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ABSTRACT 

Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, vari- 
ous algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image de- 
noising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive 
White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those 
based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear threshold- 
ing techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non- 
adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for 
different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of de- 
noising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean 
Square Error (MSE) for various thresholding techniques. 
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1. Introduction 

In many applications, image denoising is used to produce 
good estimates of the original image from noisy observa- 
tions. The restored image should contain less noise than 
the observations while still keeping sharp transitions (i.e. 
edges) [1]. Wavelet transform, due to its excellent local- 
ization property, has rapidly become an indispensable 
signal and image processing tool for a variety of applica- 
tions, including compression and de-noising. Wavelet 
denoising attempts to remove the noise present in the 
signal while preserving the signal characteristics, regard- 
less of its frequency content.  

Wavelet thresholding [2-5] (first proposed by Donoho) 
is a signal estimation technique that exploits the capabili- 
ties of wavelet transform for signal denoising. In our 
project, the wavelet thresholding techniques are applied 
to an image. It removes noise by killing coefficients that 
are insignificant relative to some threshold, and turns out 
to be simple and effective, depends heavily on the choice 
of a thresholding parameter and the choice of this thresh- 
old determines, to a great extent the efficacy of denoising. 
Figure 1 shows the block diagram of denoising using 
Wavelet transformation and thresholding techniques. 

Denoising Procedure: 

The procedure to denoise an image is given as follows: 
De-noised image = W−1 [T{W (Original Image + 

Noise)}] 
Step 1: Apply forward wavelet transform to a noisy 

image to get decomposed image. 
Step 2: Apply non-linear thresholding to decomposed 

image to remove noise. 
Step 3: Apply inverse wavelet transform to thresh- 

olded image to get a denoised image in spatial domain. 

2. Theoretical Aspects of Image Denoising 
Techniques 

2.1. Discrete Wavelet Transform (DWT) [6-8] 

The DWT of an image x is calculated by passing it 
through a series of filters. First the samples are passed 
through a low pass filter with impulse response g result- 
ing in a convolution of the two:  

The image is also decomposed simultaneously using a 
high-pass filter h. The outputs give the detail coefficients 
(from the high-pass filter) and approximation coefficients 
(from the low-pass filter). It is important that the two  
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Figure 1. Block diagram of denoising using wavelet trans-
formation and thresholding techniques. 
 
filters are related to each other and they are known as a 
quadrature mirror filter. However, since half the frequen- 
cies of the signal have now been removed, half the sam- 
ples can be discarded according to Nyquist’s rule. The 
filter outputs are then down sampled by 2: [9,10] 
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This decomposition has halved the time resolution, 
since only half of each filter output characterizes the 
signal. However, each output has half the frequency band 
of the input, so the frequency resolution has been dou- 
bled. This is in keeping with the Heisenberg uncertainty 
principle. 

With the down sampling operator  the above sum- 
mation can be written more concisely. The Discrete 
Wavelet Transform provides sufficient information both 
for analysis and reconstruction of the original signal, 
with a reduction in the computation time. 

Sub-Band Coding 
Sub-band coding is a method for calculating the Discrete 
Wavelet Transform. The whole sub-band process con- 
sists of a filter bank, and filters of different cut-off fre- 
quencies are used to analyze the signal at different scales.  

The procedure starts by passing the signal through a 
half band high-pass filter and a half band low-pass filter. 
A half band low-pass filter eliminates exactly half the 
frequencies from the low end of the frequency scale. For 
example, if a signal has a maximum of 1000 Hz compo- 
nent, then half band low-pass filter removes all the fre- 
quencies above 500 Hz. The filtered signal is then down 
sampled, meaning some sample of the signal is removed. 
Then the resultant signal from the down sampled half 
band low-pass filter is then processed in the same way 
again. This process will produce sets of wavelet trans- 
form coefficients that can be used to reconstruct the sig- 
nal. An example of this process is illustrated in Figure 2. 
The resolution of the signal is changed by filtering op- 
erations, and the scale is changed by down sampling op- 
erations. Down sampling a signal corresponds to reduc- 
ing the sampling rate, which is equivalent to removing 
some of the samples of the signal. 

Where, cAx is the approximation coefficients at de- 
composition level x, cDx is the detail coefficients at de- 
composition level x. S is the original signal. From Figure 
2, you can see the original signal is broken down into 
different levels of decomposition. In the above case, it is 
a 3-level decomposition. Every time the newly scaled 
wavelet is applied to the signal, the information captured 
by the coefficients remains stored at that level. Thus the 
remaining information contains the higher frequencies of 
the signal, if the scaling factor decreases. 

2.2. Stationary Wavelet Transform 

The Stationary wavelet transform (SWT) is similar to the 
DWT except the signal is never sub-sampled and instead 
the filters are up sampled at each level of decomposition. 

Each level’s filters are up-sampled versions of the pre- 
vious as shown in Figure 3. 

Copyright © 2013 SciRes.                                                                                 JSIP 



Denoising of an Image Using Discrete Stationary Wavelet Transform and Various Thresholding Techniques 35

 

 

Figure 2. Wavelet decomposition tree. 
 

 

 

Figure 3. SWT filters. 
 

The SWT is an inherent redundant scheme, as each set 
of coefficients contains the same number of samples as the 
input. So for a decomposition of N levels, there is a re- 
dundancy of 2N. 

Figure 4 shows the decomposition of Discrete and 
Stationary wavelet transform. The Discrete Wavelet 
Transform (DWT) [11,12] is the simplest way to imple- 
ment MRA. It necessitates a decimation by a factor 2N, 
where N stands for the level of decomposition, of the 
transformed signal at each stage of the decomposition. As 
a result, DWT is not translation invariant which leads to 
block artifacts and aliasing during the fusion process 
between the wavelet coefficients. For this reason, we use 
the Stationary Wavelet Transform (SWT) (Holschneider, 
1988). For the SWT scheme the output signals at each 
stage are redundant because there is no signal down- 
sampling; insertion of zeros between taps of the filters are 
used instead of decimation. Figure 5 shows the decom- 
position of an image using SWT at level 1.  

3. Thresholding Techniques 

Thresholding [13,14] is a simple non-linear technique, 
which operates on one wavelet coefficient at a time. In its 
most basic form, each coefficient which is smaller than 
threshold, set to zero, otherwise, it is kept or modified. 
The small co-efficient are dominated by noise, while 
coefficient with large absolute value carry more signal 
information than noise. Replacing noise co-efficient 
(small coefficients below a certain threshold value) by 
zero and an inverse wavelet transform may lead to a re- 
construction that has lesser noise. This thresholding idea 
is based on the following: 

1) The de-correlating property of wavelet transform 
creates a sparse signal. Most untouched coefficient is zero 
or close to zero. 

2) Noise is spread out equally along all co-efficient. 

 

Figure 4. Decomposition of a 1-D signal using DWT (top) 
and SWT (bottom). 
 

 

Figure 5. Decomposition using SWT at level 1. 
 
3) The noise level is not too high so that one can dis-

tinguish the signal wavelet coefficients from binary ones. 
This method is an effective and thresholding is simple 

and efficient method for noise reduction.  

3.1. Hard Thresholding 

One of the most attractive features of wavelet threshold- 
ing is that, for the type of random noise frequently en- 
countered, in signal transmission, it is possible to auto- 
matically choose a threshold for denosing without any 
prior knowledge of the signal. 

By choosing a threshold that is significantly large, and 
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proach, a method known as soft thresholding can be cre- 
ated as shown in Figure 8. 

multiplying with the standard deviation of the random 
noise, it is possible to remove most of the noise by 
thresholding the wavelets transform coefficients. This 
process is known as hard thresholding.   
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where, T is the threshold value. where,  is the threshold value. 
From Figure 9, the original image had more noise in  From Figure 6, we can see that hard thresholding can 

create discontinuities, and thus greatly exaggerates small 
differences in the transform value whose magnitudes are 
near the threshold value . If the value is only slightly less 
than , then this value is set equal to zero, while a value 
whose magnitude is only slightly greater than  is left 
unchanged. Therefore, hard thresholding is not suitable 
for most noise removal. Figure 7 shows Hard threshold- 
ing uing dB5 wavelet. 

 

 3.2. Soft Thresholding 

With a slight modification to the hard thresholding ap-  Figure 6. Illustration of hard thresholding,  = 0.4. 

 

 

Figure 7. Hard thresholding using dB5 wavelet. 
 

 

Figure 8. Illustration of Soft thresholding, with threshold  = 0.4. 
 

 

 

Figure 9. Soft thresholding using db5 wavelet.  
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the bottom half compared to the top half. Since soft 
thresholding is a global operation, in the sense the entire 
image is used for the denosing process, it cannot concen- 
trate on just the lower half of the image. But, if the de- 
noised image has to be processed again, then the top half 
of the image would be over processed, and defects, such 
as blurring, can be introduced. Some original details of the 
image is removed along with the noise. This is because the 
noise obscured most of the small magnitude values that 
result from the original signal. Consequently, when 
thresholding is applied, it removes many of the transform 
values of the original signal, which are needed for accu- 
rate approximation. To overcome this problem wavelet 
shrinkages are used. 

3.3. Shrinkages 

3.3.1. VISU Shrink 
 VisuShrink is thresholding by applying the universal 

threshold proposed by Donoho and Johnstone.  
 This threshold is given by  

2 log M  

where σ is the noise variance and M is the number of 
pixels in the image.  

 For denoising images, VisuShrink is found to yield an 
overly smoothed estimate. 

3.3.2. SURE Shrink 
 SURE Shrink [15] is a thresholding applied to sub- 

band adaptively. 
 It is based on Stein’s Unbiased Risk Estimator (SURE), 

a method for estimating the loss in an unbiased fash- 
ion. 

 Let wavelet coefficients in the jth sub-band be {Xi: i = 
1, ···, d} 

 For the soft threshold estimator 

 ˆ
i t iX X  

we have 

     2

1

, 2 # : min
d

i i
i

SURE t X d i X t X t


    ,  

 Select threshold tS by  

 arg min ,St SURE t X  

3.3.3. BAYES Shrink 
 Bayes Shrink is an adaptive data-driven threshold for 

image de-noising via wavelet soft-thresholding.  
 We assume generalized Gaussian distribution (GGD) 

for the wavelet coefficients in each detail sub-band. 
 We then try to find the threshold T which minimizes 

the Bayesian Risk.  

3.4. Experimental Results 
 

GLOBAL HARD THRESHOLD 

Wavelet DB5 GH L1 HAAR GH L1 COIF5 GH L1 SYM4 GH L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 

MSE 0.13 2.14E−13 0.13 2.60E−16 0.12 6.70E−10 0.11 4.88E−14 

SNR 16.37 252.36 15.95 310.88 17.29 183.48 17.01 310.95 

GLOBAL SOFT THRESHOLD 

Wavelet DB5 GS L1 HAAR GS L1 COIF5 GS L1 SYM4 GS L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 

MSE 0.13 2.37E−13 0.12 2.85E−16 0.11 6.03E−10 0.11 4.77E−14 

SNR 16.37 252.49 16.86 310.88 17.48 184.39 17.01 310.95 

VISU SOFT THRESHOLD 

Wavelet DB5 VS L1 HAAR VS L1 COIF5 VS L1 SYM4 VS L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 

MSE 0.12 2.36E−13 0.12 2.85E−16 0.12 6.20E−10 0.13 4.80E−14 

SNR 17.05 252.54 15.95 310.88 17.19 184.15 16.67 310.95 

VISU HARD THRESHOLD 

Wavelet DB5 VH L1 HAAR VH L1 COIF5 VH L1 SYM4 VH L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 
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MSE 0.12 2.37E−13 0.13 2.83E−16 0.11 6.01E−10 0.12 4.80E−14 

SNR 16.87 252.48 16.45 310.95 17.61 184.42 16.67 310.95 

BAYES SHRINK 

Wavelet DB5 BS L1 HAAR BS L1 COIF5 BS L1 SYM4 BS L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 

MSE 0.11 5.60E−13 0.11 2.86E−16 0.12 6.04E−10 0.12 4.73E−14 

SNR 17.37 245.04 17.37 310.87 17.28 184.38 16.67 310.95 

SURE SHRINK HARD 

Wavelet DB5 SH L1 HAAR SH L1 COIF5 SH L1 SYM4 SH L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 

MSE 0.13 2.41E−13 0.12 2.84E−16 0.11 2.37E−14 0.12 4.59E−14 

SNR 16.37 252.36 17.01 310.92 17.82 184.6 16.82 266.76 

SURE SHRINK SOFT 

Wavelet DB5 SS L1 HAAR SS L1 COIF5 SS L1 SYM4 SS L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 

MSE 0.12 2.36E−13 0.11 2.83E−16 0.12 6.18E−10 0.13 4.51E−14 

SNR 17.32 252.53 81 310.95 17.82 184.6 16.48 267.15 

NORMAL SHRINK 

Wavelet DB5 NS L1 HAAR NS L1 COIF5 NS L1 SYM4 NS L1 

Threshold B.T A.T B.T A.T B.T A.T B.T A.T 

MSE 0.13 1.05E−12 0.12 8.44E−16 0.12 2.13E−09 0.11 1.64E−13 

SNR 15.93 239.62 16.67 301.48 17.28 173.45 17.37 255.72 

Where DB5: Daubechies Wavelet, HAAR: Haar Wavelet, COIF5: Coiflet, SYM4: Symlet, GH L1: Global Hard Level 1, GS L1: Global Soft Level 1, VS LI: 
Visu Soft Level 1, VH L1: Visu Hard Level 1, BS L1: Bayes Soft Level 1, SH L1: SURE Hard Level 1, SS L1: SURE Soft Level 1, NS L1: Normal Soft Level 1. 

 
 

 

Figure 10. Graph for Haar at level 1 for SNR before & after thresholding. 
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Figure 11. Graph for DB5 at level 1 for SNR before and after thresholding. 
 

 

  

Figure 12. Graph for coiflet 5 at level 1 for SNR before & threshold 
 

Comparison of SNR before and after thresholding for 
various wavelets at level 1 is shown in Figures 10-13. 
The Figure 14 shows image outputs for dB5 at level 1 
for global soft thresholding. 

3.5. Conclusion 

DWT is translation varianopusion process between the 
wavelet co-efficient, where as DSWT is Translation In- 
variant. In DSWT artifacts and aliasing are less than  
compared to DWT. This is the reason, why DSWT is 
preferred over DWT. We have applied Additive White 
Gaussian Noise to an original image (kid), then DSWT is 
applied to get decomposed wavelet co-efficients to which 
various threshold techniques are applied for different 
wavelets. Inverse DSWT is applied to get reconstructed 

denoised image. In this paper, we have compared differ- 
ent wavelets such as Daubachies, Haar, Coiflet, Symlet 
with various threshold techniques such as default global 
hard and soft, VISU shrink soft and hard, Bayes shrink 
soft and Hard, SURE shrink soft and hard and Normal 
shrink and measured the parameters such as Mean 
Square Error (MSE) and Signal-to-Noise Ratio (SNR). 
After comparison, it is found that MSE for HAAR global 
hard wavelet threshold is the least among all. SNR for 
HAAR SURE shrink soft level 1 is the maximum and the 
best among all. 

3.6. Future Scope 

Nonetheless, there is always room for improvement. 
Multiwavelets are relatively a new subject of study. Most   
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Figure 13. Graph for symlet 4 at level 1 for SNR before & after thresholding. 
 

 

 

Figure 14. Image outputs for dB5 at level 1 for global soft thresholding. 
 
current filters available have two, three or fourth order of 
approximation. Future construction methods may add 
even higher order of approximation, while preserving the 
desirable features of current methods. It most likely re- 
sult in multi-filters that perform even better in image de- 
noising & compression applications. Moreover the mul- 
tiwavelet systems available presently have the multiscal- 
ing and multiwavelet coefficients which are 2 × 2 matri- 
ces. There is a possibility that in future many more mul- 
tiwavelet systems might be developed with matrix coef- 
ficients with higher order, which could provide even be- 
ter results in the field of image denoising & compression. 
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