backscattered signal into a well-defined chirplet model 
and cannot estimate the specific chirplet parameters. 
These parameters are critical for nondestructive testing 
and quantitative material characterization. 

5. Conclusion 

In this study, the EMD has been introduced to analyze 
ultrasonic backscattered signals for ultrasonic nondestruc- 
tive evaluation of materials. Numerical and analytical 
results indicate that the EMD is a unique tool for ultra- 
sonic signal analysis and is sensitive to center frequency 
of echo, and their interference amongst them. Compared 
with CSD algorithm, the EMD has limitation on signal 
decomposition and accurate parameter estimation. The 
EMD is a unique and effective method to track signal 
changes while the estimation results obtained by CSD 
algorithm quantify the ultrasonic signals accounting for 
narrow-band, broad-band, and dispersive echoes. 
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