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ABSTRACT 

Effective cancellation of noise and preservation of color/structural information are features of paramount importance for 
any filter devoted to impulse noise removal in color images. In this paper novel full-reference tools for analyzing the 
behavior of this family of filters are presented. The proposed approach is based on the classification of color errors into 
two main classes that separately take into account the inaccuracy in removing noise pulses and the filtering distortion. 
The distortion errors are then classified into two subclasses for a deeper analysis of the filtering behavior. Computer 
simulations show that the proposed method gives more accurate results than using other measures of filtering perform- 
ance in the literature. Furthermore, the method can easily yield the spatial location of the different filtering features in 
the image.  
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1. Introduction 

Impulse noise filtering in color images is a very dynamic 
branch of digital image processing [1-3]. Indeed, many 
different approaches have been proposed in the literature 
in order to reach better and better results in terms of can- 
cellation of noise and preservation of edge and color in- 
formation. The accurate measurement of these key fea- 
tures is thus of paramount importance to analyze the be- 
havior of any new filter and to assess its performance 
with respect to the available ones. The commonly used 
approach to performance analysis of color filters resorts 
to visual inspection and objective measurements based 
on the computation of pixelwise differences between the 
original and the processed image. In this respect, the 
ability to cancel noise pulses is very often estimated by 
evaluating the mean squared error (MSE) or the peak 
signal-to-noise ratio (PSNR), whereas the ability to pre- 
serve edges is taken into account by computing the mean 
absolute error (MAE). All the aforementioned measures 
are typically evaluated in the RGB color space, that is the 
most popular color coordinate system for image storing, 
display and processing [1]. Since the RGB space is not 
adequate for describing the human perception of colors, 
the perceptual closeness of the filtered picture to the un- 
corrupted original image is generally considered by 
computing the normalized color difference (NCD) in the 
perceptually uniform CIE Luv (or CIE Lab) color spaces  

[1-3]. As an example, the family of weighted vector di- 
rectional filters was studied and optimized by minimizing 
MAE, MSE and NCD to achieve the best balance be- 
tween noise attenuation and preservation of the color/ 
structural information [4]. The same set of objective 
measures was adopted to numerically evaluate the per- 
formance of the sigma vector median filter [5]. A collec- 
tion of four criteria including the MSE, the normalized 
mean square error (NMSE), the PSNR and the NCD was 
considered to validate weighted median filters for mul- 
tichannel signals [6]. The results of many computer 
simulations were presented to assess the performance of 
the fuzzy two-step filter in [7]. Here, the PSNR was 
adopted as a measure of objective dissimilarity between a 
filtered image and the original one. The performance of 
the fuzzy filtering method [8] was deeply investigated in 
terms of PSNR and NCD for different parameter settings 
and different densities of impulse noise. An effective 
switching median filtering scheme was developed for 
grayscale pictures and extended to color images [9]. The 
performance of the method was quantified by the PSNR 
(for monochrome images) and by color difference meas- 
urements in the CIE Lab color space. The accuracy of the 
noise detection algorithm was also investigated by com- 
puting the number of false positives and false negatives. 
Similar approaches were adopted to validate the direc- 
tional weighted median filter [10] and the robust neuro- 
fuzzy network [11]. MAE, PSNR, and NCD evaluations 
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were provided to measure the performance of the de- 
noising filters presented in [12,13]. Even most recent 
filters in the literature have been evaluated by resorting 
to the aforementioned measures (or combinations of 
them) [14-16]. The major drawback of such evaluation 
methods, however, is the fact that they have limited ac- 
curacy in estimating the different filtering features. As 
already observed for grayscale images [17,18], MSE and 
MAE cannot yield accurate measures of noise cancella- 
tion and detail preservation, because they cannot totally 
separate these effects. Although the MSE is more sensi- 
tive to residual noise than the MAE, it takes into account 
the amount of distortion produced by a filter too. The 
MAE is more sensitive to distortion than the MSE, how- 
ever it depends upon the remaining noise too. The NCD 
focuses on the human perception of colors, so it com- 
putes all the filtering errors in perceptually uniform color 
spaces without distinguishing error components due to 
structural distortion and those that are caused by insuffi- 
cient (or excessive) removal of noise. Other metrics that 
aim at mimicking the human perception yield a subject- 
tive evaluation of image quality in the form of a single 
score, so, again, they cannot distinguish between detail 
preservation and noise cancellation given by a filter. 
Furthermore, most of them deal with grayscale images 
only [19]. Measures such as the vector root mean squared 
error (VRMSE) have been just developed to yield a 
separate evaluation of the aforementioned error compo- 
nents. However, they operate in the RGB [20] and YUV 
[21] non-uniform color spaces and compute the noise 
cancellation and the detail preservation in the luminance 
component of the image only.  

In this paper new tools for performance evaluation of 
impulse noise removal filters for color images are pre- 
sented. The approach is based on the classification of 
color errors into different components that separately 
consider the inaccuracy in cancelling noise pulses and 
the distortion affecting originally noise-free pixels. 
Unlike our previous techniques, the proposed method 
operates in the CIE Luv color space. Furthermore, it per- 
forms a novel classification of filtered pixels for a deeper 
analysis of the filtering distortion. The rest of this paper 
is organized as follows. Section 2 focuses on the limita- 
tions of current approaches, Section 3 describes the pro-
posed method, Section 4 discusses the results of many 
computer simulations and, finally, Section 5 reports the 
conclusions.  

2. Limitations of Current Approaches 

As mentioned above, MSE and MAE cannot yield very 
accurate measurements of the noise cancellation and de- 
tail preservation given by a filter. As an example, Figure 
1 shows portions of two processed images with different 
properties in terms of noise cancellation and detail pres- 

ervation but having the same MSE and the same MAE 
with respect to the original picture. To obtain this result, 
we considered a 512 × 512 version of the 24-bit color 
image “Parrots” and two filters with different window 
sizes, such as the 5-point and the 5 × 5 vector median 
filters [1]. We generated the noisy input picture as fol- 
lows. We considered versions of the “Parrots” image 
corrupted by different densities of noisy pixels, i.e. pixels 
where each channel component is incremented (or dec- 
remented) by a fixed value. We searched for the noise 
density p and the noise amplitude d such that these me- 
dians yield filtered images with the same RMSE and the 
same MAE. A satisfactory result was obtained by choos- 
ing p = 39% and d = 37. Clearly, the 5 × 5 operator 
(Figure 1(b)) is more effective than the 5-point filter 
(Figure 1(a)) in removing noise at the price of a worse 
detail blur, but these very different features are not ap- 
parent from RMSE and MAE measurements that yield 
RMSE = 8.8 and MAE = 3.6 for both filtered images.  

A similar situation occurs when scalar indexes that 
follow human perception are adopted for this specific 
purpose. As aforementioned, few metrics of this kind have 
been developed to address color images. Just as an ex- 
ample, let us briefly consider the application of the color 
quality index CQI [22]. Portions of filtered images having 
the same score (CQI = 0.7661) are depicted in Figures 2(a) 
(5-point vector median) and (b) (5 × 5 vector median). It 
is apparent that different mixtures of residual noise and 
detail blur can produce the same loss of perceived image 
quality and thus lead to the same score.  

3. The Proposed Tools 

Formally, let         T
, ,R G Bx x x   x c c c c  be the vec- 

tor (in the RGB color space) representing the pixel at 
spatial position  1 2,c cc

     T
, ,y y y

 in the noisy image. Let  
   R G B    be the corresponding 

pixel in the filtered picture and  
y c

T

c c c

       , ,R G Br r r   r c c c c  be the RGB pixel at spa-  
 

 
(a)                          (b) 

Figure 1. Portions of filtered images showing very different 
combinations of noise cancellation and detail-preservation 
but having the same MSE and the same MAE with respect 
to the original picture. 
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(a)                          (b) 

Figure 2. Portions of filtered images showing different com- 
binations of noise cancellation and detail-preservation but 
having the same value of CQI with respect to the original 
picture. 
 
tial position c in the original noise-free image. Thus, let 
us define two subsets of pixel coordinates A and B, as 
follows:  

   A  c x c r c               (1) 

   B  c x c r c               (2) 

It can be easily seen that the subset A includes the spa- 
tial positions of noise pulses (i.e. the locations of pixels 
that changed values for effect of the noise), whereas B 
yields the set of coordinates of uncorrupted pixels possi- 
bly affected by distortion caused by the filtering. Now, 
let  y c  and  r c  respectively represent the filtered 
and the original noise-free pixel in the Luv color space 
[1]:  

        T
, ,L u vy y vy c c c y c          (3) 

        T
, ,L u vr r r   r c c c c          (4) 

Thus, we shall define two new full-reference metrics, 
called unfiltered color noise (UCN) and total color dis- 
tortion (TCD), as follows:  

 

        2 2
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L u v
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r r r


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


 




c

c

c

c c c
2

    (5) 

 
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
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


 




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    (6) 

where  is the color difference (or error) evaluated 
in the Luv perceptually uniform color space:  

  c

 

             

Since the UCN evaluates the errors in restoring pixels 
corrupted by noise pulses, it measures the noise cancel- 
lation ability of the filter. On the contrary, the TCD 
computes the errors that affect the originally uncorrupted 
pixels, so it measures the data preservation capability of 
the filter.  

A deeper analysis can be performed if more data are 
available, such as the picture that is produced when the 
original noise-free image is filtered adopting the same 
parameter settings. Let  
briefly denote the pixel at spatial position 

        T
, ,R G Bs s s   s c c c c

 1 2,c cc  in 
this filtered picture. Now, let us consider the pixel subset 
B1 where the distortion does not depend upon the noise 
(basic distortion):  

         1 ,B   c x c r c y c s c       (8) 

Conversely, let B2 denote the pixel subset where the 
distortion is influenced by the presence of noise pulses 
(additional distortion).  

         2 ,B   c x c r c y c s c       (9) 

As shown in the next section, a useful index for further 
characterizing the filtering behavior is the additional to 
total distortion ratio (ATDR), that is defined as follows:  

 

   
2

1 2

B

B B

ATDR


 




  



 
c

c c

c

c c
         (10) 

4. Results and Discussion 

In order to assess the performance of the proposed tools, 
we performed many computer simulations based on pic- 
tures of the well-known Kodak test set [23]. Four images 
from this set are considered in the following experiments. 
They are shown in Figure 3. All of these pictures are 
24-bit color images whose size is 512-by-512 pixels.  

4.1. Color Preservation Tests 

2 2

L L u u v vy r y r y r



     

c

c c c c c c
2

(7) 

In this first experiment (color preservation test) we fo- 
cused on the sensitivity of TCD and MAE to this kind of 
filtering distortion. We considered the images corrupted 
by different amounts of impulse noise and we exploited 
the different behavior of the 5× 5 scalar (SMF) and vec- 
tor (VMF) median filters. It is known that the application 
of scalar filters on each channel separately can destroy 
the correlation between the color components of natural 
images thus producing color artifacts in the filtered data. 
For this reason, a more appropriate approach is vector 
filtering that treats color pictures as vector fields [1,2]. 
The corresponding TCD and MAE values are listed in 
Tables 1-4. The color artifacts given by the SMF are 
typically large, those yielded by the VMF are signifi-  
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(a)                         (b) 

 
(c)                         (d) 

Figure 3. Test images used in the experiments: (a) Parrots; 
(b) Girl; (c) Houses; (d) Lighthouse. 
 
Table 1. TCD and MAE sensitivities to color artifacts given 
by 5 × 5 SMF and VMF filters (“Parrots” corrupted by 
impulse noise with d = 100 and noise density p ranging from 
10% to 30%).  

Noise density p 10% 15% 20% 25% 30% 

TCDSM ×102 3.76 3.96 4.19 4.41 4.69 

TCDVM ×102 3.19 3.24 3.31 3.37 3.47 

MAESM 3.41 3.50 3.60 3.69 3.83 

MAEVM 3.36 3.43 3.51 3.59 3.72 

∆TCD % 17.7% 22.2% 26.5% 30.8% 35.3%

∆MAE % 1.4% 1.8% 2.3% 2.8% 3.2% 

 
Table 2. TCD and MAE sensitivities to color artifacts given 
by 5 × 5 SMF and VMF filters (“Girl” corrupted by impulse 
noise with d = 100 and noise density p ranging from 10% to 
30%). 

Noise density p 10% 15% 20% 25% 30% 

TCDSM ×102 5.24 5.50 5.74 6.00 6.38 

TCDVM ×102 4.66 4.73 4.80 4.87 4.96 

MAESM 4.01 4.11 4.20 4.29 4.42 

MAEVM 3.96 4.04 4.12 4.19 4.29 

∆TCD % 12.4% 16.3% 19.6% 23.2% 28.6%

∆MAE % 1.3% 1.7% 1.9% 2.4% 3.0% 

Table 3. TCD and MAE sensitivities to color artifacts given 
by 5 × 5 SMF and VMF filters (“Houses” corrupted by im- 
pulse noise with d = 100 and noise density p ranging from 
10% to 30%). 

Noise density p 10% 15% 20% 25% 30% 

TCDSM ×102 13.28 14.21 15.21 16.27 17.34 

TCDVM ×102 11.45 11.56 11.68 11.83 11.92 

MAESM 13.70 14.00 14.31 14.69 15.12 

MAEVM 13.55 13.73 13.93 14.18 14.50 

∆TCD % 16.0% 22.9% 30.2% 39.3% 45.5%

∆MAE % 1.1% 1.9% 2.7% 3.6% 4.3% 

 
Table 4. TCD and MAE sensitivities to color artifacts given 
by 5 × 5 SMF and VMF filters (“Lighthouse” corrupted by 
impulse noise with d = 100 and noise density p ranging from 
10% to 30%).  

Noise density p 10% 15% 20% 25% 30% 

TCDSM ×102 7.91 8.27 8.73 9.14 9.73 

TCDVM ×102 7.03 7.06 7.15 7.19 7.24 

MAESM 7.36 7.46 7.58 7.72 7.88 

MAEVM 7.31 7.38 7.47 7.56 7.66 

∆TCD % 12.4% 17.1% 22.1% 27.1% 34.4%

∆MAE % 0.64% 1.1% 1.5% 2.1% 2.9% 

 
cantly smaller (almost negligible), whereas both filters 
produce similar distortion in terms of detail blur. Thus, a 
simple way to estimate the sensitivity of a given measure 
G to this kind of distortion is to evaluate the (relative) 
difference  SM VM VMG G G G   , where GSM and GVM 
address scalar and vector median filtering, respectively.  

It can be seen that, in all the tests, the proposed TCD 
largely outperforms the MAE . A sam- 
ple of the processed data is reported in Figure 4 for vis- 
ual inspection. These data include a portion of the origi- 
nal noise-free image “Girl”, (Figure 4(a)), the corre- 
sponding data corrupted by impulse noise with density 
30% (Figure 4(b)), the result given by SMF filter (Fig- 
ure 4(c)) and the result yielded by the VMF operator 
(Figure 4(d)). Many color artifacts are apparent in Fig- 
ure 4(c), whereas they are negligible in Figure 4(d). The 
same amount of detail blur is perceivable in both images.  

 TCD MAE 

4.2. Detail Preservation Tests 

In the second group of experiments (detail preservation 
tests) we compared the abilities of TCD and MAE to 
measure the detail preservation. We considered vector 
filtering in order not to be deceived by color artifacts. We 
chose the sigma vector median filter (SVMF) [5] because  
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(a)                   (b) 

 
(c)                   (d) 

Figure 4. (a) Detail from the Girl image; (b) Noisy data; (c) 
Result of scalar filtering; (d) Result of vector filtering. 
 
this is a powerful technique that preserves the details for 
large values of the tuning parameter λ. On the contrary, 
the SVMF yields a growing smoothing action as λ de- 
creases. TCD and MAE evaluations are reported in Ta- 
bles 5-8.  

As a first example, let us focus on the data in Table 5. 
These data are graphically depicted in Figures 5 and 6. It 
can be observed that the TCD correctly characterizes the 
mentioned filtering behavior, whereas the MAE does not. 
Indeed, the maximum TCD is obtained for λ = 1 (mini- 
mum detail preservation) and the TCD decreases for lar- 
ger values of λ, as it should be (Figure 5). Conversely, 
very similar values of MAE are achieved for λ = 1 and λ 
= 10 (Figure 5). The reason for this erroneous behavior 
can be easily understood if we decompose the MAE into 
the subsets of pixel coordinates A and B. The wrong 
MAE component (subset A) is sensitive to the unfiltered 
noise, and it becomes very annoying as λ increases (Fig- 
ure 6). Similar results are shown in Tables 6-8 for dif- 
ferent test images and different amounts of impulse 
noise.  

A sample of the processed data is reported in Figure 7 
for visual inspection (enlarged detail of the “Houses” 
picture). Strong smoothing (causing detail blur) is ob- 
tained by choosing λ = 1 (Figure 7(c)), whereas weak 
smoothing (preserving details and noise as well) is 
achieved by λ = 10 (Figure 7(d)).  

4.3. Noise Cancellation Tests  

In the third group of experiments (noise cancellation 
tests) we compared the abilities of UCN and MSE to 
measure the noise removal. We corrupted the test images 
by superimposing different amounts of impulse noise and 
we considered the results yielded by the 5 × 5 SVMF.  

Table 5. TCD vs. MAE in measuring the detail preservation 
given by the 3 × 3 SVMF filter (“Parrots” corrupted by 
impulse noise with d = 200 and p = 10%).  

λ 
TCD 

(×102)
TCD 
(A) 

TCD  
(B) 

MAE 
MAE 
(A) 

MAE 
(B) 

1 0.682 0% 100% 1.05 31% 69% 

3 0.270 0% 100% 0.63 52% 48% 

5 0.121 0% 100% 0.52 75% 25% 

7 0.057 0% 100% 0.59 90% 10% 

10 0.020 0% 100% 1.03 98% 2% 

 
Table 6. TCD vs. MAE in measuring the detail preservation 
given by the 3 × 3 SVMF filter (“Girl” corrupted by im- 
pulse noise with d = 150 and p = 12%). 

λ 
TCD 

(×102)
TCD 
(A) 

TCD  
(B) 

MAE 
MAE 
(A) 

MAE 
(B) 

1 1.100 0% 100% 1.47 33% 67% 

3 0.425 0% 100% 0.90 56% 44% 

5 0.213 0% 100% 0.78 73% 27% 

7 0.108 0% 100% 0.86 87% 13% 

10 0.037 0% 100% 1.43 97% 3% 

 
Table 7. TCD vs. MAE in measuring the detail preservation 
given by the 3 × 3 SVMF filter (“Houses” corrupted by im- 
pulse noise with d = 150 and p = 16%). 

λ 
TCD 

(×102)
TCD 
(A) 

TCD  
(B) 

MAE 
MAE 
(A) 

MAE 
(B) 

1 3.730 0% 100% 5.91 33% 67% 

3 1.387 0% 100% 3.61 58% 42% 

5 0.547 0% 100% 3.22 81% 19% 

7 0.205 0% 100% 3.88 94% 6% 

10 0.061 0% 100% 5.96 99% 1% 

 
Table 8. TCD vs. MAE in measuring the detail preservation 
given by the 3 × 3 SVMF filter (“Lighthouse” corrupted by 
impulse noise with d = 150 and p = 15%).  

λ 
TCD 

(×102)
TCD 
(A) 

TCD  
(B) 

MAE 
MAE 
(A) 

MAE 
(B) 

1 2.169 0% 100% 3.16 33% 67% 

3 0.846 0% 100% 1.94 56% 44% 

5 0.364 0% 100% 1.67 78% 22% 

7 0.162 0% 100% 1.97 92% 8% 

10 0.049 0% 100% 3.35 98% 2% 
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Figure 5. TCD vs. MAE in measuring the detail preserva- 
tion given by the 3 × 3 SVMF filter. 
 

 

Figure 6. Right and wrong MAE components (3 × 3 SVMF 
filter). 
 

 
(a)                   (b) 

 
(c)                   (d) 

Figure 7. (a) Detail from the “Houses” image; (b) Noisy data; 
(c) Filtered with λ = 1 (TCD = 3.730 × 10−2, MAE = 5.91); (d) 
Filtered with λ = 10 (TCD = 0.061 × 10−2, MAE = 5.96). 

The corresponding UCN and MSE evaluations are listed 
in Tables 9-12. It can be seen that the UCN correctly 
characterizes the aforementioned filtering behavior, 
whereas the MSE cannot.  

As an example, let us focus on the data reported in 
Table 9. These data are graphically depicted in Figures 
8 and 9. The minimum UCN is obtained for λ = 2 (maxi- 
mum noise cancellation) and it increases for larger values 
of λ, as it should be. On the contrary, very similar values 
of MSE are achieved for λ = 2 and λ = 18. The wrong 
MSE component (subset B) is sensitive to detail blur, and 
it makes the result even more erroneous as λ decreases. 
Similar results are listed in Tables 10-12. A sample of  
 
Table 9. UCN vs. MSE in measuring the noise cancellation 
given by the 5 × 5 SVMF filter (“Parrots” corrupted by 
impulse noise with d = 200 and p = 25%). 

λ 
UCN 
(×102)

UCN 
(A) 

UCN  
(B) 

MSE 
MSE 
(A) 

MSE 
(B) 

2 4.132 100% 0% 72.4 32% 68% 

6 4.144 100% 0% 58.8 40% 60% 

10 4.219 100% 0% 51.7 48% 52% 

14 4.629 100% 0% 55.9 60% 40% 

18 5.583 100% 0% 73.0 72% 28% 

 
Table 10. UCN vs. MSE in measuring the noise cancellation 
given by the 5 × 5 SVMF filter (“Girl” corrupted by im- 
pulse noise with d = 200 and p = 25%). 

λ 
UCN 
(×102)

UCN 
(A) 

UCN  
(B) 

MSE 
MSE 
(A) 

MSE 
(B) 

2 5.782 100% 0% 42.0 36% 64% 

6 5.785 100% 0% 31.7 47% 53% 

10 5.819 100% 0% 28.9 48% 52% 

14 6.037 100% 0% 30.4 54% 46% 

18 6.988 100% 0% 42.8 73% 27% 

 
Table 11. UCN vs. MSE in measuring the noise cancellation 
given by the 5 × 5 SVMF filter (“Houses” corrupted by im- 
pulse noise with d = 250 and p = 25%). 

λ 
UCN 
(×102)

UCN 
(A) 

UCN  
(B) 

MSE 
MSE 
(A) 

MSE 
(B) 

2 13.824 100% 0% 570.4 30% 70% 

6 13.854 100% 0% 467.8 37% 63% 

10 14.133 100% 0% 404.7 45% 55% 

14 15.335 100% 0% 395.4 54% 46% 

18 18.398 100% 0% 449.9 64% 36% 

22 24.414 100% 0% 580.7 74% 26% 
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Table 12. UCN vs. MSE in measuring the noise cancellation 
given by the 5 × 5 SVMF filter (“Lighthouse” corrupted by 
impulse noise with d = 250 and p = 25%). 

λ 
UCN  
(×102) 

UCN  
(A) 

UCN 
(B) 

MSE 
MSE 
(A) 

MSE 
(B) 

2 8.281 100% 0% 199.4 31% 69% 

6 8.308 100% 0% 162.7 38% 62% 

10 8.443 100% 0% 141.7 45% 55% 

14 8.795 100% 0% 136.1 53% 47% 

18 9.804 100% 0% 149.9 62% 38% 

22 12.528 100% 0% 200.1 73% 27% 

 

 

Figure 8. UCN vs. RMSE in measuring the noise cancella- 
tion given by the 5 × 5 SVMF filter. 
 

 

Figure 9. Right and wrong MSE components (5 × 5 SVMF 
filter). 
 
the processed data is reported in Figure 10 for visual 
inspection (enlarged detail of the “Lighthouse” picture). 
The proposed UCN clearly distinguishes where the noise 

cancellation is better (Figure 10(c), λ = 2) and where it is 
worse (Figure 10(d), λ = 22), whereas the MSE cannot 
(MSE  200 for both, see Table 12).  

4.4. ATDR Evaluation and Error Maps 

Finally, let us show how the novel pixel classification 
can improve our analysis of scalar and vector approaches, 
which is a key issue in color filtering. A list of ATDR 
evaluations is reported in Table 13. Larger values char- 
acterize the scalar medians with respect to the vector 
operators. It can be seen that the sensitivity of the ATDR 
to the filtering behavior is significantly higher than in 
any previous method (see Table 1).  

The different behavior becomes even more apparent if 
we provide a graphical representation of the errors   c  
in the three subsets of pixel coordinates A, B1 and B2. As 
an example, let us consider the “Parrots” image corrupted 
by impulse noise with p = 10% and d = 100 (Figure 
11(a)). The result given by the 5 × 5 SMF is shown in 
Figure 11(b). As expected, some color distortion is per- 
ceivable in the filtered picture. The better result given by 
the 5 × 5 VMF is depicted in Figure 11(c). Error maps 
showing where the filters give inaccuracy in removing  
 

 
(a)                   (b) 

 
(c)                   (d) 

Figure 10. (a) detail from the “Lighthouse” image; (b) Noisy 
data; (c) Filtered with λ = 2 (UCN = 8.281 × 10−2, MSE = 
199.4); (d) Filtered with λ = 22 (UCN = 12.528 × 10−2, MSE 
= 200.1). 
 
Table 13. ATDR values given by 5 × 5 SMF and VMF filters 
(“Parrots” corrupted by impulse noise with d = 100 and p 
ranging from 10% to 30%). 

p 10% 15% 20% 25% 30% 

ATDRSM 0.70 0.80 0.86 0.89 0.92 

ATDRVM 0.36 0.46 0.53 0.59 0.65 
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(a)                      (b)                      (c)                     (d)                       (e) 

 
(f)                      (g)                      (h)                     (i)                       (j) 

 
(k)                      (l)                      (m)                     (n)                       (o) 

Figure 11. Noisy input image, result yielded by the 5 × 5 scalar median filter (SMF), result yielded by the 5 × 5 vector median 
filter (VMF) and corresponding error maps evaluated in the CIE Luv space for different densities of impulse noise: p = 10% 
(a)-(e), p = 1% (f)-(j), p = 50% (k)-(o). 
 
noise (green), basic distortion (blue) and additional dis- 
tortion (red) are reported in Figures 11(d) (SMF) and (e) 
(VMF).  

This effect also occurs for lower and higher densities 
of noise pulses. Figures 11(f)-(j) address the case p  1%, 
where the basic distortion is the main effect, as denoted 
by the large number of blue pixels. On the contrary, 
Figures 11(k)-(o) consider the case p = 50%, where the 
errors in noise removal increase, especially for the SMF 
(green pixels).  

A deeper analysis of the proposed method is a subject 
of present investigation. It suffices here to observe that 
the effectiveness in measuring color artifacts just resides 
in the adoption of a perceptually uniform color space, 
such as the CIE Luv color system. On the other hand, 
vector filtering can satisfactorily preserve the correlation 
between the color components of a natural image, 
whereas scalar filtering cannot. The results in Figure 11 
are in good agreement with these theoretical considera- 
tions.  

Finally, we can observe that, in all the experiments, we 
adopted a two-parameter model of noise where density 
and amplitude of noise pulses can be chosen to highlight 
the different behavior of classical and new metrics. The 
most apparent failure of a given quality index likely oc- 
curs when it yields the same value for different combina- 
tions of noise cancellation and image preservation. For 
this reason, we searched for this kind of result in many of 
the reported experiments, by appropriately choosing the 

mentioned noise parameters. Clearly, different amounts 
of noise could also be used to highlight the limitations of 
MAE and MSE. Their decomposition into the subsets of 
pixel coordinates A and B offers a simple and effective 
way to measure their erroneous behavior in any case.  

5. Conclusions 

Validation of impulse noise removal filters for color im- 
ages requires full-reference metrics able to yield separate 
evaluations of noise cancellation and image preservation. 
In this respect, the contribution of this paper is twofold: 
 to clearly show (and measure) the inaccuracies and 

limitations of classical metrics; 
 to present a simple and new approach based on pixel 

classification. 
Computer simulations have shown that the proposed 

approach, although simple, offers the following advan- 
tages:  

1) only two measures (TCD and UCN) suffice;  
2) TCD and UCN are much more accurate than the 

mentioned classical metrics;  
3) furthermore, the proposed method can offer a 

deeper analysis of the filtering distortion (ATDR), at the 
price of one more processed image.  

4) finally, the approach can easily provide a compre- 
hensive error map (filter’s signature) showing the spatial 
location of different kinds of filtering errors, whereas 
classical metrics cannot.   
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