
Journal of Software Engineering and Applications, 2019, 12, 339-364
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.129021 Sep. 24, 2019 339 Journal of Software Engineering and Applications

Optimizing a Long-Lived Transaction with
Verification Function

Shinji Kikuchi, Subhash Bhalla

The University of Aizu, Aizu-Wakamatsu City, Japan

Abstract
We have considered a method called Enhanced Rollback Migration Protocol,
which potentially has the effects of compressing the period of compensations
in a long-lived transaction, since before. In general, a compensation transac-
tion can recover an irregular status of a long-lived transaction into the origi-
nal status without holding unnecessary resources by making its consistency
tentatively loose. However, it has also been pointed out that there is a diffi-
culty of maintaining the isolation between a pair of transactions when ex-
ecuted in parallel. In particular, this could be more prominent under moder-
nized scalable cloud environments. Thus, there is a proposal for concurrency
control for the service level. However, there is still another risk that more
computer resources will be consumed than actually necessary and an unne-
cessary stagnation of the processing will be caused if concurrency control is
naively applied without careful consideration. Therefore, we need to imple-
ment a functionality which can optimize the processing of a long-lived trans-
action by selecting a suitable method between concurrency control and com-
pensation transactions. In this paper, we propose a method in which optimis-
tic concurrency control is applied for long-lived transactions. Furthermore, a
pair of verification phases is carried out. At the beginning from a safe point,
an attempt of verification is done. Then if the difficulty of isolation on a
long-lived transaction executed under a competitive situation is estimated,
concurrency control for the service level is applied. Alternatively, a long-lived
transaction without any concurrency control is executed. At the next reacha-
ble safe point, another attempt of verification is performed. Then if a failure
of serialization is detected, a set of compensation transactions is invoked to
recover the original long-lived transaction by returning to the first safe point.
We evaluated this approach by using numerical simulations and confirmed
the basic features. This approach can realize optimizing and enhancing the
performance of a long-lived transaction. We regard this approach applicable
even to the modernized scalable cloud environments.

How to cite this paper: Kikuchi, S. and
Bhalla, S. (2019) Optimizing a Long-Lived
Transaction with Verification Function.
Journal of Software Engineering and Ap-
plications, 12, 339-364.
https://doi.org/10.4236/jsea.2019.129021

Received: July 15, 2019
Accepted: September 21, 2019
Published: September 24, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.129021
http://www.scirp.org
https://doi.org/10.4236/jsea.2019.129021
http://creativecommons.org/licenses/by/4.0/

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 340 Journal of Software Engineering and Applications

Keywords
Transaction Management, Optimistic Concurrency Control, Compensation,
Service Level Agreement

1. Introduction

Due to the current paradigm shift to cloud computing especially Business Process
as a Service (BPaaS) or cloud workflow, the complicity of transaction processing
and requirements of scalability have been continuously maintained and grown.
However, handling these transactions has remained immature and become
vaguer according to the complicity itself. Since before, we have defined an ab-
stract model and framework that gives a compensation transaction a centralized
role in order to cope with the predictive exponential amount of transaction de-
mands [1]. We proposed the Enhanced Rollback Migration Protocol and its
performance evaluation [1] [2]. This protocol supports the conservative back-
ward approach. However, it also relies on less dependency on the data status
which must be considered in executing a compensation transaction, because we
expect the temporal data management to be implemented due to the emergence
of a huge amount of cloud storage. This approach includes an algorithm to re-
duce the number of procedures for compensation transactions between safe
points belonging to an instance of a long-lived transaction. Compared with ex-
isting approaches, this approach potentially has advantages with regard to the
performance.

However, there is another risk about difficulties in maintaining isolation when
executing multiple instances of long-lived transaction in parallel. In particular,
this could be more prominent under these scalable environments. Accordingly,
there has been a proposal to carry out concurrency control for the service level
instead of applying compensation [3]. Our aforementioned approach using
compensation has relied on traditional backward recovery. Therefore, an issue
arises in regard to violating isolation under a competitive execution. However, if
concurrency control is applied naively, computer resource lockups will occur
more frequently. Furthermore, the negative impacts that compensation tries to
relieve will be made even worse. In order to solve this conflict, it is obviously
required to implement a mechanism that optimizes the choice of concurrency
control or compensation during the execution.

In this paper, we propose a new approach with the optimization, in which op-
timistic concurrency control is applied at the level of long-lived transaction and
has two verification phases. This approach is not limited only to the modernized
RESTful style; however, we demonstrate the renewal approach of optimization
with clarifying the applicable conditions as our contributions. In this approach,
the first verification is carried out at the initial safe point, and concurrency con-
trol is applied at the service level when a high probability of violating isolation

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 341 Journal of Software Engineering and Applications

under a competitive execution is predicted. Otherwise, further verification is ex-
ecuted at another later safe point, and the corresponding compensation process
is invoked to recover the failures or unsuitable states. Accordingly, it is possible
to avoid needless resource lockups and to optimize the long-lived transactions.
In general, transaction processing in the restful style as the current major ap-
proach is assumed with hesitating to deploy a transaction coordinator or adopt-
ing variations such as an agent system because of demands in regard to efficien-
cy for the scalability. However, we demonstrate that it is potentially responsible
to the demands for the scalability by applying the optimized approach with
suitable operational conditions. Through evaluation using numerical simulation,
we clarify the applicable conditions for the different choices and critical factors
for the performance in executing the long-lived transactions.

The remainder of this paper is organized as follows. In Section 2, we provide
an overview, features of our proposal, definition of the components and outline
of their behaviors. We also define the conceptual correspondence among them.
In Section 3, we discuss in detail the behaviors including optimistic concurrency
control. In Section 4, we provide the results of our evaluation, which contains a
quantitative evaluation related to SLA (Service Level Agreement). Section 5
presents a brief explanation of related work followed by the conclusion in Sec-
tion 6.

2. Architecture Model
2.1. Functional Layers and Features

Firstly, the overview of functional layers will be defined, then, the characteristics
of our proposal will be explained. By defining the functional layers, it is possible
to clarify locations of the corresponding functions by mapping them with layers.
Figure 1 shows the outline of the function layer model consisting of the five

Figure 1. Function layer model including long-lived transaction.

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 342 Journal of Software Engineering and Applications

sub-function layers. This is an enhanced version of the original model [1]. It also
shows the correspondence between the sub-function layers and the granularity
of the activities network. Here, we assume that the four layers from the bottom
will automatically be executed along the specified workflows, whereas the fifth
layer at the top must be executed by inter-mediation of human operations, or
applications.

1) The first layer is the Service Invocation Layer (SIL), which corresponds to
the invoked elemental activities as services and is regarded as linked resources.
We will use the term “service” to mean “activity” in this paper.

2) The second layer is the ACID Transaction Layer (ATL), which corresponds
to the ACID transactions group and the set of elemental activities and guaran-
tees the ACID properties.

3) The third layer is the Service Transaction Layer (STL), which corresponds
to an instance of the long-lived transaction such as Saga [4] and others. In the
previous work in [1], this was named the Compensational Transaction Layer.
This is the advance transaction using the elemental ACID transactions and is al-
so mapped into concurrency control and compensation transactions. Therefore,
we consider two sub-functions named Compensation Control and Concurrency
Control. In particular, under the case of using Compensation Control, we define
the obvious constrained features to this layer, which differ from the fourth layer.
That is complete-recovery (or equivalent-recovery in looser cases) to the original
status at the passed safe point whenever a fault occurs.

4) The fourth layer is the Autonomic Transaction Control Layer (ATCL), in
which the compensation procedures will not be limited within a transactional
manner, but a more generalized and non-transaction approach as well. In pre-
vious work [1], this was named the Automatic Compensation Layer. However,
this is extended because of the existing non-compensation cases. In this layer,
there is an obvious feature, which is “no faults”. This feature was originally
pointed out in [5]. In particular, the fourth layer should be treated with all of the
possible procedures featured as fault tolerant.

5) The fifth layer at the top is the Compensation Operation Layer (COL). This
must be run as applications or as inter-mediation of human operations. In later
cases, semantically equivalent operations for fault tolerant will be executed un-
der the operators’ judgments.

Considering the relationship with the granularity of the activities’ network,
the ATCL should be defined including all paths of processes between safe points.
The definition of a safe point is the same as that in [6]. Therefore, a path be-
tween safe points corresponds to an instance of workflow on the STL. If there is
an alternative path having the same start and end points, another instance of
workflow on this layer must be invoked. Any part of the above path consisting of
a set of element activities should be mapped to an instance of the ATL, and ele-
mental invocation should correspond to an invocation on the SIL. The three le-
vels at the right side of Figure 1 correspond to the functional levels defined in

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 343 Journal of Software Engineering and Applications

[3]. L2 corresponds to STL and L3 corresponds to a combination of ATCL and
COL.

Our proposal in this paper is a method of the STL, in order to maintain isola-
tion and consistency of the long-lived transactions under the predefined Service
Level Agreement (SLA). The characteristic features are defined as follows;

1) Safe points must be explicitly defined [6]. Therefore, an instance of a
long-lived transaction is divided into multiple preferable scopes according to
these safe points, and the multiple fragmental scopes are sequentially executed.

2) An independent monitor is implemented, which tracks the execution states
of individual instances of the long-lived transactions. By using this monitor, the
evaluation of the SLA is carried out. The individual fragmental instances of
long-lived transactions select the optimized method of execution according to
the results of the evaluation and constraints derived from the set of instances of
the SLA.

3) The actual statistic of results in the previous executions should be refe-
renced when selecting the optimized method of execution. When there are
high probabilities of collisions or interferences among multiple instances of
the long-lived transactions due to a high density of accessing the services, it is
potentially difficult to maintain isolation for the individual instances. In this
case, the concurrency control method (CCM), in particular, the one specified
in [3] should be applied. Conversely, in the cases of maintaining isolation,
the compensation approach defined in [1], [2] should be adopted as the Full-
Compensation Method (FCM). These selections must consider resource con-
sumption and unnecessary overheads. Accordingly, it is possible to realize opti-
mized executions of the long-lived transactions at every transactional step.

4) In the FCM, a verification process related to the competitive accessing of
the subordinate resources and the interferential collisions of the multiple in-
stances of the long-lived transactions must be demonstrated. In this process,
Backward-Oriented Optimistic Concurrency Control (BOCC) should be applied
[7]. Once a collision occurs, the compensation transactions are launched in or-
der to cancel the effects of the identified instance of the long-lived transaction.
Furthermore, the optimized approach for compensation should be applied as
mentioned in [8].

2.2. Entire Configuration

In this section, we explain about configurative model of the logical architecture,
depicted in Figure 2. This configurative model involves the functional compo-
nents defined in [3] and [8]. Additionally, it is partly harmonized with legacy
industrial standards such as Web Service Atomic Transaction (WS-AT), Web
Service Business Activities (WS-BA), and Web Services Business Process Execu-
tion Language (WS-BPEL) [9] [10] [11]. However, these referred elemental con-
cepts are not completely harmonized within the original specifications. There-
fore, some conceptual adjustments were applied and renamed accordingly.
These are defined below.

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 344 Journal of Software Engineering and Applications

Figure 2. Configurative model of logical architecture.

When viewing the configurative model at the macro level, there are four de-
finable logical elements: Transaction Requestor, Transaction Broker, Service
Provider and Monitor. They remain as logical entities, and it is possible and
generally accepted to have several practical configurations mapped into the ac-
tual physical implementations. There are no explicit logical components corres-
ponding to the Transaction Broker in the specifications of WS-AT and WS-BA.
This Transaction Broker is explicitly defined as an extension of the WS-scheduler
function defined in [3] in order to realize various composite services. The
Transaction Broker and the Service Provider are individually definable as mul-
tiple entities, and multiple instances of them could be connected to make various
network structures, regardless of the topological aspects such as opened and
closed.

The Transaction Requestor element contains a component named Transac-
tion Coordinator which corresponds to the Coordinator of WS-AT [9]. In this
Transaction Requestor, the Requestor component is an application regardless of
type and category. Thus, it might be a composite service or a workflow.

In the Transaction Broker, the multiple components are included. The com-
ponent named Schedulable Transaction Manager (STM) corresponds to the
functionality of the WS-scheduler in [3]. The component named Local Re-
sources contains various metadata such as the Conflict Matrix defined in [3].
The component named Composite Service corresponds to the generalized im-
plemented instance of the composite service which utilizes another instance of
the Transaction Broker and multiple instances of the Service Provider. It is rea-
sonable that the Transaction Coordinator component should be included inside
the Transaction Broker in order to realize the Composite Services. Finally, the
Logging component is explicitly implemented in order to track the executional

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 345 Journal of Software Engineering and Applications

states of the individual instances of the long-lived transactions.
The Service Provider represents the entities of the Service Provider on the

edges, and includes a Participant component defined in WS-AT [9]. However,
we define this component as the Participant Resource Manager (PRM) in order
to emphasize the coordination with the Resource Manager. However, this does
not mean a strongly tied implementation. Finally, Logging component is expli-
citly implemented in the Service Provider in order to track the executional states
of individual instances of the long-lived transactions.

The Monitor element consists of the following two sets of components: the set
of common utilities and the set of utilities for only the FCM. The former consists
of the SLA Management (SLAM) component, the Common Resources compo-
nent and the Transaction Identifier Manager (TIM) component. The later con-
sists of the Validation Executor (VE) component, the Execution Plan Manager
(EPM) component and the Execution Monitor (EM) component.

The SLAM component is used for evaluating the states with regards to SLA
according to the extracted actual statistic of results through the monitoring
processes. The detailed configuration should be inherited from the architecture
mentioned in [8]. According to the results of the evaluation, selecting the optim-
al method of the execution is done at every fragment instance of the long-lived
transactions. The component of the Common Resources is used to manage the
specific items of the SLA, and other metadata. Inside the TIM component, the
identifiers tagged to the transaction instances such as the Coordinator Context
should be defined and managed. A detailed explanation is omitted from this pa-
per.

Inside the procedure of the FCM, there are three phases as explained in Sec-
tion 3. The first Preparation Phase is the phase for registration with regards to
the set of planned entries in the Monitor element. That set consists of multiple
Transaction Brokers, multiple composite services and multiple elemental servic-
es, all of which actively run during the next Execution Phase. The EPM compo-
nent should be implemented to manage their registration. The EM component is
used for monitoring the running states of the individual instances of the
long-lived transaction during the second Execution Phase. The final VE compo-
nent is utilized for detecting the existence of failures and any gaps between the
actual tracked data acquired during the Execution Phase and the planned data
registered during the Preparation Phase. Furthermore, it is also used for verify-
ing whether competitive accessing of the subordinate resources and interfering
collisions occur among the multiple instances of the long-lived transactions. In
particular, it is done by using BOCC [7]. There is an inquiry step in the SLAM
component at the beginning just after taking a new safe point. However, as there
is no verification during the inquiry, it is not suitable to regard this approach as
one of Forward-oriented optimistic concurrency control (FOCC).

As for relationships among elements, there are roughly three categories. The
first category corresponds to the Coordination/Transaction Protocol expressing
as thin real arrows. This category is the procedures for transaction control which

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 346 Journal of Software Engineering and Applications

are almost the standardized protocol, rather than exchanging data among appli-
cations. Almost standardized means “Not completely the same and includes
some partial modifications”, otherwise, mapping into another style with pre-
serving the original features. The actual data exchanged among applications as
the second category are expressed as bold arrows. The remaining thin dashed
arrows correspond to the proposed protocols such as Logging and the first
Preparation Phase as the third category.

2.3. Overview of System Behaviors

Figure 3 depicts the algorithm for the Transaction Coordinator component of
the Transaction Requestor element. Some parts of error handling are omitted
here. Part of Lines 2 - 8 corresponds to the definition of instances of the handled
objects.

As Lines 10 - 12 show, an instance of a long-lived transaction is divided into
multiple preferable scopes according to multiple safe points. The multiple frag-
ment scopes are sequentially executed as shown on Lines 13 - 58. In this case, the
multiple instances of several long-lived transactions could be executed in parallel
as the suffix i shows. An identifiable transaction context is commonly shared
over multiple safe points.

As Lines 14 - 16 show, the category class of the required instance of the
long-lived transaction is identified at the beginning just after taking a new safe
point. Then, an inquiry with regards to the optimal method is sent to the SLAM
component in order to identify the best selection of the individual fragment in
the instance of the long-lived transaction. The best selection is responsible for
the constraints derived from the particular SLA for the identified category class.
As an SLA is usually decided with dependency on a customer and a use case,

Figure 3. Algorithm for the transaction coordinator component.

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 347 Journal of Software Engineering and Applications

elemental information such as arguments needs to be specified in the inquiry.
However, a simplified model is depicted here. The actual statistical results in the
executions should be referenced when selecting the optimal method of the ex-
ecution. When there are high probabilities with regards to the interfering colli-
sions among multiple instances of the long-lived transactions due to a high den-
sity of accessing services, it is potentially difficult to maintain isolation for the
individual instances from the others. In this case, the CCM should be applied.
Conversely, in the case of maintaining the isolation, the FCM should be adopted.
In the FCM, the method of compensation is also specified as shown in [8].

Part of Lines 17 - 36 corresponds to the CCM and the flow of this part almost
follows the description in [3]. In particular, at line 18, negotiation with the STM
component is carried out in order to ensure serialization, and the actual invoca-
tion of the transaction is caused at line 21. Then, the post-procedure is executed
to restrain the invocations due to transaction dependencies through the concur-
rency control. Specifically, the post-procedure corresponds to the detection of
no global waiting cycle on dependencies in order to maintain serialization in
Lines 24 - 26. When detecting a cyclic case, a partial compensation process oc-
curs. We assume that the compensation process is a backward recovery process
rather than the forward recovery process defined in [12]. Thus, the equivalent
set of elemental transactional services that are canceled by the partial compensa-
tion process must be rerun. Accordingly, the re-execution of the transactions is
done at line 21.

Part of Lines 37 - 54 corresponds to the FCM. During the first Preparation
Phase, registration with regards to the set of planned resources such as multiple
Transaction Brokers, multiple composite services and multiple elemental servic-
es in the Monitor element are executed at line 38. These planned resources ac-
tively run for the instance of the long-lived transaction during the next Execu-
tion Phase at line 41. If an inconsistency due to a failure is detected, a compensa-
tion process sequentially occurs. During the commitment phase, a one phase
commitment (1PC) is applied instead of a two-phase commitment (2PC). This is
done to relieve the overhead inside the protocol because the compensation
transaction is executed for recovering from failures.

Part of Lines 48 - 50 corresponds to the verification of whether competitive
accessing of the subordinate resources and the interfering collisions occur
among the multiple instances of the long-lived transactions by using BOCC [7].
In the case of detecting a collision, corresponding compensation transactions are
sequentially executed to replace the inconsistent state with the original one be-
fore executing the fragment instance of the long-lived transactions at line 41. In
the FCM, the optimal method of compensation is selected according to the con-
ditions specified in the SLA at line 16. The detailed procedures are given in [1],
[8]. The post-procedure at Lines 55 - 57 is demonstrated to complete the frag-
ment instance of the long-lived transactions. In particular, durability is ensured
by taking a safe point at line 56. Then, all of the steps are repeated until all frag-
ment instances of the long-lived transaction are completed.

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 348 Journal of Software Engineering and Applications

3. Procedures and Protocols
3.1. Concurrency Control Sensitive Protocol

Figure 4 depicts the procedures of the CCM under the configurative model of
the logical architecture shown in Figure 2. The symbols described as <X> cor-
respond to the order number X in steps as Step X. In Figure 4, we do not expli-
citly utilize the Composite Service. Therefore, it is not presented in this figure.
Accordingly, we assume that only the Transaction Coordinator component in-
side the Transaction Requestor element directly accesses the multiple PRMs.
However, it is expected to access the STM component for controlling the trans-
actions. The basic procedure should obey the protocol specified in [3]; however,
we include several enhancements and clarifications. For example, the multiple
instances of the service invocation are assumed to be the long-lived transactions.
Therefore, in their processes, the context creations and registrations by the
coordinator must be included. However, there are few explicit descriptions of
these processes in [3].

The listed characteristics of the CCM are as follows:
1) The procedures from Step 1 to Step 15 are common in any cases and those

from Step 16.1 to Step 20.1 are applied in normal cases. Otherwise, the proce-
dures specified from Step 16.2 to Step 27.2 are used in the failure cases.

2) In many cases, the long-lived transactions specified as the extended WS-BA
could be carried out based on the executions of multiple instances of the ele-
mental transaction such as WS-AT. However, there are no explicit figures about
the commitment phase of the transaction in Figure 4. Thus, some procedures
related to Complete and Close are running from Step 13 to Step 18 after execut-
ing Data Exchanges (Response) at Step 11. However, we implicitly assume that

Figure 4. Procedure of CCM on the configurative model.

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 349 Journal of Software Engineering and Applications

the 2PC procedure would be executed in the background. So, we need both
models: one that uses the representative transaction such as WS-AT implicitly
and the other that does not apply these transactions. As an additional assump-
tion here, it should also be considered that an equivalent protocol such as in Json
expression, which entirely preserves the corresponding states defined in the
original, could be sufficiently applied.

3) When carrying out compensation transactions at Step 18.2 and 19.2, these
should be regarded as the partial BOCC. Therefore, both Data Exchanges at Step
6 and Step 11 must be re-executed later. However, these are also not explicitly
expressed in Figure 4.

4) The corresponding procedures at Steps 2, 3, 19.1 and 26.2 are not explicitly
mentioned in [3]. They are derived from our original proposal.

5) As for the achieved results related to the actual responsibility and practical
reliability of the individual services, they should be reported to the Monitor in an
independent method, although no corresponding depictions are shown in Fig-
ure 4.

6) During the negotiation between the Transaction Coordinator and the STM
components at Step 4, the values of “the expected time for acquiring the exclu-
sive lock” and “the deadline for releasing the exclusive lock” must be negotiated.
Further, decisions should be made for each specified Web Service based on the
individual SLA instance. However, these procedures can have high communica-
tion costs.

7) From Step 14 to Steps 16.1 and 16.2, the verification process must be car-
ried out which is equivalent to the specified item at line 24 in Figure 3. The
OCC should be applied here [3]. However, in this approach, what is detected is
only at verification of the no global cyclic waiting situation before commitments,
and has different features from the BOCC approach defined in the FCM. And, it
is also predictive that this procedure takes high communication costs in actual
cases.

3.2. Reservation Protocol in Non-Concurrency Control

Figure 5 depicts the procedures of the FCM under the model of the logical ar-
chitecture shown in Figure 2. In Figure 5, unlike Figure 4, we explicitly assume
to utilize the Composite Service. The reason is that the Monitor must have the
ability to trace the interactions among services of any types, even complicated
structures consisting of multiple composite services. Furthermore, the Monitor
must grasp the actual configurations of planned resources in advance, and mon-
itor the current status of a flow as a time series of events. In Figure 5, we assume
that the Transaction Coordinator component inside the Transaction Requestor
element directly accesses the multiple PRMs. However, it is also expected to
access the STM component for controlling the transactions by the Transaction
Coordinator component not shown explicitly in the figure. The characteristics of
the FCM are as follows:

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 350 Journal of Software Engineering and Applications

Figure 5. Procedure of FCM on the configurative model.

1) The FCM is broken down into three phases. The first is the Preparation
Phase in which the registration of the set of planned resources such as the mul-
tiple Transaction Brokers, multiple composite services and multiple elemental
services with the Monitor element is carried out. This corresponds to the partial
procedure from Step 4 to Step 9 in Figure 5. Therefore, the registration infor-
mation as “Transaction Definition Notification” is sent to the Monitor element
at Step 4 and Step 7.

2) The second is the Execution Phase in which 1PC procedures are applied
because the compensation transaction will be executed in the failure cases, and it
is required to minimize the overhead of the protocol. This corresponds to the
partial procedure from Step 10 to Step 17 in Figure 5. If a failure is detected, the
compensation will be undertaken, but in Figure 5 we merge it with procedures
after Step 20.2, which belong to the third Adjustment Phase. The ambiguity of
the border between the Preparation Phase and the Execution Phase we regard as
a post-timing of Step 9, in which the Requestor requests the Transaction Coor-
dinator to invoke Step 10. The synchronicity of them is not specified in this pa-
per, because of a macro view level.

3) The third is the Adjustment Phase in which the BOCC is applied. This
phase corresponds to the steps from Step 18 to the end in Figure 5. Based on the
procedures mentioned in 2 above, the verification might be embedded into the
second Execution Phase. However, we regard to define the verification as part of
this Adjustment Phase. After carrying out the verification, if there are no errors
and no detected competitions with another instance of the long-lived transac-
tion, the procedures from Step 20.1 to Step 24.1 will run in order to close the
transaction. (Step 24.1 is not drawn in Figure 5). In particular, at Step 22.1, the

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 351 Journal of Software Engineering and Applications

next safe point is taken, and then, the set of the registration information as a
“Transaction Definition Notification” generated in the Preparation Phase is
cleared.

4) When detecting competitions among instances of the long-lived transaction
or an occurrence of the errors after Step 18, the compensation is sequentially
undertaken. In this case, the set of procedures from Step 20.2 to the end are ap-
plied to the sacrificed transaction. We do not specify which instance should be
aborted in this paper. The undertaken compensation at Step 23.2, 1PC proce-
dures to the set of the subordinate PRMs is also applied. Therefore, there are
several possibilities that the compensations themselves could fail. In these cases,
the retries should be adopted. However, this is not depicted in Figure 5.

5) In the case of a retry of the failed long-lived transaction from the beginning
with a successful result of the compensation, the first Preparation Phase is not
re-executed as shown in Figure 3. This lack of execution relies on the fact that
the Preparation Phase could be costly. However, if considering availability of the
subordinate resources, the planning of the consumed resources such as the
Transaction Brokers, composite services and elemental services should be reor-
ganized. For this, we need to carry out a quantitative evaluation, which is linked
to defining the allowable maximum number retrying the compensations.

6) The procedures at Step 2 and Step 3 should be common and sharable with
the CCM.

4. Evaluation
4.1. Overview

It is preferable to compare our proposal to existing approaches in order to verify
the validity. However, as our proposal is a method to optimize a long-lived
transaction by embedding the existing approaches, it is possible to show the va-
lidness indirectly by clarifying the guidelines for adopting the different condi-
tions for the given cases. In this way, it is required to execute our evaluation
process consisting of two stages. At the first stage, we clarify the characteristic
features of the CCM and the FCM individually. Then, at the second stage, based
on the results of the first stage, we define formulas that determine which method
should be adopted for the given cases, based on the specified conditions in the
SLA. In the first stage, we evaluate the features by using numerical simulation.
We apply a model that has simplified aspects for the following reasons. It is pre-
dictable that some parts of the procedure in the CCM might suffer from de-
graded performance due to the complicity of topological relationships in invok-
ing the services. However, our central issue is a comparison between the CCM
and the FCM instead of the evaluation of the complicity of the topological rela-
tionships. Accordingly, we primarily deal with the basic features in this paper.
The issues caused by the complicity of topological relationships are regarded as
future work. In the second stage, we carry out a qualitative evaluation instead of
a quantitative evaluation because an SLA consists of various factors.

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 352 Journal of Software Engineering and Applications

In Section 4.2, we explain the evaluation of the first stage. Then, we discuss the
evaluation of second stage in Section 4.3. In the final Section 4.4, we consider the
relationship between the current transaction management and related standards.

4.2. Comparison between the CCM and the FCM

The procedures depicted as the CCM in Figure 4 and as the FCM in Figure 5 do
not contain complicated services’ invocations in a hierarchy and correspond to
the most primitive and simplified topological relationships in invoking services.
We digitize these procedures by using a metric of the process cost which is an
abstract concept of the processing time. Accordingly, this process cost is a num-
ber greater than zero without any unit and becomes worse with larger values.
We assume a set of values of this process cost depends on the individual steps of
the process; therefore, we express the individual process cost by using variables
given as (1), (2), (3), (4) and (5).

interC (1)

cmC (2)

dmC (3)

transC (4)

nego transC k C= ⋅ (5)

The variable defined by (1) represents the average cost for the process within a
physical site without any communication with the outside. The variable defined
by (2) represents the average cost for accessing the Monitor element with com-
munication. The variable defined by (3) expresses the average cost for writing
data within a physical site without any communication with the outside. The va-
riable defined by (4) represents the average cost for primitive interactions of a
transaction using communication. These primitive interactions cover any appli-
cation data and native procedures of the protocols. Even for an instance of ex-
changing a huge amount of data, the corresponding procedure should be ex-
pressed by using this variable (4), because of the native aspect of the average. Fi-
nally, the variable defined by (5) expresses the average execution cost in the ne-
gotiation process between the Transaction Coordinators and the STM compo-
nents in the CCM. This variable could originally and directly be affected by the
complicity of topological relationships in the invoking services; however, it is
expressed as the variable (5), which we regard as k times (k > 0) the variable (4).

Table 1 contains the results of mapping between the individual procedures
depicted in Figure 4 and variables expressed in (1), (2), (3), (4) and (5). Fur-
thermore, Table 2 shows the mapping results in Figure 5. The procedures from
<16.1> to <20.1> in Table 1 correspond to the case where the CCM is applied
and finishes successfully. The procedures from <16.2> to <27.2> in Table 1
correspond to the case that ended in a failure and applied a compensation
process. On the other hand, the procedures from <20.1> to <24.1> in Table 2
correspond to the case where the FCM is applied and finished successfully. The

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 353 Journal of Software Engineering and Applications

Table 1. Mapping results between procedures in CCM and individual costs.

Step Title Category
Symbol
(Times)

<1> Create Coordination Context/Register
Internal Process at Transaction

Requestor
Cinter(1)

<2> Create Coordination Context Communication with Monitor. Ccm(1)

<3> Optimized Transaction Communication with Monitor. Ccm(1)

<4> Negotiation
Communication with Transaction

Broker
Cnego(1)

<5> Register Response
Internal Process at Transaction

Requestor
Cinter(1)

<6> Data Exchanges (Request)
Communication with Service

Providers
Ctrans(1)

<7>
Create Coordination Context with

Context

Communication between
Transaction Broker and Service

Providers
Ctrans(2)

<8> Register
Communication with Transaction

Broker
Ctrans(2)

<9>
Create Coordination Context

Response/Register

Communication between
Transaction Broker and Service

Providers
Ctrans(2)

<10> Data Manipulate
Internal Process at Service

Providers
Cdm(1)

<11> Data Exchanges (Response)
Communication with Service

Providers
Ctrans(1)

(<12>) 2 PC Procedures

Ctrans(4)

<13> Completed
Internal Process at Transaction

Requestor
Cinter(1)

<14> Completed
Communication with Transaction

Broker
Ctrans(1)

<15> Completed
Communication between

Transaction Broker and Service
Providers

Ctrans(1)

<16.1> Completed
Communication with Transaction

Broker
Ctrans(1)

<17.1> Closed
Communication with Transaction

Broker
Ctrans(1)

<18.1> Closed
Communication with Transaction

Broker
Ctrans(1)

<19.1> Safepoint Communication with Monitor. Ccm(1)

<20.1> Return
Internal Process at Transaction

Requestor
Cinter(1)

<16.2> Wait
Communication with Transaction

Broker
Ctrans(1)

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 354 Journal of Software Engineering and Applications

Continued

<17.2> Waiting

Cnego(1)

<18.2> Compensate
Communication with Transaction

Broker
Ctrans(1)

<19.2> Compensate
Communication with Service

Providers
Ctrans(1)

(<20.2>) Data Exchanges (Request)
Communication with Service

Providers
(Ctrans(1))

<21.2> Data Manipulate
Internal Process at Service

Providers
Cdm(1)

(<22.2>) Data Exchanges (Response)
Communication with Service

Providers
(Ctrans(1))

(<23.2>) 2 PC Procedures

Ctrans(4)

<24.2> (Compensated)
Communication with Service

Providers
Ctrans(1)

<25.2> Compensated
Communication with Transaction

Broker
Ctrans(1)

<26.2> (Safepoint) Communication with Monitor Ccm(1)

<27.2> Return
Internal Process at Transaction

Requestor
Cinter(1)

Table 2. Mapping results between procedures in FCM and individual costs.

Step Title Category
Symbol
(Times)

<1> Create Coordination Context/Register
Internal Process at Transaction

Requestor
Cinter(1)

<2> Create Coordination Context Communication with Monitor Ccm(1)

<3> Optimized Transaction Communication with Monitor Ccm(1)

<4> Transaction Definition Notification Communication with Monitor Ccm(1)

<5> Register Response
Internal Process at Transaction

Requestor
Cinter(1)

<6> Transaction Prepare Request
Communication with Service

Providers
Ctrans(1)

<7> Transaction Definition Notification
Communication between Service

Providers and Monitor
Ccm(1)

<8> Prepare Response
Communication with Service

Providers
Ctrans(1)

<9> Track Event
Internal Process at Transaction

Requestor
Cinter(1)

<10> Transaction Event Notification Communication with Monitor Ccm(1)

<11> Data Exchanges (Request)
Communication with Service

Providers
Ctrans(1)

<12> Transaction Event Notification
Communication between Service

Providers and Monitor
Ccm(1)

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 355 Journal of Software Engineering and Applications

Continued

<13> Data Manipulate (1 PC)
Internal Process at Service

Providers
Cdm(1)

<14> Data Exchanges (Response)
Communication with Service

Providers
Ctrans(1)

<15> Transaction Event Notification
Communication between Service

Providers and Monitor
Ccm(1)

<16> Track Event
Internal Process at Transaction

Requestor
Cinter(1)

<17> Transaction Event Notification Communication with Monitor Ccm(1)

<18> Verification
Internal Process at Transaction

Requestor
Cinter(1)

<19> Verification Communication with Monitor Ccm(2)

<20.1> Close
Internal Process at Transaction

Requestor
Cinter(1)

<21.1> Safepoint Communication with Monitor Ccm(1)

<22.1> Safepoint/Destroy Internal Process at Monitor Cdm(1)

<23.1> Return Communication with Monitor Ccm(1)

<24.1> Return
Internal Process at Transaction

Requestor
Cinter(1)

<20.2> Compensate
Internal Process at Transaction

Requestor
Cinter(1)

<21.2> Compensate (Request)
Communication with Service

Providers
Ctrans(1)

<22.2> Transaction Event Notification
Communication between Service

Providers and Monitor
Ccm(1)

<23.2> Inverse (1 PC)
Internal Process at Service

Providers
Cdm(1)

<24.2> Compensate (Response)
Communication with Service

Providers
Ctrans(1)

<25.2> Transaction Event Notification
Communication between Service

Providers and Monitor
Ccm(1)

<26.2> Track Event
Internal Process at Transaction

Requestor
Cinter(1)

<27.2> Transaction Event Notification Communication with Monitor Ccm(1)

<28.2> Destroy Internal Process at Monitor Cdm(1)

<29.2> Return Communication with Monitor Ccm(1)

<30.2> Return
Internal Process at Transaction

Requestor
Cinter(1)

procedures from <20.2> to <30.2> in Table 2 correspond to the case that ended
in a failure and applied a compensation process.

In particular, as mentioned in Section 3.1, we have introduced several clarifi-
cations in Table 1 because the manner specified in [3] contains some ambiguous

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 356 Journal of Software Engineering and Applications

points. As far as applying a coordination protocol such as WS-Coordination, the
set of procedures consisting of <1>, <5>, <7>, <8>, <9> is required. For instance,
<1> corresponds to the procedure that should be executed first in registration.
<5> means the completeness of the registration procedure at the requester side.
<7> is one of the procedures of the registration at the resource side and corres-
ponds to informing the context after receiving an application dependent mes-
sage at the PRM. In <7>, there is a paired procedure consisting of creating a
context and registering it in the detailed definition. <8> and <9> are also ele-
mental procedures for registering the context. As STM is the function of an in-
termediator, the created context should be forwarded to the coordinator. Then,
the acknowledgement should be returned to the STM and the PRM as a confir-
mation after successful execution. There is also a paired procedure consisting of
creating a context and registering when considering the exchange procedures in
detail.

Furthermore, there are a few explicit descriptions of the execution of the pro-
tocol corresponding to WS-AT in [3]. It is possible to interpret the usage of
WS-BA in [3] in two different ways. Without the particular approach of Saga [4],
it is possible to execute an elemental transaction in one phase commitment. In
this case, the procedures of two-phase commitment do not occur. Whereas using
the advanced layered approach of Saga, it is appropriate to assume an execution
of the elemental transaction in the two-phase commitment. In this case, there
are explicitly the procedures of 2PC corresponding to the status: prepare, pre-
pared, commit and committed.

If we express the probability of a transaction failure with probable variable f,
the mathematical expectation of the total cost is expressed as (6) in the case of
executing the CCM without two-phase commitment (2PC) under the most pri-
mitive environment in invoking services. Then, as for the expected total cost
(ETC) by normalization of the variable (4) as the average cost for primitive inte-
ractions of a transaction using communication, we derive (7). Furthermore, by
differentiating (7) with respect to f, we derive (8).

() ()()
()()

CCM NO2PCETC 1 4 3 13

4 3 2 2 17 .
inter cm dm trans

inter cm dm trans

f C C C k C

f C C C k C

= − ⋅ + + + + ⋅

+ ⋅ + + + + ⋅
 (6)

() ()normalized
CCM NO2PCETC 4 3 1 13 4 .inter cm dm

trans trans trans

C C C
f k k f f

C C C
= + + + ⋅ + + + ⋅ + (7)

()
()

normalized
CCM NO2PCd ETC

4 .
d

dm

trans

C
k

f C
= + + (8)

Conversely, the mathematical expectation of the total cost is expressed as (9)
in the case of executing the CCM with a two-phase commitment (2PC) under
the most primitive environment. Then, as for ETC by normalization of the vari-
able (4) we derive (10). Finally, the mathematical expectation of the total cost is
expressed as (11) in the case of carrying out the FCM under the most primitive
environment. Then, as for ETC by normalization of the variable (4) as the aver-

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 357 Journal of Software Engineering and Applications

age cost for primitive interactions of a transaction using communication, we de-
rive (12). Furthermore, by differentiating (12) with respect to f, we derive (13).

() ()()
()()

CCM 2PCETC 1 4 3 17

4 3 2 2 25 .
inter cm dm trans

inter cm dm trans

f C C C k C

f C C C k C

= − ⋅ + + + + ⋅

+ ⋅ + + + + ⋅
 (9)

() ()normalized
CCM 2PCETC 4 3 1 17 8 .inter cm dm

trans trans trans

C C C
f k k f f

C C C
= + + + ⋅ + + + ⋅ + (10)

() ()
()

FCMETC 1 7 12 2 4

8 14 3 6 .
inter cm dm trans

inter cm dm trans

f C C C C

f C C C C

= − ⋅ + + +

+ ⋅ + + +
 (11)

() ()

() ()

normalized
FCMETC 7 12 2

2 4 2 .

inter cm

trans trans

dm

trans

C C
f f

C C
C

f f
C

= + ⋅ + + ⋅

+ + ⋅ + +
 (12)

()normalized
FCMd ETC

2 2.
d

inter cm dm

trans trans trans

C C C
f C C C

= + + + (13)

Our evaluation was carried out using the above set of formulas and applying
the values of the variables given in Table 3. The ratio between the cost variable
expressed in (1) and the cost variable expressed in (4) is tentatively set as 0.11
because the average cost for the process within a physical site without any com-
munication is much smaller than the average cost for primitive interactions of a
transaction using communication. The ratio between the cost variable expressed
in (2) and another cost variable expressed in (4) is less than one and remains
within several times at the maximum. Because, the average cost for accessing the
monitor with communication is smaller than the average cost for primitive inte-
ractions of a transaction. Finally, the ratio between the cost variable expressed in
(3) and another cost variable expressed in (4) is less than one and remains
around one at the maximum, due to the similar reasons of the average cost for
writing data within a physical site with the cost variable expressed in (3). As
mentioned before, the variable k (k > 0) could directly be affected by the com-
plicity of topological relationships in invoking services due to aspects of the
CCM. Accordingly, we assume that the range of this variable should be specified
as Table 3 shows.

Table 3. Specified values to individual variables.

Variables Range Representative Value

Cinter/Ctrans 0.05 - 0.25 0.11

Ccm/Ctrans 0.2 - 2.2 0.5

Cdm/Ctrans 0.05 - 1.05 0.75

k 0.5 - 3.0 1.2

f 0.01 - 0.2 0.05

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 358 Journal of Software Engineering and Applications

Figure 6 depicts the result of the evaluation with respect to the dependency of
the ETC on the probability of transaction failure. According to (8) and (13), they
are linear functions. From this figure, we extract three insights: The first is that
there are very small influences on the costs by the growth of the probability due
to whether a transaction is aborted in both the CCM and FCM cases. It is im-
possible to grasp the tendency in the case of a larger probability of transaction
failure through Figure 6. However, empirically it looks like a rare case that the
probability of an abort is more than 20 percent, and it might not be a general
case. Based on this thought, the influences of the probability of a transaction
failure might be limited. The second is that the cost of the FCM tends to be low-
er under the specified conditions. This means that the FCM has an advantage in
resolving an uncompleted state caused by an abort in shorter time under the
given conditions. The third is that the existence of 2PC procedure in the CCM
obviously impacts the ETC.

Figure 7 depicts the result of the evaluation with respect to the dependency of
the ETC on the ratio between the Ccm and the Ctrans. According to this figure, as
far as applying fewer accesses to the monitor, the FCM could show its advantage
under certain conditions. However, the more expensive the accessed cost is to
the Monitor element, the more disadvantage cost is consumed in the ETC. Fur-
thermore, this factor might bring a worse result than that of increasing k, which
means degradation of the executed process during the negotiation in the CCM.
This also suggests that the degraded performance at the Monitor element in
terms of scalability might contribute to more stability of the CCM. More analys-
es might be meaningless because the value of k depends on the topological rela-
tionships in invoking the services.

Figure 8 depicts the result of the evaluation with respect to the dependency of
the ETC on the ratio between Cdm and Ctrans. One of the major insights from
Figure 8 is that there are no critical influences of the ETC by writing data within

Figure 6. Dependency of ETC on probability of a transaction failure.

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 359 Journal of Software Engineering and Applications

Figure 7. Dependency of ETC on ratio between Ccm and Ctrans.

Figure 8. Dependency of ETC on ratio between Cdm and Ctrans.

a physical site without any communication, regardless of CCM and FCM under
the given condition. Furthermore, the above suggests two subsidiary insights.
The first is that there are stronger factors that dominate the cost than writing
data within a physical site. These might potentially be accessing the Monitor
element in Figure 7 and the related cost of executing the negotiation process in
the CCM. The second is that the overhead to update a replica on a remote side
might be limited compared to the impacts of the mentioned stronger factors.
This feature suggests that making distributed replicas is sufficiently possible and
advantageous for maintaining reliability. This is important when thinking about
the items in the SLA.

4.3. Qualitative Evaluation Based on SLA

Because a SLA will be decided as the agreement between the service provider
and the user, it should be possible to contain some items despite guidelines [13].
However, it might be appropriate to involve items related to security, main-

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 360 Journal of Software Engineering and Applications

tained maximum response time, and availability and reliability in regard to error
occurrences. Security is out of the scope of our study.

Considering the response time of calling a service merely according to the
evaluation results in the previous session, there are several cases where it is pre-
ferable to select FCM at the initial safe point if maintaining the scalability in ac-
cessing the Monitor element. However, as higher density of invocation of trans-
actions leads to greater difficulty in maintaining the isolation among the trans-
actions, applying the CCM is definitely required. However, the CCM is also the
approach in which we are forced to use compensation. Consequently, it is prob-
able that the FCM could show an advantage under the conditions where scalable
accessing of the Monitor element could be implemented.

To make the error rate of transaction processing less than specified values,
using the alternative invocation of services becomes an available candidate, es-
pecially writing data within multiple physical sites. In particular, as Figure 8
shows, it does not impact the ETC much compared to the other negative poten-
tial factors. Furthermore, as Figure 6 shows, it could be denied mentioning that
the sensitivity of the ETC against the probability of a transaction failure is high.
Accordingly, it suggests that the requirements on availability and reliability are
not the most critical factors when selecting the approach at the initial safe point.
This insight could lead to the following: Selecting the CCM or FCM as the opti-
mized approach based on the SLA should primarily rely on the density of invo-
cation of transactions, but this does not naturally mean that availability and re-
liability are ignorable factors. In that case, we need to take two other items into
account other than the SLA. The first is the capability of the Monitor element in
regard to the scalable access as mentioned previously, and the second is the
complicity of service invocations. The former item is one of the typical issues at
the providers and the latter is a matter that the user should manage. Therefore,
both items are not related to the SLA directly, because they are not common for
both sides.

In spite of being independent from the SLA, there is one more point to be
considered when selecting the approach. That is flexibility in invoking services
in order to realize the required performance. This means a dynamic change at
run time. As the FCM has the preparation phase before executing a transaction,
the FCM tends to have less dependency on the specific protocol and to be en-
hanced more by loose coupling. The above feature might be included in the list
of requirements for supportable software in spite of not major points in the SLA.
We should regard the above features of the FCM more positive.

4.4. Relationships with Current Standards of Transaction
Processing

To the best of our knowledge, the standards of Web Service Transactions are li-
mited by only OASIS WS-AT and WS-BA based on SOAP messaging. Moreover,
there are just few practical activities about the standardization for RESTful ser-
vices, in spite of several efforts [9] [10] [14] [15]. Furthermore, there are cur-

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 361 Journal of Software Engineering and Applications

rently no standardized protocols to support FCM. As the features of the FCM,
there are three phases named as Preparation, Execution and Adjustment phases.
This approach is responsible for negotiating the execution plan of a transaction
prior to the actual execution between the opposite sides, whenever the compli-
cated relationships in service invocation should dynamically be changed, or
whenever there is insufficient information about supportable protocols by the
opposite sides. In this sense, it is difficult to map these phases with existing
standard protocols, and it is also expected to apply the RESTful style, which re-
lies on the HTTP protocol directly, because of fewer mismatches.

Finally, CCM explained in [3] relies on WS-BA with the specific extension.
However, as mentioned before, there are few explicit descriptions about execu-
tion of WS-AT. The existence of 2PC which is supported by WS-AT, in the
CCM obviously impacts the ETC. Currently, there might be potential require-
ments to modernize these protocols as CCM.

5. Related Work

In this section, we briefly discuss the relationships with other works. Presume
abort, Presume commit, One phase and Read-Only transactions are some tradi-
tional and well-known techniques of transaction optimization [16] [17]. How-
ever, we will not deal with them here. The area which we have focused on in ser-
vice computing is more complicated. Therefore, the related work can mainly be
categorized into the following two areas: The first is optimization of the transac-
tions with respecting the SLA. The second is purely about the protocols used in
the transactions.

As for the first area, when considering optimization of the transactions, we
need to take into account the SLA-Aware and QoS-Aware approaches. In [18],
the authors propose an integrated algorithm using both Transaction-Aware and
QoS-Aware approaches. Based on their orientation, their model is expressed as
an automaton about selectable Transactional Web Services and an algorithm for
it is specified. However, their major concern remains around the algorithm at
design time, and there is insufficient explanation of their architectural aspects at
run time.

In regard to QoS-Aware, there is another approach related to the selection of
services in Composite Web Service (CWS). This area has a relatively long history
of research. For instance, in [19], the method of QoS-Aware CWS selection at
run time is enhanced in order to realize global optimization combined with local
selection technique. They propose a hybrid approach to reduce the cost of cal-
culations for QoS optimization. However, selecting the approach while main-
taining specified constraints from the SLA is treated as an indirect sub-thesis,
although the selection of services in CWS is remarkable. Finally, the proposal of
this paper is an extension of our previous work [8], in which a concrete archi-
tecture for integrating Transaction-Aware with the mechanism for maintaining
the SLA categorized as QoS-Aware was proposed. Monitoring the current status
of a transaction has a crucial role in the entire approach. However, that previous

https://doi.org/10.4236/jsea.2019.129021

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 362 Journal of Software Engineering and Applications

work remains as a discussion how to select a reasonable approach for carrying
out compensations instead of the whole of the processing. This is one of the
main differences.

As for the second area, we need to limit the scope of our consideration be-
cause of the existence of a huge number of studies. Regarding the recovering
failures during running long-lived transactions, there is a comprehensive survey
by Colombo and Pace [20]. However, it already becomes outdated, because of
emergences of RESTful and microservice. As mentioned before, our FCM has
three phases named as Preparation, Execution and Adjustment. Substantially, it
could be categorized as a reservation-based protocol. As for this area the study
by Zhao, et al. is remarkable [21]. However, their study remains at the analysis
level in demonstrating the advantages of the reservation based protocol. There
are several factors that may impact the performance of the transactions from an
architectural aspect, and our approach can give further insight.

Finally, we will touch on the several recent works including the microservice
and elemental techniques in our approach. As for the compensation for a distri-
buted transaction in microservice, there is a study by Limón, et al. [22]. They
adopted Multi-Agent System to coordinate the compensation processes when a
failure occurs. In spite of considering how to handle the complicated transac-
tions with scalability, there are few explanations about how to maintain the iso-
lation between transactions. The approach by Ding et al. includes the common
elemental techniques with our proposal, such as OCC [23]. However, their focus
is on the operation reordering rather than selecting the protocol for optimiza-
tion as our major concern.

6. Conclusion

In this paper, we have proposed a new approach in which optimistic concurren-
cy control is adopted for long-lived transactions with two verification phases. By
using numerical simulation, it revealed the applicable conditions of the elemen-
tal transaction approaches and critical factors that dominate the performance in
executing long-lived transactions. As for future work, we aim to define the pro-
tocol in a formal way and modernize them. Furthermore, we will clarify the in-
fluences of the topological relationships in service invocations.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Kikuchi, S. (2010) On Realizing Quick Compensation Transactions in Cloud Com-

puting. In: Kikuchi, S., Sachdeva, S. and Bhalla, S., Eds., Databases in Networked
Information Systems. Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg, 46-64. https://doi.org/10.1007/978-3-642-12038-1_5

[2] Kikuchi, S. and Bhalla, S. (2014) Quick Compensation Technique for Long-Lived

https://doi.org/10.4236/jsea.2019.129021
https://doi.org/10.1007/978-3-642-12038-1_5

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 363 Journal of Software Engineering and Applications

Transactions in Cloud Based Database Environment. IEICE Technical Report
SC2013-19.1-5.

[3] Alrifai, M., Dolog, P., Balke, W.T. and Nejdl, W. (2009) Distributed Management of
Concurrent Web Service Transactions. IEEE Transactions on Service Computing, 2,
289-302. https://doi.org/10.1109/TSC.2009.29

[4] Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K. and Salem, K. (1991) Mod-
eling Long-Running Activities as Nested Sagas. IEEE Data Engineering, 14, 14-18.

[5] Reuter, A., Schneider, K. and Schwenkreis, F. (1997) Contracts Revisited. Advanced
Transaction Models and Architectures. In: Jajodia, S. and Kerschberg, L., Eds., Ad-
vanced Transaction Models and Architectures, Springer, Boston, MA, 127-151.
https://doi.org/10.1007/978-1-4615-6217-7_5

[6] Grefen, P., Vonk, J. and Apers, P. (2001) Global Transaction Support for Workflow
Management Systems: From Formal Specification to Practical Implementation. The
VLDB Journal, 10, 316-333. https://doi.org/10.1007/s007780100056

[7] Lee, J. and Son, S.H. (1993) Using Dynamic Adjustment of Serialization Order for
Real-Time Database Systems. Proceedings of the 14th IEEE Real-Time Systems
Symposium, Raleigh-Durham, NC, 66-75.

[8] Kikuchi, S. (2013) Architectural Design of a Compensation Mechanism for Long
Lived Transactions. In: Madaan, A., Kikuchi, S. and Bhalla, S., Eds., Databases in
Networked Information Systems. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 49-66. https://doi.org/10.1007/978-3-642-37134-9_4

[9] OASIS WS-TX TC (2009) OASIS Standard Web Services Atomic Transaction (WS-
Atomic Transaction) Version 1.2.
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html

[10] OASIS WS-TX TC (2007) OASIS Standard Web Services Business Activity (WS-
Business Activity) Version 1.1.
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.htm
l

[11] OASIS WSBPEL TC (2007) OASIS Standard Web Services Business Process Execu-
tion Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[12] Schäfer, M., Dolog, P. and Nejdl, W. (2008) An Environment for Flexible Advanced
Compensations of Web Service Transactions. ACM Transactions on the Web, 2,
Article No. 14. https://doi.org/10.1145/1346337.1346242

[13] Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benrernou, S.,
Brandic, I., Kertész, A., Parkin, M. and Carro, M. (2013) A Survey on Service Qual-
ity Description. ACM Computing Surveys, 46, Article No. 1.
https://doi.org/10.1145/2522968.2522969

[14] Mihindukulasooriya, N., Esteban-Gutierrez, M. and Garcia-Castro, R. (2014) Seven
Challenges for Restful Transaction Models. Proceedings of the 23rd International
Conference on World Wide Web, Seoul, Korea, 7-11 April 2014, 949-952.
https://doi.org/10.1145/2567948.2579218

[15] Pardon, G. and Pautasso, C. (2014) Atomic Distributed Transaction: A Restful De-
sign. Proceedings of the 23rd International Conference on World Wide Web, Seoul,
Korea, 7-11 April 2014, 943-948. https://doi.org/10.1145/2567948.2579221

[16] Mohan, C. and Lindsay, B. (1985) Efficient Commit Protocols for the Tree of
Processes Model of Distributed Transactions. ACM SIGOPS Operating Systems Re-
view, 19, 40-52. https://doi.org/10.1145/850770.850772

[17] JBoss Transaction Service 4.2.3. (2006) Web Service Transactions Programmers Guide,

https://doi.org/10.4236/jsea.2019.129021
https://doi.org/10.1109/TSC.2009.29
https://doi.org/10.1007/978-1-4615-6217-7_5
https://doi.org/10.1007/s007780100056
https://doi.org/10.1007/978-3-642-37134-9_4
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-os/wstx-wsat-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os/wstx-wsba-1.1-spec-os.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1145/1346337.1346242
https://doi.org/10.1145/2522968.2522969
https://doi.org/10.1145/2567948.2579218
https://doi.org/10.1145/2567948.2579221
https://doi.org/10.1145/850770.850772

S. Kikuchi, S. Bhalla

DOI: 10.4236/jsea.2019.129021 364 Journal of Software Engineering and Applications

JBoss.

[18] Hadded, J.E., Manouvrier, M. and Rukoz, M. (2010) TQoS: Transactional and
QoS-Aware Selection Algorithm for Automatic Web Service Composition. IEEE
Transaction on Service Computing, 3, 73-85. https://doi.org/10.1109/TSC.2010.5

[19] Alrifai, M., Risse, T. and Nejdl, W. (2012) A Hybrid Approach for Efficient Web
Service Composition with End-to-End QoS Constraints. ACM Transactions on the
Web (TWEB), 6, Article No. 7. https://doi.org/10.1145/2180861.2180864

[20] Colombo, C. and Pace, G.J. (2013) Recovery within Long-Running Transactions.
ACM Computing Surveys, 45, Article No. 28.
https://doi.org/10.1145/2480741.2480745

[21] Zhao, W., Moser, L.E. and Melliar-Smith, P.M. (2008) A Reservation-Based Ex-
tended Transaction Protocol. IEEE Transactions on Parallel and Distributed Sys-
tems, 19, 188-203. https://doi.org/10.1109/TPDS.2007.70727

[22] Limόn, X., Guerra-Hernández, A., Sánchez-García, A.J. and Arriaga, J.C.P. (2018)
SagaMAS: A Software Framework for Distributed Transactions in the Microservice
Architecture. 2018 6th International Conference in Software Engineering Research
and Innovation (CONISOFT), San Luis Potosí, Mexico, 24-26 October 2018, 50-58.
https://doi.org/10.1109/CONISOFT.2018.8645853

[23] Ding, B., Kot, L. and Gehrke, J. (2018) Improving Optimistic Concurrency Control
through Transaction Batching and Operation Reordering. Proceedings of the VLDB
Endowment, 12, 169-182. https://doi.org/10.14778/3282495.3282502

https://doi.org/10.4236/jsea.2019.129021
https://doi.org/10.1109/TSC.2010.5
https://doi.org/10.1145/2180861.2180864
https://doi.org/10.1145/2480741.2480745
https://doi.org/10.1109/TPDS.2007.70727
https://doi.org/10.1109/CONISOFT.2018.8645853
https://doi.org/10.14778/3282495.3282502

	Optimizing a Long-Lived Transaction with Verification Function
	Abstract
	Keywords
	1. Introduction
	2. Architecture Model
	2.1. Functional Layers and Features
	2.2. Entire Configuration
	2.3. Overview of System Behaviors

	3. Procedures and Protocols
	3.1. Concurrency Control Sensitive Protocol
	3.2. Reservation Protocol in Non-Concurrency Control

	4. Evaluation
	4.1. Overview
	4.2. Comparison between the CCM and the FCM
	4.3. Qualitative Evaluation Based on SLA
	4.4. Relationships with Current Standards of Transaction Processing

	5. Related Work
	6. Conclusion
	Conflicts of Interest
	References

