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ABSTRACT 

The work presented in this paper concerns with analysis and synthesis of the two-dimensional Infinite Impulse Re- 
sponse (IIR) filters based on model order reduction. The synthesis is performed with two methods, the Prony’s method 
(Prony modified) and Iterative method, in the spatial domain, and with the method of Semi-Definite iterative Program- 
ming (SDP), in the frequency domain. After synthesis, we make an order reduction of the filter model by the Quasi- 
Gramians method. 
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1. Introduction 

The fields of two-dimensional digital signal processing 
and digital image processing have maintained tremen- 
dous vitality over the past four decades and there is a 
clear indication that this trend will continue. Advances in 
hardware technology provide capabilities in signal proc- 
essing chips and microprocessors which were previously 
associated with mainframe computers. These advances 
allow sophisticated signal and image processing algo- 
rithms to be implemented in real time at a substantially 
reduced cost. New applications continue to be found and 
existing applications continue to expand in such diverse 
areas as communications, consumer electronics, medi- 
cine, defense, robotics, and geophysics. 

At a conceptual level, there is a great deal of similarity 
between one-dimensional signal processing and two- 
dimensional signal processing. In one-dimensional signal 
processing, the concepts discussed are filtering, Fourier 
transform, discrete Fourier transform, fast Fourier trans- 
form algorithms, and so on. In two-dimensional signal 
processing, we again are concerned with the same con- 
cepts. 

At a more detailed level, however, considerable dif- 
ferences exist between one-dimensional and two-dimen- 
sional signal processing. For example, one major differ- 
ence is the amount of data involved in typical applica- 
tions. In speech processing, we have 10.000 data points 
to process in a second. However, in video processing, we 
would have 7.5 million data points to process per second. 
Another example is the absence of the fundamental 
theorem of algebra for two-dimensional polynomials. 

One-dimensional polynomials can be factored as a prod- 
uct of lower-order polynomials. An important structure 
for realizing a one-dimensional digital filter is the cas- 
cade structure. In this case, the z-transform of the digital 
filter’s impulse response is factored as a product of 
lower-order polynomials and the realizations of these 
lower-order factors are cascaded. The z-transform of a 
two-dimensional digital filters impulse response cannot, 
in general, be factored as a product of lower-order poly- 
nomials and the cascade structure therefore is not a gen- 
eral structure for a two-dimensional digital filter realiza- 
tion [1]. Another consequence of the nonfactorability of a 
two-dimensional polynomial is the difficulty associated 
with issues related to system stability. In a one-dimen- 
sional system, the pole locations can be determined eas- 
ily, and an unstable system can be stabilized without af- 
fecting the magnitude response by simple manipulation 
of pole locations. In a two-dimensional system, since 
poles are surfaces rather than points and there is no fun- 
damental theorem of algebra, it is extremely difficult to 
determine the pole locations [2]. 

The paper presented here is related particularly to the 
synthesis of the two-dimensional infinite impulse re- 
sponse filters using model order reduction. There are two 
main parts of the paper. In the first part, the synthesis is 
done, both in the spatial domain, with two methods, the 
Prony’s method (modified Prony) and Iterative method, 
and in the frequency domain, with iterative Semi- 
Definite Programming (SDP). In the second part of this 
paper, we make an order reduction of the synthesized 
(designed) filter using the Quasi-Gramians approach. 
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2. Designing 2D-IIR Filters 

An 2D-IIR filter with an arbitrary impulse response 
 cannot be realized since computing each out- 

put sample requires a too large number of arithmetic op- 
erations [1,2]. As a result, in addition to requiring 

 to be real and stable, we require  to 
have a rational z-transform corresponding to a recur- 
sively computable system. 

 1 2,h n n

 1 2,h n n



 



 1 2,h n n

2.1. The Design Problem 

The problem of IIR filter design is to determine a rational 
and stable function  1 2,H z z  with a wedge support 
output mask that meets a given design specification. In 
other words, we wish to determine a stable computational 
procedure that is recursively computable and meets a 
design specification. 

However, a given rational system function  1 2,H z z  
can lead to many different computational procedures [1]. 
To make the relationship unique, we will adopt a con- 
vention in expressing  1 2, H z z . Specifically, we will 
assume that a(0, 0) is always 1, so  1 2, H z z  will then 
be in the form 

 
 

 

 
   

1 2

1 2

1 2

1 2

1 2 1 2
,

1 2
1 2 1 2

, 0,0

,

,
1 ,

b

a

k k

k k R

k k

k k R

b k k z z

H z z
a k k z z

 



 

 




 

 
   (1) 

where Ra –(0, 0) represents the support region of  1 2,a k k  
without the origin (0, 0), and Rb represents the support 
region of .  1 2,b k k

The unique computational procedure corresponding to 
(1) is then given by 
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where the sequences  and  are the 
filter coefficients. 

 1 2,a k k  1 2,b k k

The first step in the IIR filter design is usually an ini- 
tial determination of Ra and Rb, the support regions of 

 and . If we determine the filter coef- 
ficients by attempting to approximate some desired im- 
pulse response  in the spatial domain, we will 
want to choose a  and b  such that  will 
have at least approximately the same support region as 

. 

 1 2,a k k

 1 2,dh n n

 1 2,b k k

 1 2,dh n n
R R  1 2,h n n

Another consideration is related to the filter specifica- 
tion parameters. In the low-pass filter design, for exam- 
ple, small p , s , (filter templates) and transition re- 
gion will generally require a larger number of filter coef- 
ficients. It is often difficult to determine the number of 
filter coefficients required to meet a given filter specifi- 

cation for a particular design algorithm, and an iterative 
procedure may become necessary [1]. 

One major difference between IIR and FIR filters is 
related to stability. A FIR filter is always stable as long 
as  1 2,h n n  is bounded (finite) for all , so sta- 
bility is never an issue. With an IIR filter, however, en- 
suring stability is a major task. One approach to design- 
ing a stable IIR filter is to impose a special structure on 

 1 2,n n 

 1 2,H z z such that testing the stability and stabilizing an 
unstable filter become relatively easy tasks. Such an ap- 
proach, however, tends to impose a severe constraint on 
the design algorithm or to highly restrict the class of fil- 
ters that can be designed [1]. For example, if  1 2,H z z  
has a separable denominator polynomial of the form 

   21 1 2A z A z , testing the stability and stabilizing an 
unstable  1 2,H z z  without affecting the magnitude 
response is a 1-D problem. However, the class of filters 
that can be designed with a separable denominator poly- 
nomial without a significant increase in the number of 
coefficients in the numerator polynomial of  1 2,H z z  
is restricted. An alternative approach is to design a filter 
without considering the stability issue, and then test the 
stability of the resulting filter and attempt to stabilize it if 
it proves unstable. However, testing stability and stabi- 
lizing an unstable filter are not easy problems. 

In the 1-D case, there are two standard approaches to 
designing IIR filters. One is to design the filter from an 
analog system function. And the other is to design di- 
rectly in the discrete domain. The first approach is typi- 
cally much simpler and more useful than the second: 
using an elliptic analog filter’s system function and a 
bilinear transformation. Unfortunately, this approach is 
not useful in the 2-D case. In the 1-D case, this approach 
exploits the availability of many simple methods to de- 
sign 1-D analog filters. Such simple methods do not exist 
for the design of 2-D analog filters. The second approach 
is the design of IIR filter directly in the discrete domain, 
can be classified into two categories. The first is the spa- 
tial domain design technique, where filters are designed 
by using an error criterion in the spatial domain. The 
second is the frequency domain design technique, where 
filters are designed by using an error criterion in the fre- 
quency domain. Therefore, the weighted Chebyshev er- 
ror criterion, also known as the min-max error criterion, 
is a natural choice for designing IIR filters. An error cri- 
terion of this type, however, leads to a highly nonlinear 
problem [1,2]. 

2.2. The Stability Problem 

In the 1-D case, testing the stability of a causal system 
whose system function is given by    1H z A z  is 
quite straightforward. Since a 1-D polynomial A(z) can 
always be factored straightforwardly as a product of 
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first-order polynomials, we can easily determine the 
poles of H(z). The stability of the causal system is equi- 
valent to having all the poles inside the unit circle. The 
above approach cannot be used in testing the stability of 
a 2-D first quadrant support system. That approach re- 
quires the specific location of all poles to be determined. 
Partly because a 2-D polynomial  1 2, A z z



 cannot in 
general be factored as a product of lower-order polyno- 
mials, it is extremely difficult to determine all the pole 
surfaces of   1 2 1 2, 1 ,H z z A z z , and the approach 
based on explicit determination of all pole surfaces has 
not led to successful practical procedures for testing the 
system stability [1,2]. 

2.3. Spatial Domain Design 

The input often used in IIR filter design is  1 2,n n , 
and the desired impulse response, assumed given, is de- 
noted by . Spatial domain design can be view- 
ed as a system identification problem. Suppose we have 
an unknown system that we wish to model with a rational 
system function 

 1 2,dh n n 

 1 2,H z z . One approach to estimating 
the system model parameters (filter coefficients  1 2,a k k  
and  in our case), is to require the impulse 
response of the designed system to be as close as possi-
ble in some sense to . The error criterion used 
in the filter design is 

 1 2, kb k

 1,dh n 

,
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where 

   1 2 1 2, ,de n n h n n        (3b) 

and Re is the support region of the error sequence. Ideally, 
Re coincides with all values of  . The mean 
square error in (3) is chosen because it is used widely in 
a number of system identification problems and some 
variation of it serves as the basis for a number of simple 
methods developed to estimate the system parameters. 

Minimizing the error in (3) with respect to  1 2,a k k  
and  is a nonlinear problem. An approach is to 
slightly modify the error in (3), so that the resulting algo-
rithm leads to closed form solutions that require solving 
only sets of linear equations [1]. 
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We will assume that there are p unknown values of 
 1 2,a k k  and q + 1 unknown values of  1 2, kb k , and 

thus a total of N = p + q + 1 filter coefficients to be de-
termined for a given pair .  1 2,n n

Replacing  1 2,x n n  with  and  1 2,n n   1 2,y n n  
with  2n1,dh n in (4) and noting that 
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Since we wish to approximate  as well as 
we can with 

 1 2,dh n n
 1 2,h n n , it is reasonable to define an error 

sequence  1 2,e n nM  as the difference between the left- 
hand and right-hand side expressions of (5) 
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It is clear that  1 2,Me n n  in (6) is not the same as 
 1 2,e n n  in (3b). The subscript M  in  1 2,Me n n  is 

used to emphasize that  is a modification of  1 2, n Me n
 1 2,e n n . Minimizing  with respect to the 

unknown coefficients 
 1, n 2Me n

 2n1,a n  and is a lin- 
ear problem. 

 1 2, nb n

a) Prony’s method 
In Prony’s method, the error expression minimized is 
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where  1 2,Me n n  is given by (6). 
The error in (7) is a quadratic form of the unknown 

parameters  1 2,a n n  and . Careful observa- 
tion of the error in (7) shows that can be solved by first 
solving p linear equations for  and then solv- 
ing q + 1 linear equations for . It is useful to re- 
write (7) as 
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The expression 1  in (8b) consists of E 1q   terms, 
and 2  in (8c) consists of a large number of terms. 
Minimizing 2  in (8) with respect to  results 
in p linear equations for p unknowns given by 

E
E  1 2, n a n
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where 

 


 

 
1 2

1 2 1 2

1 1 2 2
,

1 1 2 2

, ; ,

,

, .

b

d
n n R

d

r k k l l

h n k n k

h n l n l



 

  

              (9b) 

Once  is determined, we can minimize the 
error in (8a) with respect to 

 1 2,a n n
 1 2,b n n . 

Since Prony’s method attempts to reduce the total 
square error, the resulting filter is likely to be stable [2]. 

b) Iterative algorithm 
The Iterative Algorithm is an extension of a 1-D sys- 

tem identification method developed by Steiglitz and 
McBride [1,2]. 

From (6),  is related 
to  by 
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Equation (10) can be rewritten as 
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The sequence  1 2,v n n  is the inverse of  1 2,a n n . 
From (6) and (11) 
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From (12), if  is somehow given, then 
 is linear in both 
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minimization of  2 ,e n n
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1 2n n   with respect to 

 and  1 2,a n n   1 2,b n n  is a linear problem. 

Algorithm 
Step 1: We start with an initial estimate of  1 2,a n n , 

obtained following a method such as Prony. 
Step 2: Obtain  1 2,v n n  from .  1 2,a n n

 Step 3: Minimize  with respect  
1 2

2
1 2,

n n
e n n 

to  and  by solving a set of linear 
equations. 

 1 2,a n n   1 2,b n n

Step 4: We now have a new estimate of  1 2,a n n , 
and the process continues until we get a desired 

 and .  1 2,a n n   1 2,b n n
c) Zero-phase filter design 
One characteristic of a zero-phase filter is its tendency 

to preserve the shape of the signal component in the pass 
band region of the filter. In applications such as speech 
processing, the zero-phase (or linear phase) characteristic 
of a filter is not very critical. The human auditory system 
responds to short time spectral magnitude characteristics, 

so the shape of a speech waveform can sometimes 
change drastically without the human listener’s being 
able to distinguish it from the original. In image process-
ing, the linear phase characteristic appears to be more 
important. Our visual world consists of lines, scratches, 
etc. A nonlinear phase distorts the proper registration of 
different frequency components that make up the lines 
and scratches. This distorts the signal shape in various 
ways, including blurring. 

It is simple to design zero-phase FIR filters. It is im- 
possible, however, for a single recursively computable 
IIR filter to have zero phase. To have zero phase, 
 1 2,h n n  must be equal to . An IIR filter 

requires an infinite extent , and output mask 
must have a wedge support. These requirements cannot 
all be satisfied at the same time. It is possible, however, 
to achieve zero-phase by using more than one IIR filter. 
A method particularly well suited to spatial domain de- 
sign is to divide 

 1 2,dh n n 
 1 2,h n n



 1 2  into different regions, de- 
sign an IIR filter to approximate  in each 
region, and then combine the filters by using a parallel 
structure. 
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Suppose we have a desired , we assume that  1 2,dh n n

 1 2 1 2( , ) , .d dh n n h n n                 (13) 

We can divide  1 2,dh n n  into an even number of re- 
gions: Two, four, six, eight, or more. 

Suppose we divide  1 2,dh n n  into four regions by 
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where  1 2,w n n  is a first-quadrant support sequence 
given by 
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Suppose we use one of the spatial IIR filter design 
techniques discussed earlier to design I

1 2,H z z  that 
approximates  I

1 2,dh n n . Similarly, suppose we have 
designed  1 2,IIH z z  that approximates  1 2nII ,dh n . 
From (13) and (14), 
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   III I
1 2 1 2, ,d dh n n h n n   .
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Therefore, III
1 2,H z z  that approximates  III

1 2,dh n n  
can be obtained from  1 2, IH z z  by 

   1
1 2 1 2, ,H z z H z z III I 1 .



          (17) 

Similarly, IV
1 2,H z z


 can be obtained from  

II
1 2,H z z  by 

  II 1 1
1 2 1 2,H z z H z z  , .IV             (18) 

Since  I
1 2,H z z ,  II

1 2,H z z , III
1 2, H z z , and 

IV , 1 2H z z  approximate  I
1, 2H z z , , 

 and d , respectively, 

II
1( ,dh n 2 )n

III ,dh n 1 2n IV  1 2,h n n  1 2, ndh n  
will be approximated by  1 2,H z z  given by 

     
   
   
   

I II
1 2 1 2 1 2

III IV
1 2 1 2

I II
1 2 1 2

I 1 1 II 1 1
1 2 1 2

,  , ,

, ,

, ,

, ,

H z z H z z H z z

H z z H z z

H z z H z z

H z z H z z   

 

 

 

  .



    (19) 

 1 2,H z z
 1 2,

 has zero phase since  

1 2 1 1 ,H z z  H z z  . The system in (19) can be im- 
plemented by using a parallel structure as shown in Fig-
ure 1. The input is filtered by each of the four recur- 
sively computable systems, and the results are combined 
to produce the output. 

If  has fourfold symmetry,  1 2,dh n n 
   II I

1 2 1 2,d dh n n h n n  , ,


           (20) 

then II
1 2,H z z  can be determined from  I

1 2,H z z  
by 

  II I 1
1 2 1 2, , .H z z H z z                (21) 

In this case,  1 2, H z z  in (19) is given by 

     
  

I I 1
1 2 1 2 1 2

I 1 1 1
1 2 1 2

, ,

, , 
,

.

H z z H z z H z z

H z z z z



  

 

 
       (22) 

 

  1 2,IH z z  

 1 2,IIH z z  

 1 1

1 2,IH z z   

 1 1

1 2,IIH z z   

 1 2,y n n
 1 2,x n n  

 

Figure 1. implementation of  using a parallel 

structure. 

 ,1 2H z z

From (22), only one filter needs to be designed in this 
case. 

2.4. Frequency Domain Design by the Iterative 
Semi-Definite Programming 

Semi-definite programming (SDP) has recently attracted 
a great deal of research interest. Among other things, the 
optimization tool was proven to be applicable to the 
design of various types of FIR digital filters. An attempt 
on extending the SDP approach to 2-D IIR filters is made 
in [3]. Throughout this section the IIR filters are assumed 
to have separable denominators. This assumption sim- 
ply imposes a constraint on the type of IIR filters being 
quadratically symmetric. Nevertheless, this class of fil- 
ters is broad enough to cover practically all types of IIR 
filters that have been found useful in image/video [4]. 

Consider a quadratically symmetric 2-D IIR digital fil- 
ter whose transfer function is given by 

   
   

1 2
1 2

1 2

,
,

B z z
H z z

A z A z
 ,           (23) 

where 

    1 2

1 2

1 2 1 2 1 2
0 0

, ,
n n

k k

k k

B z z b k k z z 

 

    

and    
0

r
k

k

A z a k z


  ,  0 1a  . 

Since the filter is quadratically symmetric, we have 
   1 2 2 1,b k k b k k , . As a result, there are only 
  1 2r n n   2  unknown variables in (23), which 

form a   1 2n 0.5r n    -dimension vector 

T

1 00 10 20 21 0 , 1r nn n n nx a a b b b b b b b           (24) 

where    , ,i ija a i b b i j  . Denote the vector x in the 
kth iteration as kx  and the frequency response of the 
filter for kx x  as  1 2, ,j j

kH e e x  . In the neigh- 
borhood of kx , the design variable can be expressed as 

kx x   . 
The transfer function can be approximated in terms of 

a linear function of δ by 

   1 2 1 2 T, , , ,j j j j
k kH e e x H e e x g          (25) 

where kg  is the gradient of de  1 2, ,j jH e e x   for 

kx x . 
Problem formulation 
The min-max design is obtained as a solution of the 

following optimization problem: 

Minimize T ˆĉ                 (26) 
Subject to: 

0
0

0
k

k

S

Y

 
 
 

                  (27) 
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with 
1

0
ˆ

0

c

 
 
 
 
 
 


, ˆ 



 



  
 

 ,            (28) 

where μ is treated as an additional design variable, and 

         1 1
1 2 1 2diag , , , , ,L M

k k kS           (29) 

 
1
2

1
2

1 2
T T

,
2

k
k

k k k

I Q

Q q c


 

  


 
  

 0,




      (30) 

   T
1 2,kQ W e g g   .k k                    (31) 

W(ω1, ω2) ≥ 0 is a weighting function,  .e  the real 
part of (.), and 

 

    1 2

1 2

1 2

,

, , ,

k

j j
k d k

q W

e H e e x H g 

 

 



   ,

k



    (32) 

 1 2, ,kc e x                        (33) 

 1 2,dH  
 1 2,  

 

 is the desired frequency response, for 
, 

where , and   1 2 1 2, : π , π     
1







T
0,r k

k
k r

P I D
Y

D P I




 
 

 
         (34) 

where P is defined below and τ is a positive scalar that 
stability margin of the filter, and 

 T

1 .
ˆ

k
k

r

a
D

I

  
 
  

                (35) 

Denote the vectors formed from the first r components 
of kx   by 1ka  . Since the denominator of 

 1 2, H z z  is separable, it can be shown that the IIR fil- 
ter with coefficient vector kx   is stable if and only if 
the magnitudes of the eigenvalues of matrices k  are 
strictly less than one, where 

D

r̂I  denote a matrix of size 
 obtained by augmenting the identity matrix 

with a zero column on the right. Applying the well- 
known Lyapunov theory [5], one concludes that matrix 
Dk is stable if and only if there exists a positive definite 
matrix P such that 

 1r   r

T 0,k kP D PD φ                  (36) 

where  denotes that matrix M is positive definite. 
The matrix P in (34) is not considered as a design vari- 
able. Rather, this positive definite matrix is fixed in each 
iteration and can be obtained by solving the Lyapunov 
equation 

0M

Tˆ ˆ
k kP D PD I  ,                (37) 

where 
T

ˆ .
ˆ

k
k

r

a
D

I

 
  
  

                   (38) 

with P fixed in Yk, the minimization problem in (26) and 
(27) is an SDP problem of size   1 0.5 1 2r n n    .  

Design steps 
Given the order of the IIR filter (n, r) and the desired 

frequency response  1 2,dH   . 
Step 1: The proposed design method starts with an 

initial point x0 that corresponds to a stable filter obtained 
using a conventional method. 

Step 2: With this x0, a positive definite matrix P can 
be obtained by solving the Lyapunov equation (37), and 
the quantities Qk, qk, and ck can be evaluated by using 
(31)-(33). 

Step 3: Next we solve the SDP problem in (26) and (27). 

Step 4: The solution  obtained can  
TTx̂      

be used to update x0 to x1 = x0 + . The iteration con- 

tinues until 


  is less than a prescribed tolerance ε. 

3. Order Reduction 

It is often desirable to represent a high order system by a 
lower order system. A suitable model reduction pro- 
cedure should provide a model that approximates the 
original well, it should produce stable models from a 
stable original, and it should be able to be implemented 
on a computer with high computational efficiency and 
reduced memory requirements. The reduction of models 
in the state space (SS) realization environment has de- 
finite advantages. It is possible to apply the vast know- 
ledge of matrix theory in the analysis, while the non- 
uniqueness of SS realization allows to choose of using 
one that is better suited for the purpose at hand [6,7]. 

3.1. State-Space Model 

Roesser’s model is the following [6,7]: 

   
 

,
,

,

h

v
,

x x i j
x i j

x x i j

 
  
  

               (39a) 

where x is the local state, xh, an n-vector, is the horizontal 
state, xv, an m-vector, is the vertical state, and 

 
 

 
 

 

1 2

3 4

1

2

1, ,

, 1 ,

, ,

h h

v v

A Ax i j x i j

A Ax i j x i j

B
u i j

B

    



   


      

 
  
 

         (39b) 
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     
   

   

1 2

,
, ,

,

, 0,0 ,

h

v

x i j
y i j C C du i j

x i j

i j

 
  

  


,
       (39c) 

where u, the input, is an l-vector and y, the output, is a 
p-vector. Clearly xh, the horizontal state, is propagated 
horizontally, and xv, the vertical state is propagated 
vertically by first-order difference equations. 

The 2-D transfer function can be written as: 

 
1

1
1 2

2

0
, .

0

z I
H z z C A B d

z I


  

   
  

       (40) 

It is clear that there is a one-to-one correspondence 
between Roesser’s model and circuit implementations 

with delay elements  and . 1
1z
 1

2z

3.2. Minimal State Space Realization 

The minimal state-space realizations are not possible for 
all 2-D transfer functions [8]. However, minimal state- 
space realizations have been determined for a system 
with separable denominator [9]. 

Consider the linear time-invariant 2-D system, describ- 
ed by the spatial transfer function [10] 

 
 

 

1 2

1 2

1 2

1 2

1 2 1 2
0 01 1

1 2

1 2 1 2
0 0

,

, .
,

n m
k k

k k

n m
k k

k k

b k k z z

H z z
a k k z z

 

  

 

 


 

 
      (41) 

The numerator coefficients of (41) can be arbitrary, 
while the denominator coefficients satisfy the following 
relationship: 

     1 2 1 2, ,0 0,a k k a k a k ,           (42) 

with   0,0 1.a 

The state-space model sought is of the Givone-Roesser 
type [10], described with 1,l p   and 1,A 2 ,A 3,A  

4 ,A 1,B 2 ,B 1,C  and C2 of dimension    ,n n   ,n m  
  ,m n  m m ,  1 ,n  1 ,m n 1 ,  and  1 ,m  
respectively. 

The minimal realization in this case requires only 
 dynamic elements. A realization of the state- 

space can be written as: 
n m

   

1

0,1 1,1

1 0 0

0

0 0 1 0

a

A









   
  

  
    

 

2

0 0

0 0

A

 
   
  


 


, 

   

   
3

1,1 1,

,1 ,

h h

A

h m h m n

n 
   
  


  


  , 

where 

         
        

         
        

1,1 1,1 1,0 0,1 0,0

1,0 0,1 1,0 0,1 ,

, , ,0 0, 0,0

,0 0, ,0 0, ,

h b a a b

b a a b

h m n b m n a m a n b

b m a n a m b n

 

 

 

 

  

and 

 

 

4

1,0 1 0 0

0

0

1

,0 0 0

a

A

a m

  
 
 
 

  
 
 
 
  


  
   
  
  

 




, 

1

1

0
,

0

B

 
 
 
 
 
 


 

     

     
2

1,0 1,0 0,0

,

,0 ,0 0,0

b a b

B

b m a m b

 
   
  

  

           1 0,1 0,1 0,0 0, 0, 0,0C b a b b n a n b     ,

 2 1 0 0C    0,0d b, and  [11,12]. 

3.3. Model Order Reduction Methods 

a n  







, 

The most popular 1-D model reduction techniques are 
based on the concept of balanced realization which was 
originally proposed by Moore [13]. Given a discrete 
system, its balanced realization describes the system in a 
state-space representation in which the importance of the 
ith state variable can be measured by the ith Hankel 
singular value of the system. This suggest that one way 
of obtaining a low-order approximation of a state-space 
model is to form a balanced realization and then to retain 
those states corresponding to r largest Hankel singular 
values, where r is the order of the reduced-order system. 
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One of the problems in the study of 2-D model reduction 
is to extend the balanced realization concept to the 2-D 
case. Since a balanced realization is essentially deter- 
mined by the controllability and observability Gramians 
of the system, and since there are several types of Gra- 
mians of the system that can be properly defined for a 
given 2-D system, there are different types of balanced 
realizations for a 2-D discrete system, leading to different 
balanced approximations [14]. 

3.3.1. Three Types of Gramians for 2-D Discrete 
Systems 

Consider the Givone-Roesser state-space model of a SISO 
system described in (39), and define [14] 

     1

1 2 1 2, , ,F z z I z z A B


            (43a) 

    1

1 2 1 2, ,G z z C I z z A


   ,           (43b) 

where  1 2 1 2, .n mI z z z I z I   
The first type of 2-D Gramians, known as the pseudo- 

controllability and observability Gramians [15], are de- 
fined as 

 
   

 
   

1 2

1 2

2 1
1 2 1 22

2 11 1

2 1
1 2 1 22

2 11 1

d d1
, ,

2π

d d1
, ,

2π

p

z z

p

z z

z z
P F z z F z z

z zj

z z
Q G z z G z z

z zj



 



 





 

 

 

 

,

.

P Q

 

The second type of Gramians, known as the structured 
controllability and observability Gramians [16], are de- 
fined by the positive definite solutions set of Ps and Qs 
Lyapunov inequalities 

T T 0,s sAP A P BB    

T T 0.s sA Q A Q C C    

Note that the positive definite matrices Ps and Qs, if 
they exist, are not unique. This lead to the nonuniqueness 
of structurally balanced realizations that are based on Ps 
and Qs. 

The third type of Gramians, known as quasi-control- 
lability and observability Gramians [17], are defined by 
the positive definite block-diagonal matrices 

 and  where Pi 
and Qi (i = 1,2) satisfy the Lyapunov equations: 

 1 2diag ,qP P  1 2diag ,qQ Q

T T T
1 1 1 1 1 1 2 2

T T T
4 2 4 2 2 2 3 1 3

T T T
1 1 1 1 1 1 3 2 3

T T T
4 2 4 2 2 2 2 1 2

0,

0,

0,

0.

zA P A P B B A P A

A P A P B B A P A

A Q A Q C C A Q A

A Q A Q C C A Q A

   

   

   

   

 

In terms of computation complexity, the structured 
Gramians are the most expensive to evaluate while the 

quasi-Gramians are the most economical [14]. 

3.3.2. Balanced Realizations Approximation 
Since there are at least three types of Gramians, one can 
accordingly derive three different types of balanced rea- 
lizations. In effect, once a certain type of Gramians is 
chosen, the upper left and lower right diagonal blocks of 
the Gramians are used to compute the transformation 
matrix 1 2 ,T T T   by using, for example, Laub’s algo- 
rithm [18] such as the realization characterized by 
 ,T A1 1, ,T T B CD d 

 is balanced. 
A reduced-order system of order , denoted by  1 2,r r 

 , , ,r r rA B C d  can be obtained by truncating the ma- 
trices A, B, and C as 

 1 2 1
1 2

3 4 2

, ,r r r
r r r r

r r r

A A B
rA B C C

A A B

   
     

  
C , 

where [14] 

  
  
   
   

1 1 1 1 2 2 1 2

3 3 2 1 4 4 2 2

1 1 1 2 2 2

1 1 1 2 2 2

1: ,1: , 1: ,1: ,

1: ,1: , 1: ,1: ,

1: , 1: ,

1: , 1: .

r r

r r

r r

r r




A A r r A A r r

A A r r A A r r

B B r B B r

C C r C C r

 

 

 

 

 

3.3.3. Iterative Algorithm for Computing the 
Quasi-Gramians 

An iterative method for the computation of Quasi-Gra- 
mians is described, where each iteration involves solving 
two 1-D Lyapunov equations. For a 2-D stable system, 
the algorithm converges very quickly to the 2-D quasi- 
Gramians [19]. 

Step 1: Set    0 0
2 2 0P Q  , and k =1. 

Step 2: Solve the following 1-D Lyapunov equations 
for  and :  

1
kP  

1
kQ

   T
1 1 1 1 1 0,k kA P A P F             (44a) 

   T
1 1 1 1 1 0,k kA Q A Q G            (44b) 

where 
 

 

1T T
1 1 1 2 2 2

1T T
1 1 1 3 2

,

.

k

k
3

F B B A P A

G C C A Q A





 

 
 

Step 3: Solve the following 1-D Lyapunov equations 
for  and :  

2
kP  

2
kQ

   T
4 2 4 2 2 0,k kA P A P F            (44c) 

   T
4 2 4 2 2 0,k kA Q A Q G            (44d) 

where 
 

 

T T
2 2 2 3 1 2

T T
2 2 2 2 1 2

,

.

k

k

F B B A P A

G C C A Q A

 

 
 

Step 4: Set k = k + 1 and repeat Steps 2 and 3 until 
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     1 ,  1, 2k k
i iP P i   , 

     1 ,  1, 2k k
i iQ Q i   . 

where ε is a prescribed tolerance [19]. 

4. Illustrative Simulations 

We have divided the simulation into two parts: 2D-filter 

design and order reduction. The interpretation of the 
results is given at the end of this section. 

Part 1: 2D-filter design 
The design has been performed in two domains (see 

Figures 2-7): 
 Spatial domain by two methods: Prony’s method and 

the Iterative method. 
The numerator  1 2,b n n ,  and the denominator 
 1 2,a n n ,  matrices are generated, then we use the func- 
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Figure 2. Zero-phase lowpass IIR filter. (a) Impulse response; (b) Amplitude responses (in decibels), “X-Z” perspective. 
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Figure 3. Zero-phase bandpass IIR filter. (a) Impulse response; (b) Amplitude responses (in decibels), “X-Z” perspective. 
 
tion Impulse_2D.m to produce the impulse response and 
frequency response. 
 Frequency domain, we use the method of Semide- 

finite Programming (SDP) to do the same. 
For the Prony’s method and Iterative method the IIR 

digital filters are specified by the following templates: 
Filter’s order 5, 5,n m   (the a and b matrix di- 

mension). 
The pass band and stop band corresponding to each 

type of filter are: Lowpass: Rp = [0 0.4], and Rs = [0.5 1].        
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Figure 4. Zero-phase lowpass IIR filter. (a) Impulse response; (b) Amplitude responses (in decibels), “X-Z” perspective. 
 
Bandpass: Rp = [0.4 0.6], Rs1 = [0 0.3] and Rs2 = [0.7 1]. 
For the SDP method, let IIR digital filters be specified 

by the following templates: 
F  ilter order n = 13, m = 13 (the a and b matrix 
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Figure 5. Zero-phase bandpass IIR filter. (a) Impulse response; (b) Amplitude responses (in decibels), “X-Z” perspective. 
 

dimension). 
The passband and stopband corresponding to each type 

of filter are: 
Lowpass: Rp = [0 0.4], and Rs = [0.5 1]. 

Bandpass: Rp = [0.48 0.55], Rs1 = [0 0.3] and Rs2 = 
[0.7 1]. 

Number of iterations: it = 2. 
P art 2: Order reduction     
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Figure 6. Lowpass IIR filter. (a) Impulse response; (b) Amplitude responses (in decibels), “X-Z” perspective. 
 

We apply the method of Quasi-Gramians to the low- 
pass filter designed in the first part. First, we use our 
function tf2ss2_2D.m to transform the transfer func- 
tion matrices a and b to the state-space model (A, B, C, 
d); then we applied the Quasi-Gramians method to 

produce a reduced-order model  , , ,r r rA B C d , (see Fig-
ures 8-11). 

Iterative method 
The order of original filter is: n = 5, m = 5; the total 

umber of coefficient is: n 
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Figure 7. Bandpass IIR filter. (a) Impulse response; (b) Amplitude responses (in decibels), “X-Z” perspective. 
 

    5 5 matrix +5 5 matrix 4 200b a   

1

. 

The dimensions of the matrices A, B, and C are 
, , and    2 2n m n m    2n m   1 2n m  , 

respectively. 
Number of iterations is: it = 10. 
Order of reduced filter is: r1 = 4, r2 = 5. 

 The total number of coefficient is       
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(b) 

Figure 8. Lowpass IIR filter amplitude responses (in decibels), “X-Z” perspective. (a) Original filter 5 × 5 (200 coefficients); 
(b) Reduced-order filter 4 5, (160 coefficients). 
 

    4 5 matrix 4 5 matrix 4 160b a    . 
 Reduced-order filter 4 5  (160 coefficients). 

SDP method 
The order of original filter is: n =13, m = 13. 

 The total number of coefficient is: 

    13 13 matrix 13 13 matrix 338b a    . 

 The dimensions of the matrices A, B, and C are 

    ,n m n m     1,n m  and  1 ,n m  respecti-

vely (minimal realization). 
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Number of iterations is: it = 2. 
Order of reduced filter is: r1 = 8, r2 = 8. 

 The total number of coefficient is: 

 .    8 8 matrix 8 8 matrix 128b a   

Interpretation 
The results obtained lead to the following: 
For the design, there is not much difference between 

the Prony method and the Iterative method. However, 
we can notice that there is a small improvement at 
stop-band (attenuation) when Iterative method is appli- 
ed: 

Prony:  (lowpass  
filter); 

  1 2min ,  49.09 dBH    

Iterative:  (lowpass  
filter). 

  1 2min ,  55.77 dBH    

And the results obtained with the SDP method are 
comparable to the other two methods, but we found a 
performance decrease in both bands (pass band and stop- 
band). It is possible to improve the results by increasing 
number of coefficients (n, r) or the number of iterations. 
A good aspect of this method is the stability, which can 
be measured by the maximum of the roots of the column 
or row vectors of the denominator matrix “a”: we found 
the following results: 

max (abs (roots (a (:, 1)))) = 0.8926 for the low-pass 
filter, and = 0.8578 for the bandpass filter. 
where max, abs, and roots are Matlab functions [20]. 

*The order reduction: 
 Since the filter designed by Prony and Iterative 

methods has a non-minimal realization, and the re- 
duced filter can be unstable, the reduction results are 
not good (see Figures 8 and 9). 

 But the stability is preserved in the SDP method: 
For the original filter, max (abs (roots (a (:, 1)))) = 0.8926, 

and = 0.9119, for the reduced low-pass filter. 
The results obtained show that the reduced low-pass 

filter is acceptable as the number of coefficients de- 
creases from 338 to 128, and the max error between the 
reduced and original filter is max(E) ≤ 0.02 (cf. Figure 
11). 

5. Conclusions 

In the design stage, stability and zero-phase of a 2-D IIR 
filter may become big problems. In 1-D we represent a 
pole or a zero by a point in a 2-D plan (real part and ima- 
ginary part), but in 2-D, the poles are surfaces in a 4-D 
plan, and so it is extremely difficult to test the stability 
and to stabilize an unstable filter. In image processing, 
the output image from a system (a filter in this case) can 
be deformed by the phase nonlinearity. 

The reduction also suffers from some problems. The 
reduction in the state-space by conventional methods, for 
example, using a balanced transformation, requires a mi- 
nimal realization of a transfer function in state-space, and 
then to find a method to compute the transformation ma- 
trix to a balanced model, which requires to maintain the 
stability and reduce as much as possible the computation 
effort. 
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Figure 9. Error specter between original and reduced filter. 
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Figure 10. Lowpass IIR filter amplitude responses (in decibels), “X-Z” perspective. (a) Original filter 13 × 13 (338 co- 
efficients); (b) Reduced-order filter 8 × 8 (128 coefficients). 
 
 In this paper, we attempt to find a design method that 

solves these problems with conventional methods, 
such as Prony’s method or Iterative method, which 
are based on identification ideas. For a zero-phase 
filter, we divided the support region of the desired im- 

pulse response on four regions, then we have syn- 
thesized the four filters (one filter in the case where 

 1 2,dh n n  has a four-fold symmetry) by the Prony 
method or Iterative method. The result is a linear 
phase filter which has minimal order (the total num-    
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Figure 11. Error specter between original and reduced filter. 
 
ber of coefficients is 200). In the method for Semi- 
definite Programming (the total number of coefficients is 
338), but in this method the stability is guaranteed, with 
approximately linear phase. 
 In the order reduction, we have chosen the method of 

Quasi-Gramians due to its simplicity. But this method 
has a disadvantage that it does not preserve the sta- 
bility in general, but if the system has a separable 
denominator, the reduced system remains stable, as a 
filter designed by the SDP method. 
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