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ABSTRACT 

A new adaptive Packet algorithm based on Discrete Cosine harmonic wavelet transform (DCHWT), (DCAHWP) has 
been proposed. This is realized by the Discrete Cosine Harmonic Wavelet transform (DCHTWT) which exploits the 
good properties of DCT viz., energy compaction (low leakage), frequency resolution and computational simplicity due 
its real nature, compared to those of DFT and its harmonic wavelet version. Hence the proposed wavelet packet is ad-
vantageous both in terms of performance and computational efficiency compared to those of existing DFT harmonic 
wavelet packet. Further, the new DCAHWP also enjoys the desirable properties of a Harmonic wavelet transform over 
the time domain WT, viz., built in decimation without any explicit antialiasing filtering and easy interpolation by mere 
concatenation of different scales in frequency (DCT) domain with out any image rejection filter and with out laborious 
delay compensation required. Further, the compression by the proposed DCAHWP is much better compared to that by 
adaptive WP based on Daubechies-2 wavelet (DBAWP). For a compression factor (CF) of 1/8, the ratio of the per-
centage error energy by proposed DCAHWP to that by DBAWP is about 1/8 and 1/5 for considered 1-D signal and 
speech signal, respectively. Its compression performance is better than that of DCHWT, both for 1-D and 2-D signals. 
The improvement is more significant for signals with abrupt changes or images with rapid variations (textures). For 
compression factor of 1/8, the ratio of the percentage error energy by DCAHWP to that by DCHWT, is about 1/3 and 
1/2, for the considered 1-D signal and speech signal, respectively. This factor for an image considered is 2/3 and in 
particular for a textural image it is 1/5. 
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1. Introduction 

The wavelet transform (WT) provides a frequency de-
pendent resolution so that the high and low frequencies 
have a coarse and fine frequency resolution. This is 
based on the assumption that high and low frequencies 
require, fine time resolution and coarse frequency resolu-
tion; respectively. But to achieve for high frequencies, a 
finer frequency resolution and for low frequencies, a 
finer time resolution; the wavelet packet (WP) system is 
used [1]. It also allows flexibility of selection of wavelet 
tree structure that enables the WP to select an optimum 
time-frequency tiling for a given data. This is achieved 
by adaptive WP and compared to the normal WT, it is 
more attractive, for applications like signal compression 

and transient detection [2-5]. This is because the adaptive 
nature of WP facilitates better energy compaction.  

Basically, the WP is a generalization of the WT. In 
WT, only the coarse/approximation is split at each stage 
and the detail is carried down as it is. Unlike this, in WP 
at each stage, the detail/highpass filter branch is also fur-
ther split and decimated similar to the approximation/ 
lowpass branch. Thus the complexity of the WP algo-
rithm is more as compared to that of the conventional 
WT. Hence filterbank realization of WP is cumbersome 
as it involves additional filtering and sampling rate con-
version.  

To simplify the adaptive WP, a Harmonic Wavelet 
Packet based on Discrete Fourier Transform (DFAHWP) 
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has been used [4]. This is possible as the Harmonic WT 
(HWT) due to its built in decimation and interpolation 
and absence of any explicit antialiasing and image rejec-
tion filtering. However for such a HWT, its coefficients 
not only suffer from leakage effect but also are of com-
plex nature. Further for an image (2D signal), the HWT 
complex nature involves approximation which results in 
neglection of the imaginary part of a coefficient once 
along the rows and columns during each LL stage split-
ting [9]. These drawbacks are carried over to the 
DFAHWP also. To overcome these limitations, a HWT 
based on Discrete Cosine Transform (DCHWT) has been 
used [8,9]. This is based on the fact that DCT provides 
real coefficients, which are also less affected by leakage 
[8,12]. The DCHWT has been used for computationally 
efficient and better quality signal compression and sub-
band spectral estimation [9]. This has also been applied 
for reducing the cross-term effect, which occurs in 
Wigner-Ville distribution [10]. Further, a shift invariant 
version of DCHWT has been considered for applications 
like signal denoising which reduces glitches in the recon-
structed signals [11].  

In this paper, an adaptive Harmonic Wavelet Packet 
based on DCT (DCAHWP) is proposed. The method is 
computationally simple, as it is based on grouping of real 
DCT coefficients and the WP decomposition up to the 
last level is readily available in DCT domain without any  

repeated filtering and decimation like in a time domain 
filter bank. Further, the reconstruction also does not in-
volve any explicit interpolation and its associated filter-
ing. The new algorithm has a better performance than the 
DFAHWP as its scales are less affected by leakage effect 
and does not involve any approximation for 2D signals. 
The DCAHWP has been applied both for 1-D and 2-D 
signal compression and its performance is better com-
pared to that of DCHWT. Further its performance is su-
perior to that of DBAWP for 1D signals. 

2. Adaptive Wavelet Packet 

The WP decomposition for a signal, showing the split of 
detail/ highpass branch in addition to coarse/lowpass 
branch, is illustrated in Figure 1(a). For a signal of 
N points, this generates an array of M N  coefficients 
where M  is the total number of decomposition stages, 
given by 2logM N . From this array, N  coefficients 
can be selected to represent the signal. These N  coeffi-
cients can be that of normal WT decomposition or any 
other combination.  

Wavelet packet facilitates selection of an optimal basis 
for a given signal. In an adaptive wavelet packet, a spe-
cific combination of all the branches is selected to repre-
sent a particular signal based on some predefined crite-
rion. The criterion generally aims at having maximum 
information with minimum possible number of coefficients.  
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Figure 1. (a) Wavelet packet showing the split of detail/high pass branch in addition to coarse/lowpass branch (b) 
Optimum scale tree selection, (c) Optimum scale tree. 
 
That is, it minimizes the number of nonzero coef ficients 
of the resulting wavelet transform. The criterion or cost 
function used in practice is the Shannon’s entropymeas-
ure, given by 
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where  E p  is the entropy for a particular scale, and 
L  is the number of wavelet packet coefficients in that 
scale. ip  are the normalized energies of the wavelet 
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where, ix  are the absolute values of wavelet packet 
coefficients in that scale, 

2
s  is the normalization fac-

tor and  s n  is the original signal of length N . 
Let H be the Hilbert space, v H and iH H   

be an orthogonal decomposition of H . The entropy of 
v  relative to the decomposition iH  of H is defined 
[3,6] as a measure of the distance between v  and the 
orthogonal decomposition.  
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This equation enables searching for the smallest en-
tropy expansion of a signal. The best basis algorithm 
minimizes the cost function for the transform coefficients. 
This involves complete decomposition according to the 
wavelet packet transform. 

For the wavelet packet decomposition of a signal 
shown in Figure 1a, the entropies for different scales are 
as given below: 

The entropy for scale 0A , 
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Here 
0A ix ,

1A jx  and AAkx  are the wavelet packet 
coefficients in the scales 0A , 1A  and AA , having 0AL , 

1AL  and A AL  samples; respectively. The entropies of 
other scales can also be found in a similar manner. 

The entropy will be low when energy is concentrated 
only at few locations, further it will be zero only when all 
the energy of the signal is at one coefficient. On the other 
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hand, the entropy will be maximum when energy is 
equally distributed over all coefficients. Hence the set of 
N  wavelet packet coefficients for which entropy is least 
provides the efficient representation of the signal. This 
enables to select those coefficients set which has maxi-
mum concentration of the energy.  

To choose such a set, at each scale, each pair of parti-
tioned coefficient sets is compared with those of their 
parent from which the partitions are derived. If the com-
bined partition coefficients have entropy smaller than 
that of their parent, the partitions are considered, other-
wise the parent.To make further comparisons while pro-
ceeding upwards (towards parent), if partitions are con-
sidered, then their entropy is assigned to their parent. In 
this way the complete wave packet array is scanned and 
this provides an optimal time-frequency tiling in terms of 
location of coefficient energy. The Figure 1b shows the 
method of optimum splitting for an arbitrary case. Here, 
the combined entropy of S  and A  is less than the 
signal spectrum entropy. Hence, this signal spectrum 
splitting into S  and A  is valid.  Further for S , its 
splitting into SS  and SA  is not valid as the combined 
entropy of SS  and SA  is greater than that of S . But 
splitting of A  into AS  and AA  is valid as their 
combined entropy is less than that of A . Further, split of 
AS  into 3A  and 2A  is not valid as their combined 

entropy is larger than that of AS . But AA  split into 1A  
and 0A  is valid as their combined entropy is less than 
that of AA . The optimum scale tree selected is shown in 
the Figure 1c. 

The decimation of the scales in the scale tree selected 
depends up on the bandwidth of the individual scales 
resulting in a time-frequency tiling and this may totally 
differ from the normal dyadic tiling. Such a tiling results 
in a maximum energy compaction for a given number of 
coefficients. It is not only the time frequency tiling but 
also the wavelet function used, also determines the per-
formance of compression. That is, a good wavelet for a 
particular signal results in a good energy compaction 
with least number of coefficients. Thus the wavelet 
packet can result in an efficient lossless compression. 
This type of scale tree selection is also known as best 
basis selection. 

3. Discrete Cosine Harmonic Wavelet  
Transform 

The filter bank realization of WT, involves decimation of 
the scale components. The restoration of the processed 
overall spectrum corresponding to the original sampling 
rate, involves interpolation and summation of the inter-
polated scale outputs in time. The harmonic wavelet 
transform based on DFT (DFHWT) realizes the subband 

decomposition in the frequency domain by grouping the 
Fourier transform (FT) coefficients and the inverse of 
these groups results in decimated signals [7]. Further 
after processing, the FT of the scales can be repositioned 
in their corresponding positions to recover the overall 
spectrum, with the original sampling rate. Therefore, this 
will not involve explicit decimation and interpolation 
operations. As a consequence, no band limiting and im-
age rejection filters are necessary. Also, while recon-
struction, there are no delay compensations as the scales 
are combined  in the frequency domain by repositioning 
them. In view of this, the harmonic subband decomposi-
tion is very attractive due to its simplicity. Further, the 
decomposition being done in frequency domain, it is well 
suited for those processing methods which are performed 
in frequency domain, like group delay processing [8]. 

For a 1-D signal in the DFHWT, the grouping of the 
DFT coefficients with possible conjugate symmetry 
though makes the WT coefficients complex; this will not 
pose any problem for reconstruction as after concatena-
tion of the groups, the conjugate symmetry is restored to 
get the real signal. 

The DFHWT is very attractive as long as no process-
ing of the components is involved prior to inverse trans-
formation. However, for a signal segment obtained 
without using any window function, there can be a severe 
leakage effect from one scale to another scale. If differ-
ent scales have to be processed differently, this is not 
achieved as the signal energy from one to another has 
already leaked. The DFHWT may be tolerable for a sig-
nal with well-separated frequency components of suffi-
ciently high magnitude. But for closely spaced compo-
nents of significantly different magnitudes, during the 
computation of the FT itself, the energy will leak from 
the higher amplitude component to the lower one (and 
vice versa). This results in a large bias in the spectral 
magnitude and may even totally eclipse smaller ampli-
tude spectral peaks. In such a case, decomposing the 
signal based on DFHWT and processing the subbands 
may not be very effective. Further leakage in DFHWT 
will also limit its use in signal or image compression 
application. The reason for this is that it is not possible to 
get a good signal reconstruction by omitting the lower 
scales (corresponding to high frequencies) in WT as the 
leaked energy cannot be recovered unless all the scales 
are considered 

Therefore to utilize the attractive features of the har-
monic wavelet transform, DCT is used instead of DFT, 
which has a comparatively reduced leakage effect. This 
is due to symmetrical data extension which results in a 
smooth transition from one DCT period to the other 
without any discontinuity [8].  

The wavelet transform  ,xW a b characterizes the cor-
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relation or similarity between the signal  x t to be ana-
lyzed and the wavelet function   /t b a  . Such a 
correlation is given by 

    *
1/2
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where  t is the prototype/mother wavelet. By shifting 
and scaling  t by the parameters b  and a , respec-
tively; all the basis functions     1/2

,a b t a t b a    
are obtained. Eqn. (3) can be realized in the frequency 
domain using Parseval’s theorem as [13] 
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Therefore, the wavelet transform can be derived by 
windowing the spectrum  X  with  * a  and 
inverse Fourier transforming the product.  
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   and  X   are  the FT of the mother wave-
let  t and the signal  x t . That is,  ,xW a b  for a 
particular scale ' 'a  can be computed by the Eqn. (4b) 
using  X   and  a  by FFT algorithm. 

For a real symmetric signal  sx t  and a real sym-
metric wavelet  s t  function, Eqn.(2a) becomes [9] 
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 sX  and  s   are the Fourier transform of  sx t  
and  s t  respectively. (Generally the wavelet function 
is a symmetrical one but to have consistency in the nota-
tion  s t  is used). In other words, they are the cosine 
transforms of  sx t  and the mother wavelet  s t . 

 ,xC a b  is the wavelet transform in cosine domain in-
stead of Fourier domain. Hence the corresponding equa-
tion for Eqn.(4b) is 
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Therefore the cosine wavelet transform coefficient  
 ,xC a b for a particular scale ' 'a  can be computed by 

the Eqn. (5b) using  sX   and  s a  by a fast 
cosine transform algorithm which indirectly uses FFT 
algorithm.  s   is very simple for the Harmonic 
cosine wavelet transform (CHWT), and it is zero at all 
frequencies except constant over a small frequency band. 
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Hence the mother wavelet is a cosine modulated sinc 
function. Here the decomposition of the signal in the 
frequency domain is simple but suffers from the problem 
of poor time localization due to slow decaying of the sinc 
function. Though a spectral weighing other than rectan-
gular improves the localization in time it results in a 
non-orthogonal wavelet set. The type of spectral weigh-
ing will determine the wavelet as it is the cosine trans-
form of the wavelet.  

For the cosine harmonic wavelet transform, the spec-
tral weighing is a symmetrical rectangular function and 
for a discrete signal it is zero except over symmetrical 
finite bands  ,p q   and  ,p q    where 

,p q  can be real numbers, not necessarily integers. 
For an orthogonal CHWT, the wavelet function is fixed 

and corresponds to a rectangular weighing in the fre-
quency domain which results in such a wavelet trans-
form. 

The Discrete cosine transform (DCT) enables the im-
plementation of the above cosine transform discussed as 
it forms the symmetric signals  sx t  and  s t  by 
itself (for the given non-symmetric  x t  and  t . 
For a sampled signal  x n ,  0,1,2, 1n N  , the 
DCT of N  points, is defined as the DFT of a 2N  
point symmetrically extended signal  y n . 
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Using the above  s   in the CHWT, the subband 
decomposition is done in frequency domain unlike in 
time domain by a filter bank. This is achieved by group-
ing the 2N  coefficients of a discrete cosine transform 
(DCT) of length 2N and this is equivalent to applying a 
window or weighing by a constant in the frequency do-
main. 

The DCT coefficients can be grouped in a way similar 
to that of DFT coefficients and the DCT being real, there 
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is no necessity to do the conjugate operation in placing 
the coefficients symmetrically. The symmetrical place-
ment is also not necessary due to the very definition of 
the DCT as it provides only half the number of coeffi-
cients and the inverse DCT definition takes care of the 
symmetry. The grouped coefficients for each band have 
to be treated as if they are the DCT coefficients of that 
subband Figure 2a. 

For the reconstruction, the DCTs of the subband sig-
nals are concatenated to get the DCT of the fullband sig-
nal. For the first stage of inverse DCHWT illustrated in 
Figure 2a, the DCTs of the subband signals correspond-
ing to groups C3 and C4 are concatenated. The resulting 
group of coefficients is concatenated with the DCT of 
subband signal corresponding to group C2, in the next 
stage. Again, the resulting group of coefficients is con-
catenated with the DCT of subband signal corresponding 
to group C1, to form the DCT of the fullband signal.  

The 1-D DFHWT or DCHWT can be extended to 2-D 

signals (images) by applying it to rows and columns 
separately. For images, the DFHWT performance is poor, 
even considering 100% coefficient (without omitting any 
coefficient). This is due to the approximation in the algo 
rithm which takes into account only the real part of a 
complex coefficient, both during row and column wise 
coefficient grouping which repeats for every scale. 

The DCHWT does not pose such a problem for a 2D 
signal. This is due to the fact that the DCT is a real 
transform and the grouping does not involve conjugate 
symmetry to get real signals. Here for the image, the 
DCT coefficients of each column are grouped and their 
inverse DCT results in DCHWT for that column. For 
each scale (along columns), the DCT coefficients along 
each row are taken and grouped. The inverse DCT of 
these groups will result in 2D DCHWT. This procedure 
is repeated for further scales considering the low-low 
(LL) subband as input Figure 2b. Considering from one 
LL to next LL as one stage, it is essential that the LL  

 

 
(a) 

 

 
(b) 

Figure 2. (a) DCHWT for a 1-D signal, N=16, Subbands: C4, C3, C2, C1, (b) DCHWT for a 2-D signal.     
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subband which goes as input should be in data domain 
and not in frequency (DCT) domain. This is essential as 
it enables to split DCT of columns in to H and L and 
proceed further. Since no approximations are made, there 
will not be any error when the image is constructed with 
100% coefficients [9] which is not so with DFHWT. 

4. Discrete Cosine Adaptive Harmonic  
Wavelet Packet (DCAHWP) 

The DCAHWP for both 1-D and 2-D signals will be con-
sidered in this section. 

4.1 For 1-D Signal 

Adaptive wavelet packets can be realized in the fre-
quency domain using the approach of grouping of fre-
quency domain coefficients (harmonic wavelet packet) 
[4]. The DCT based harmonic wavelet packet is simpler 
because the DCT coefficients are nothing but decomposi-
tion up to the last possible level and they are directly 
available without any filtering unlike the discrete wavelet 
transform realized by a filter bank. Further compared to 
DFAHWP, their low leakage effect and real nature con-
tribute to the quality and simplicity of DCAHWP. The 
DCAHWP decomposition is illustrated in Figure3. 

Unlike in DCHWT Figure2a, the high subband is also 
split into two subbands at each decomposition level, 
apart from the low subband like in any WP. Even though 
the decomposition up to the last level, to apply the treat-
ment of adaptive WP, it is indicated in Figure 3 as if all 
the DCT coefficients are together and its splitting takes 
place as in time domain filter bank approach. Here rather 
levels 2 and 1 are formed by combining the coefficients 
available at level-3. 

Maintaining the total number of coefficients equal to 
the signal length, different combinations of subbands 
may be possible for reconstruction. For DCAHWP also,  

the scales/subbands to be used for reconstruction are 
selected such that their combined entropy is minimum, as 
described in Section-2. Here a detailed algorithm for this 
is given. 

Algorithm for DAHWP implementation: 
1) Compute the N -point Discrete cosine transform 

(DCT) of the N -point signal. 
2) The DCT coefficients correspond to the level (last 

level) 2logL N . Obtain the other  1L   decompo-
sitions of WP by grouping the DCT coefficients.  The 
number of scales/subbands at level l  is 2l and each is 
of length 2L l points; 1l to L . 

3) Starting from the last level, the sum of entropy lev-
els of two adjacent subbands/scales (children) in that 
level, are compared to the entropy of the band in the pre-
vious level (parent) from which they were formed (actu-
ally the parent is formed from children here !). If the 
combined entropy of the children is found to be less than 
that of the parent, the decomposition is valid. Each time 
the children are selected, the combined entropy of the 
children is assigned to their parent for subsequent com-
parisons.  

4) The selected scales/subbands at different levels are 
used to reconstruct the signal, and the total number of 
coefficients is N . For compression, the number of coef-
ficients to be considered is decided by the compression 
factor (CF). The selection of these coefficients is based 
on their magnitude values starting from the largest [2]. 

For 2-D signal: 
The DCAHWP implementation for a 2-D signal (image) 

is an extension of the above method. At each decomposi-
tion level, each of the subband images (LL, HL, LH and 
HH achieved by the block D in Figure 4) is further di-
vided into four equal subbands. This is repeated till the last 
possible decomposition level, that is when each subband 
consists of only one pixel Figure 4. For reconstruction, the  

 

 

Figure 3. DCT harmonic wavelet packet. 
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Figure 4. (a) Decomposition of an image into four subbands by DCHWT. (b) DCT Harmonic Wavelet Packet Decomposition 
for an image. 
 
combined entropy of four children is compared to that of 
the parent at each level and a combination with lowest 
entropy is selected. The detailed algorithm is given. 

Algorithm for DCAHWP implementation: 
1) First take the DCT along columns and then along 

rows, i.e. compute the 2-D DCT of the N N  pixel 
image. 

2) Perform the WP decomposition up to the last possi-
ble level, L   2logL N . The number of 
scales/subbands at level l  is 4l  and each is of size 
2 2L l L l   pixels; 1l to L . The decomposition is car-
ried out by grouping the DCT coefficients.  

3) Starting from the last level, the entropy comparisons 
are made between the children and their parent and the 
scales/subband decomposition tree with the lowest en-
tropy is selected.  

4) For reconstructing the image, the selected scales / 
subbands with a total of N N  coefficients, are used. 
For compression a specified number of largest coeffi-
cients amongst the N N  coefficients across the scales 
are selected. This specific number is decided by the CF. 

6. Simulation Results  

To illustrate the performance of the proposed DCAHWP 
adaptive wavelet packet, four examples: 1)1-D signal, 2) 
a speech signal, 3) a 2-D image (512 x 512) and 4) a tex-
tural image (64 x 64); are considered. Its performance is 
compared with that of DCHWT. For the examples 1 and 

2, the performance of the proposed method is compared 
with those of Daubechies-2 based WT (DBWT) and its 
adaptive WP (DBAWP). For all examples, the perform-
ance of proposed WP method is compared with that of 
DCHWT. Since the performance of DFHWT is inferior 
to that of DCHWT [7], the proposed DCAHWP has not 
been compared with those of DFAHWP, the WP based 
on DFT. The compression performance is evaluated by 
the index, 

 100%  error energy error energy signal energy  

Example 1 [2]: A signal of 64 samples, having a sinu-
soid and a spike Figure 5, is decomposed into subbands 
using both DCHWT and DCAHWP. The signal was re-
constructed with and without compression in both the 
cases.  

The decomposition tree structures for DCHWT and 
DCAHWP are depicted in Figures 6(a), 6(b) respec-
tively.  
 

 

Figure 5. 1-D signal having a sinusoid and a spike.        
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Figure 6. Decomposition tree for the signal in Figure 5 by: (a) DCHWT (b) DCAHWP. 
 
The frequency band splitting in each decomposition level 
is indicated by vertical lines. The selected groups are 
represented by shaded blocks. In DCHWT, the high sub-
band is selected at each level and in the last level the low 
subband is also selected Figure 6a. But the tree structure 
for DCAHWP Figure 6b differs from that of DCHWT 
and depends on the signal characteristics 

The DCHWT time-frequency tiling is such that lower 
scales have larger frequency spacing and smaller time 
spacing, whereas higher scales have smaller frequency 
spacing and larger time spacing Figure 7a. But the 
DCAHWP time-frequency tiling Figure 7b is according 
to the best basis selected for the signal on hand. In the 
Figures 7a, 7b, larger coefficients are represented by 
darker shades. 

The WP coefficient values at various decomposition 
levels are shown in Figure 8a. At each decomposition 
level, each subband is further split into two subbands. 
For example for the level 2, Figure 8a shows the WP 
coefficients for the four scales; the different scales are 
put side by side.  The same is valid for other levels also. 
The selected coefficients for DCHWT and DCAHWP are 
shown in Figures. 8b, 8c respectively. For DCHWT, a 
fixed set of the coefficients is selected; whereas for 
DCAHWP, the set of coefficients varies according to the 
signal. For DCAHWP the frequency band splitting is 
denser, providing higher frequency resolution in the low 
frequency range (Figure 8b). This is also found in the 
time-frequency plot (Figure 7b) and the tree structure 
(Figure 6b) for DCAHWP. However, this is not so for 
DCHWT (Figures. 6a, 7a, 8a). For compression, only 8 
largest coefficients from the selected 64 Figure 8(b, c), 
are used to reconstruct the signal. 

Signal compression performance of DCAHWP was 
compared to that of DCHWT and also with that of 
DBWT and DBAWP. The reconstructed signal by 
DCAHWP with CF=1/8, contains a well defined spike in 

the same position as in the original (Figure 9d). But for 
the same CF, the spike is not clear in the reconstructed 
signal by DCHWT (Figure 9c). The performance of 
DBAWP is poor and that of DBWT is even poorer, as 
neither the spike nor the sinusoid are clearly brought out 
(Figure. 9a, b). The error plots corresponding to Figure 
9(a-d) are shown in Figure 9(e-h) and it is seen that the 
magnitude of the error for compression by DCAHWP is 
significantly less than that by other methods. Further, the 
percentage error energy by DCAHWP is about 1/3rd of 
that by DCHWT and about 1/8th that of DBAWP Table 
1. 

Example 2: 
For a speech signal (Figure 10) also, the results ob-

tained are similar to those for example-1. For the com-
pression factor 1/8, the performance of DBWT and of  
DBAWP are inferior compared to that of DCHWT. Be-
tween DBAWP and DBWT, the former is better as is 
optimal for the Daubechies-2 wavelet. But DCAHWP 
resulted in best performance compression compared to 
the other methods, which is clear from comparing the 
reconstruction errors for the various methods (Figure 
11e-h). The percentage error energy by DCAHWP is 
about 1/5th of that by DBAWP and about 1/2 of that by 
DCHWT Table 2. 
 
Table 1. % error energy (% EE) for reconstruction of the 
signal in Fig 5 with 1/8 coefficients (CF= 1/8). 

Method % EE with CF=1/8 

DBWT 13.4947 

DBAWP 5.8149 

DCHWT 1.9550 

DCAHWP 0.7396 
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x 

 

igure 7. Time-frequency tiling for the signal in Figure 5 by: (a) DCHWT (b) DCAHWP. 
 

 

Figure 8. WP decomposition coefficients for the signal in Figure 5.  
 
Table 2. % error energy (% EE) for reconstruction of the 
speech in Figure 10 with 1/8 coefficients (CF= 1/8). 

Method % EE with CF= 1/8 

DBWT 4.2695 

DBAWP 2.7425 

DCHWT 1.1542 

DCAHWP 0.5886 
 
 

Example – 3: The performances of DCAHWP and 
DCHWT were compared for a 512 512  ‘Barbara’ 
image. The compression results for a CF of 1/32 clearly 

Indicate the superior performance of DCAHWP over 
DCHWT (Figure 12b, 12c). There is a significant blur-
ring in the reconstructed image by DCHWT and hence 
the edges like eyes, nose and stripes are not distinct Fig-
ure 12c. In contrast, the edge information is preserved to 
a large extent in reconstructed image by DCAHWP, 
which is manifested as the sharpness of the nose, eyes 
and stripes Figure 12c.  

The above results are supported by the percentage er-
ror energy index as for DCAHWP, it is only about 2/3rd 
that of DCHWT Table 3. 

Example 4: To illustrate the performance superiority of 
DCAHWP due to its best basis selection over DCHWT,      
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Figure 9. Reconstruction of the signal in Figure 5 a. (a-d), Reconstructed signal for CF=1/8 by, (a) DBWT, (b) DBAWP, (c) 
DCHWT, (d) DCAHWP (e-h), error corresponding to (a-d). 
 

 
Figure 10. Speech signal. 

 

 
Figure 11. (a-d): Reconstructed speech for CF=1/8  by (a) DBWT (b) DBAWP, (c) DCHWT, (d) DCAHWP , (e-h): error 
corresponding to (a-d). 
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(a)                                    (b)                                    (c)                     

Figure 12 Image reconstruction of the ‘Barbara’ image (512×512), (a) Original, (b) DCHWT (CF=1/32), (c) DCAHWP 
(CF=1/32). 
 

 
Figure 12. Image reconstruction of the ‘Barbara’ image (512×512), a) Original Barbara image, (b) Part of original with in the 
square(64×64), (c) DCHWT (CF=1/32), (d) DCAHWP (CF=1/32). 
 

 

  

 

   
                            (a)                             (b)                            (c) 

 

     
                           (d)                            (e)                             (f) 

Figure 14 Adaptive wavelet packet decomposition tree for the image in Figure 13a. (a-f): Decomposition levels 1-6 respec-
tively. Shaded blocks indicate selected wavelet coefficients at each decomposition level. 



A Discrete Cosine Adaptive Harmonic Wavelet Packet and Its Application to Signal Compression 

Copyright © 2010 SciRes.                                                                                 JSIP 

75

 
Table 3. % error energy (% EE) for reconstruction of the 
image in Figure 12a with 1/32 coefficients (CF=1/32). 

Method % EE with CF = 1/32 

DCHWT 1.1310 

DCAHWP 0.7517 

 

Table 4. % error energy (% EE) for reconstruction of the 
image in Figure 13(a) with 1/32 coefficients (CF= 1/32). 

Method % EE with  CF= 1/32 

DCHWT 4.3492 

DCAHWP 0.9691 

 
the two methods are applied to Barbara’ image Figure 13 
aselecting a portion of it of size  64 64 , which is 
marked by the square box in Figure 13 b. This small 
portion corresponds to an image with repetitive varia-
tions in intensity (stripes). 

The best basis selection by the adaptive wavelet packet 
for this image is shown in the Figure 14. The subbands 
/scales in each wavelet packet decomposition level are 
depicted by square demarcations. The shaded squares are 
the selected subbands/scales for reconstruction. 

The percentage error energy by DCAHWP is about 
1/5th of that by DCHWT in this case Table 4. The com-
pressed image by DCHWT is a very crude representation 
of the image as the stripes are almost not visible (Figure 
13c). But the stripes are clearly visible in the compressed 
image by DCAHWP Figure 13(d). 

6. Conclusions 

An Adaptive Harmonic Wavelet Packet based on Dis-
crete Cosine Transform (DCAHWP) was proposed. The 
implementation is simple as the DCT coefficients are real. 
The DCAHWP was achieved by using the entropy crite-
rion realized by comparing the normalized energies of 
parents and children. The proposed DCAHWP performed 
better compared to Daubechies-2 based adaptive WP 
(DBAWP). For a compression factor (CF) of 1/8, for a 
1-D signal and speech signal considered, the ratio of the 
percentage error energy (PEE) by DCAHWP to that by 
DBAWP was about 1/8 and 1/5, respectively. 

Compared to DCT based harmonic wavelet transform 
(DCHWT), as expected the proposed DCAHWP per-
formed better as the ratio of the percentage error energies 
by DCAHWP to that by DCHWT better for 1D and 
speech, signals respectively were about 1/3 and 1/2, for a 
compression factor 1/8. 

The ratio of PEE for DCAHWP and that for DCHWT 
for an image ( (512 512)  Barbara) was 2/3 for a CF of 
1/32. The compression by DCAHWP is superior in 

bringing out the edge information (high frequency con-
tent) such as eyes, nose and stripes (texture), whereas 
that by DCHWT results in blurred images. Further for a 
textural image ( (64 64) , a portion of the Barbara image) 
this normalized energy ratio between DCAHWP and that 
for DCHWT it was 1/5 for a CF of 1/32. But in all the 
cases, the reconstructed signals/images without compres-
sion were almost identical to the original. 

The results clearly indicate that for signals character-
ized by abrupt changes or images with rapid variations,  
the proposed DCAHWP provides significantly better 
compression performance compared to that of DCHWT. 
It has been found that the DCAHWP has a significantly 
better compression performance over the adaptive wave-
let packet based on Daubechies-2, DBAWPT. 
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