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Abstract 
It has been attempted to immobilize organic mono layer on semiconductor 
surface as functional materials. Silicon surface was especially noticed to de-
velop highly efficient and functional devices, and the silicon devices were ex-
pected for the immobilized surface with organic layer. Then we have at-
tempted the immobilization by the mono layer on the hydrogen terminated 
silicon surface with the alkyl base indicated hydrophobic by using a surfac-
tant. We have observed interactions of immobilized molecules and organic 
molecules adsorbed on hydrogen terminated Si(111), which is aerosol OT as 
known surfactant and 4-cyanophenol as shown amphipathic molecule. The 
aerosol OT inhibited oxidation of Si(111) surface by adsorption to the hydro-
gen terminated surface to indicate hydrophobic. The 4-cyanophenol made the 
surface oxide by adsorption, and was desorbed by forming hydrophilic Si sur-
face. In the case of the mixed solution by the aerosol OT and 4-cyanophenol, 
the aerosol OT controlled the surface oxidation on the hydrogen terminated 
Si against the 4-cyanophenol. 
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1. Introduction 

It has been attempted to immobilize organic mono layer on metal or semicon-
ductor surface etc. as functional materials [1] [2] [3] [4] [5]. Si surface was espe-
cially noticed to develop highly efficient and functional devices, and the Si de-
vices were expected for the immobilized surface with organic layer. The typically 
functional organic layer was known as a biological membrane, which is an am-
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phipathic material in consisting of hydrophobic and hydrophilic bases [6] [7]. 
The structure has double layer, which the two phosphatides face mutually on the 
hydrophobic bases in consisting of two alkyl chains [8] [9]. It would show an 
ideal model to analyze the function of the biological membrane by replacing the 
unilateral phosphatide with a hydrogen terminated Si (H-Si) surface. The H-Si 
surface is obtained by etching Si wafer with HF and NH4F solution to peel oxide 
layer on the surface [10] [11] [12]. Then we have attempted the immobilization 
by the mono layer on the H-Si surface with the alkyl base indicated hydrophobic 
by using a surfactant. 

On the other hand, behaviors have been investigated about co-adsorption be-
tween alkyl thiol and aromatic thiol on Au substrate by some groups. The ad-
sorbed form was known as 3 3×  structure in the alkyl thiol by itself, and 
was reported about domain structure in the co-adsorption with the alkyl thiol 
and aromatic thiol, which have tried to produce an electrode with the controlled 
domain structure, however the adsorption mechanism is not clearly [13] [14] [15]. 
We have attempted the analysis of the co-adsorption mechanism for an aerosol 
OT as an amphipathic organic molecule known to surfactant and 4-cyanophenol 
as aromatic molecule on the Si(111) surface by in-situ ATR-FTIR. 

2. Experimental 

The Si substrate has used a single crystal semiconductor as n-Si(111), and been 
cut at 50 × 17 nm with mirror polishing at 45˚ for the either side as ATR prism 
in Figure 1. The substrate was treated RCA washing with conc. H2SO4 + 30% 
H2O2 mixed solution, and immersed in 5% HF solution for 5 min and 25% 
NH4OH + 30% H2O2 mixed solution at 80˚C for 10 min. The sample was applied 
as ATR prism simultaneously, and measured by 45˚ as an angle of IR incidence 
in flowing H2O. Next, the sample was treated with hydrogen termination by flow-
ing 5% HF solution for 10 min, and smoothed atomically on the surface by flowing 
40% NH4OH solution for 7 min as measuring in-situ ATR-FTIR. Furthermore, the 
sample was measured by flowing 4-cyanophenol as the adsorbed aromatic mole-
cule, or flowing 4-bis(2-ethylhexyl)sodium sulfosuccinate solution (aerosol OT) as 
the immobilized organic molecule with two alkyl chains known as a surfactant. 
We performed experimental patterns of (1) flowing only 4-cyanophenol solu-
tion, (2) flowing mixed 4-cyanophenol and aerosol OT solution, and (3) flowing 
4-cyanophenol solution after adsorb aerosol OT by flowing it.  

 

 
Figure 1. A cell of in-situ ATR-FTIR by a cross section. 
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3. Results and Discussion 
3.1. Flowing to Only 4-Cyanophenol 

Figure 2 shows in-situ ATR-FTIR spectra on the hydrogen terminated Si surface 
under flowing to 1 × 10−3 M 4-cyanophenol solution. A peak was observed at 
2234 cm−1 based on cyano group, and would be weak by desorption with time 
passes. Si-H peak intensity also decreased with desorption of the cyano group, 
which would indicate oxidation of the Si surface gradually with 4-cyanophenol 
desorption. The aromatic group of 4-cyanophenol will be adsorbed on the Si-H 
surface to indicate hydrophobic. Then, the Si surface may be oxidated by ad-
sorption with H2O molecule simultaneously to inhibit strong polarity based on 
cyano and hydroxyl group.  

Similarly, Figure 3 shows the spectrum on SiO2 substrate indicating hydro-
philic under flowing 5 × 10−3 M 4-cyanophenol solution. The larger peak of 
cyano group based on 4-cyanophenol on the hydrogen terminated Si was obtain 
than that of SiO2, which would have the advantage of hydrophobic surface. 

 

 
Figure 2. Spectra under flowing to 1 × 10−3 M the 4-cyanophenol solution on the hydro-
gen terminated Si(111) surface. 

 

 

Figure 3. Spectra under flowing to 5 × 10−3 M the 4-cyanophenol solution on the SiO2 
surface and hydrogen terminated Si(111) surface as broken line. 
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3.2. Flowing to 4-Cyanophenol and Aerosol OT 

At first, spectra was reported by flowing 1 × 10−2 M aerosol OT on the H-Si(111), 
which observed spectra on assigned to CHx stretching vibration based on the 
aerosol OT, and the peak intensity increased with time passes [16]. This result 
would show adsorption of the aerosol OT onto the hydrogen terminated Si sur-
face over time. In this study, the spectra were measured under the flow of the 
4-cyanophenol and aerosol OT mixed solution at variation with time as shown 
in Figure 4. The concentration of the 4-cyanophenol solution is 1 × 10−3 M, 3 ×  

 

 
Figure 4. Spectra under flowing to the 4-cyanophenol solution at the concentration of (a) 
1 × 10−3 M; (b) 3 × 10−3 M and (c) 5 × 10−3 M with including the 1 × 10−2 M aerosol OT 
solution. 
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10−3 M and 5 × 10−3 M, and that of the aerosol OT solution is 1 × 10−2 M. The peak 
intensity of cyano group based on 4-cyanophenowas increased with more thick-
ness in the solution, which would show much adsorption of the 4-cyanophenol 
onto the hydrogen terminated Si surface. On the other hand, the peak intensity 
of the cyano group hardly changed at the time passes in comparing with Figure 
2. This result will indicate that the 4-cyanophenol is keeping adsorption on the 
Si surface because the aerosol OT layer makes the adsorbed 4-cyanophenol protect 
by taking in the layer like a biological membrane. By contact, the peak intensity of 
Si-H decreased slowly, and plotted the decrease rate as referencing the peak area at 
1 min as shown in Figure 5. The higher concentration of 4-cyanophenol solution 
made the Si-H peak intensity decrease. These results show proceeding to the 
oxidation of the Si surface, and may indicate an influence of H2O adsorption by 
the 4-cyanophenol like the mechanism in Figure 2. 

Spectra on assigned to CHx stretching vibration based on the aerosol OT is 
showed in Figure 6. The peak intensity did not increase with time passes in spite  

 

 
Figure 5. Normalization plots of the decreasing peak area with time course. 

 

 
Figure 6. CHx spectra based on the aerosol OT under flowing the 3 × 10−3 M 
4-cyanophenol and 1 × 10−2 M aerosol OT mixed solution. 
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of flowing into the 4-cyanophenol solution. The reason would be suitable for the 
aerosol layer adsorbed on the hydrogen terminated Si surface, because a beha-
vior of the aerosol layer is reported in the presence of organic thiol molecule on 
the Au substrate, and the results will be similar to ours [14]. 

3.3. Flowing to 4-Cyanophenol after Immobilizing Aerosol OT 

Spectra were indicated under flowing to the 3 × 10−3 M 4-cyanophenol solution af-
ter the 1 × 10−2 aerosol OT solution as shown in Figure 7. The peak intensity of 
cyano group based on 4-cyanophenol hardly changed at time passes, which would 
protect the adsorption of the 4-cyanophenol onto the Si surface by the aerosol OT 
layer. Thus, the 4-cyanophenol will not slip into the aerosol OT layer at time passes 
by the immobilization on the Si surface. Furthermore, the Si surface will not be 
oxidation not to decrease in the peak intensity of the Si-H at time passes. 

Spectra on assigned to CHx stretching vibration based on the aerosol OT is 
showed after adding the 4-cyanophenol solution in Figure 8. The peak intensity  

 

 
Figure 7. Spectra under flowing to the 1 × 10−2 M aerosol OT solution, and the 3 × 10−3 M 
4-cyanophenol solution after to the 1 × 10−2 M aerosol OT solution. 

 

 
Figure 8. CHx spectra based on the aerosol OT under flowing the 3 × 10−3 M 
4-cyanophenol and 1 × 10−2 M aerosol OT mixed solution. 
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also did not change for the flow of the 4-cyanophenol solution. This result would 
show that the aerosol OT layer on the Si surface was not be influenced by the 
4-cyanophenol. 

4. Conclusion 

The 4-cyanophenol was adsorbed onto the hydrophobic surface by the hydrogen 
terminated Si, and was desorbed by the hydrophilic surface to oxide on the sur-
face. These results might show that the 4-cyanophenol brought H2O molecule by 
the cyano and hydroxyl group onto the Si surface, and the H2O molecule made 
the surface oxide. The aerosol OT will adsorb by the alkyl chain shown as the 
hydrophobic onto the surface, furthermore the layer will protect oxidation of the 
Si surface and will prevent the layer slipping in the presence of the 4-cyanophenol. 
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