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ABSTRACT 

Order statistic filters are used often in the applications of science and engineering problems. This paper investigates the 
design and training of a feed-forward neural network to approximate minimum, median and maximum operations. The 
design of order statistic neural network filtering (OSNNF) is further refined by converting the input vectors with ele-
ments of real numbers to a set of inputs consisting of ones and zeros, and the neural network is trained to yield a rank 
vector which can be used to obtain the exact ranked values of the input vector. As a case study, the OSNNF is used to 
improve the visibility of target echoes masked by clutter in ultrasonic nondestructive testing applications. 
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1. Introduction 

Order statistic (OS) processors have been widely used in 
the field of signal and image processing [1-3]. OS results 
can be obtained by sorting the elements of an input vec- 
tor according to the rank of each element. Ranked out- 
puts such as minimum, median and maximum have been 
used for target detection with applications in radar, sonar 
and ultrasonic nondestructive testing [4,5]. The problem 
of sorting has already been solved by sequential and it-
erative methods such as the bubble sort, selection sort, 
insertion sort, and quick sort with computational effi-
ciency ranging between O(NlogN) and O(N2) compari-
sons and swapping operations [6]. As an alternative to 
conventional sorting techniques, a neural network design 
resulting from the harmony theory has been proposed for 
the sorting operation [7]. Neural network hardware can 
be implemented with parallel architecture using VLSI 
and FPGA technology, and this is highly desirable for 
high-speed computation [8-11]. 

In this paper, feed-forward neural network models [12] 
are introduced to find the minimum, the median, and the 
maximum of the input vectors consisting of real numbers. 
The back-propagation learning algorithm [13] is utilized 
in the training phase of the order statistic neural network 
filters (OSNNF). If the size of the input data is n, there is 
n! different input vectors including the same real num-
bers which give the same sorted output. Furthermore, the 
input vectors with real numbers demand an unlimited 
number of input vectors for training. Therefore, it is im- 
practical to train an OSNNF with that many input data. 

Consequently, the trained OSNNF filter might not pro- 
vide exact sorted results. In spite of this drawback, neural 
network filters can be trained to provide good approxi-
mation for the sorted results, and perhaps this might be 
sufficient for sorting the random processes in certain 
applications [4,5]. 

In practice, it is desirable to develop an efficient neural 
network model that can be used in finding the estimates 
of minimum, median, and maximum of the input vectors. 
To achieve this, simulation data is used in the training 
phase. The training set of data consists of random num- 
bers with uniform distribution scaled between zero and 
one. Then, the neural network is trained to yield the 
ranked output (e.g., the minimum, the median or the 
maximum value of the input vector with real numbers). 
In the next section we present the design techniques for 
the neural network OS filters. Section 3 discusses an im-
proved neural network solution that finds the rank of 
each input in order to reveal the exact sorted result. Sec-
tion 4 utilizes these neural network filters to enhance the 
visibility of target echoes in high scattering clutter using 
split-spectrum processing (SSP). 

2. Neural Network OS Filters 

Figure 1 displays the structure for the neural network OS 
filter where the number of inputs is 8 (M = 8). This filter 
is a fully connected feed-forward neural network. When 
unordered uniformly distributed random numbers, x(i), 
are presented as an input vector of real numbers to the 
neural network, each output of the hidden neurons is the 
weighted sum of the input nodes and bias node passes  *Corresponding author. 
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Figure 1. A three-layer model of an order statistic neural 
network filter. 
 
through an activation function. The hidden neuron’s out- 
put of this neural network,  is given as , 1jy j L  ,
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where the activation function for the hidden and output 
layer, , is a tangent hyperbolic function defined as  
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The term x(i) is an element of the input vector consist- 
ing of random numbers between 0 and 1, h

jiw  is the 
weight from ith input neuron to the jth hidden neuron, and 

h
j  is the bias for the jth hidden neuron. Then, the ranked 

output, , of the neural network is the weighted sum of 
all the hidden neurons and the bias node, given as 
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The training matrix is prepared using uniform random 
numbers between 0 and 1. Each column in the training 
matrix represents one set of these random numbers with a 
length of 8. Note that the size of the training set can be 
any number. The bigger the size of the training set, the 
better the estimation of the ranked output by the neural 
network is. 

Training statistics of the neural network filters are 
given in Table 1. A total of 4000 sample vectors were 
applied to estimate the minimum (MinNNet), the median 
(MedNNet), and the maximum (MaxNNet). This training 
was reiterated for 2000 times (i.e., epochs) in order to 
find the best solution for the neural network. Training 
results show that the MinNNet, MedNNet and MaxNNet 
reach a lower training sum squared error that is 0.04. In  

Table 1. Training statistics for MinNNet, MedNNet, and 
MaxNNet. 

Neural 
Network

# of Sample 
Vectors 

Input
Nodes

Output 
Node 

Hidden 
Nodes 

Epochs
Error 

Bound

MinNNet 4000 8 1 65 2000 0.04 

MedNNet 4000 8 1 65 2000 0.04 

MaxNNet 4000 8 1 65 2000 0.04 

 
this study, Hinton diagrams [14] were utilized to examine 
the effectiveness of the neural network weights. 

Testing results are shown in Figure 2. In this figure 
“+” shows the estimates for MaxNNet , “×” displays the 
estimates for MedNNet, and “o” depicts the estimates for 
MinNNet. In addition, solid lines indicate the desired 
values and estimates of order statistic neural network 
filters are superimposed over these desired values. Fur- 
thermore, as expected, Figure 2 shows that the Min- 
NNET estimates the minimum values around 0, the Med- 
NNET estimates the median values around 0.5 and the 
MaxNNET estimates the maximum values around 1. To 
obtain a better performance evaluation, the probability 
density functions of error for each neural network are 
estimated using the Parzen method [15]:  

  1
, Min, Med or Maxji
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ij j
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f r j
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where  1,  2, , jir i n    is the difference between the 
neural network output and the actual output for MinNNet, 
MedNNet or MaxNNet,    is the Gaussian density 
function and constant 2

j  is the variance. 
Figure 3 shows the probability density functions of 

estimation error for each neural network. This figure illu- 
strates how the neural network output values are affected 
by each neural network type to emphasize specific re- 
gions of the uniform random number distribution. Over- 
all, the neural network is particularly efficient in obtain-
ing the actual sorted result. For example, as can be seen 
in Figure 3, the maximum is 1, the median is 0.5 and the 
minimum is 0 with a high probability compared to other 
estimated values. The next section discusses an improved 
and precise neural network architecture for obtaing the 
actual ranked value. 

3. Neural Network for Precise Order 
Statistic Filtering 

The OSNNF becomes better when we add more random 
numbers into the training set. However, increasing the 
size of the random numbers to infinite in order to cover 
all possible combinations for input vectors, is impractical 
and unachievable. As a result, a trained neural network 
filter with a finite set of input vectors used for training  
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Figure 2. Testing results for MinNNet, MedNNet and MaxNNet. “+” shows the estimates for MaxNNet, “×” displays the es-
timates for MedNNet, and “o” depicts the estimates for MinNNet. These estimates are superimposed over the actual values 
shown by solid lines. 
 

 

Figure 3. The probability density functions of errors for MinNNet, MedNNet and MaxNNet. 
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can only approximate the sorted outputs. Hence, to im-
prove this design where the neural network output yields 
the exact ranked value, the input vectors are converted to 
a finite set of input vectors consisting of ones and zeroes 
elements.  

Based on the transformation shown in Equation (5), 
the following matrix can be generated 

1 0 0 0 0 0 0 0

1 0 1 1 1 1 1 0

1 0 1 0 1 1 0 0

1 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0

1 0 1 1 1 1 0 0

1 1 1 1 1 1 1 0
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Consider sorting N random numbers xi where i = 1, 
2, ..., N. To generate ones and zeros as inputs to the neu-
ral network, each xi is compared with xj, where j = 1… N 
and j ≠ i: 
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For example, consider the following input vector: 
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where the elements of the first column are calculated by 
comparing the first number, 0.9501, with the rest of the 
numbers within the input vector, the elements of the 
second column are calculated by comparing the second 
number, 0.2311, with the rest of the numbers and so on. 
Then, the output of the OSNNF becomes the actual rank 
vector,  corresponding to each element within the in- 
put vector:  8    2    5    4    7    6    3    1  . 

Examination of the rank vector reveals that the mini- 
mum element of x is 0.0185, because the corresponding 
neural network output for this element is 1; the maximum 
element in x is 0.9501, because the corresponding neural 
network output for this element is 8 and so on. The ad-
vantage of this input conversion is that the infinite input 
vectors of random numbers is converted to a finite set of 
input vectors with elements consisting of ones and zeros. 
And, for example, the size of the input space for an input 
vector with 8 elements will be 128. Consequently for an 
input vector of size N, the input space for the neural 
network is 2N-1. 

For sorting 8 random numbers, the number of input 
elements to OSNNF is 7 and the output number repre-
sents the rank of ix . During training 10 hidden neurons 
were sufficient for detecting the rank of ix  with a sum 
squared error of 0.0001 within 140 epochs. The OSNNF 
training took less iterations because of the finite size of 
the input space. In the next section we make use of 
OSNNF in ultrasonic target detection when the signal is 
corrupted by high scattering clutter [5]. 

4. OSNNF for Target Detection 

Applying split-spectrum processing (SSP) to ultrasonic 
signals combined with order statistic filters improves the 
signal-to-noise ratio and the target visibility [5]. The or-
der statistic detection filters perform better when signal 
and clutter have good statistical separation associated 
with a particular ranked output, such as minimum, me-
dian or maximum [4]. Our objective in this section is to 
replace the conventional order statistic filters with the 
OSNNF. 

The block diagram of SSP coupled with the OSNNF is 
shown in Figure 4. The received broadband signal is 
partitioned into several subband channels [5] and the out- 
put of these channels are normalized using scaling fac- 
tors , 1, ,i i 8    
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where i  is the output of i-th bandpass (BP) filter at 
center frequency i


f . There are three important issues in 

implementing SSP. These are the number of subbands 
(i.e., bandpass filters), the correlation among subbands 
due to spectral overlap, and the target information in 
each subband. There is an upper limit on the number of  

 

Figure 4. The block diagram of SSP based neural network 
order statistic target detector. In this figure αi, i = 1 ··· 8 are 
the scaling factors. 
 
subbands that can be chosen without a large amount of 
overlap among the subbands. Correlation among sub- 
bands is not as critical to the performance of SSP as se- 
lecting the frequency range which contains information 
pertaining to the target echo. 

The OSNNF is tested using experimental data to detect 
the target in presence of high scattering noise where the 
signal-to-noise ratio is less than zero dB (Figure 5(a)). 
The frequencies of the 8-channel bandpass filters reside 
within the frequency range of zero to 5 MHz and the 
bandwidth of each channel is 2.44 MHz. Figure 5 shows 
the outputs of OSNNF where it finds the exact values for 
the minimum, the median and the maximum of the 8 
bandpass filters. The ranked output of OSNNF improves 
the SNR significantly and enhances the target echo visi-
bility. 

5. Conclusions 

In this study neural network OS filters have been de- 
signed to replace the conventional sorting algorithms. Di- 
rect design of neural networks can only approximate the 
expected sorted output since; in general, the size of the 
input field is infinite. An improved design can be ob- 
tained by converting the input vector to a finite set of 
inputs consisting of ones and zeros. These data conversa- 
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Figure 5. Performance of OSNNF for target detection. The target echo is representing the ultrasonic backscattered echo of a 
hole within a steel block. (a) Original experimental measurement with SNR less than zero dB; (b) OSNNF minimum output; 
(c) OSNNF medium output; (d) OSNNF maximum output. 
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