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Abstract 
Recently, several deep learning models have been successfully proposed and 
have been applied to solve different Natural Language Processing (NLP) 
tasks. However, these models solve the problem based on single-task super-
vised learning and do not consider the correlation between the tasks. Based 
on this observation, in this paper, we implemented a multi-task learning 
model to joint learn two related NLP tasks simultaneously and conducted 
experiments to evaluate if learning these tasks jointly can improve the system 
performance compared with learning them individually. In addition, a com-
parison of our model with the state-of-the-art learning models, including 
multi-task learning, transfer learning, unsupervised learning and feature 
based traditional machine learning models is presented. This paper aims to 1) 
show the advantage of multi-task learning over single-task learning in train-
ing related NLP tasks, 2) illustrate the influence of various encoding struc-
tures to the proposed single- and multi-task learning models, and 3) compare 
the performance between multi-task learning and other learning models in 
literature on textual entailment task and semantic relatedness task. 
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1. Introduction 

Traditional Deep Learning models typically care about optimizing a single me-
tric. We generally train a model for a specific task and then fine-tune the model 
until the system researches to the best performance [1]. A major problem with 
this single task learning technique is the data insufficient issue, i.e. a model re-
quires a large number of training samples to achieve a satisfied accuracy. In re-
cent years, multi-task learning has provided a good solution to solve this issue. 
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Inspired by human learning activities where people often apply the knowledge 
learned from previous tasks to help learn a new task, we would also like to con-
currently train multiple related tasks, each of which has limited training samples, 
within a single model, hoping that the knowledge contained in a task can be le-
veraged by other tasks [2]. 

In this paper, we implemented a multi-task learning model to joint learn two 
related NLP tasks, semantic relatedness and textual entailment, simultaneously. 
The proposed model contains two parts: a shared representation structure and 
an output structure. Following the previous research [3], the hard parameter 
sharing approach is used to build the representation structure, i.e. the parame-
ters of the representation layers are shared by both tasks. In the representation 
structure, a variety of encoding models, such as Recurrent Neural Network 
(RNN) models and Convolutional Neural Network (CNN) models, encoding 
contexts, including attention layer, max pooling layer and projection layer, and 
encoding directions (left-to-right or bi-directional) are implemented. The output 
structure has two output layers and each of them generates training loss for the 
corresponding task. The multi-task learning approach can be performed by 
combing and backpropagating the training losses calculated from the two task 
specific outputs. 

The semantic relatedness (a.k.a. semantic textual similarity) and textual en-
tailment are two related semantic level NLP tasks. The first task measures the 
semantic equivalence between two sentences. The output is a similarity score 
scaling from 0 to 5. Higher scores indicate higher similarities between sentences. 
The second task requires two input sentences as well, a premise sentence and a 
hypothesis sentence. It measures whether the meaning of the hypothesis sen-
tence can be determined from the premise sentence. There are typically three 
kinds of results: entailment, contradiction, and neutral, indicating that the 
meaning of the hypothesis sentence can be determined, contradict, or have 
nothing to do with the meaning of the premise sentence, respectively. 

[4] made the first attempt to propose a joint model to predict outputs of the 
semantic relatedness and textual entailment tasks. They used a multi-layer 
Bi-LSTMs to joint five NLP tasks: part-of-speech tagging, chunking, syntactic 
parsing, semantic relatedness and textual entailment. The lower tasks are trained 
in lower layers of the multi-layer Bi-LSTMs and are used as auxiliary task to im-
prove the performance of the tasks in higher linguistic level. Their model ob-
tained state-of-the-art or competitive results in literature on the five tasks. Dif-
ferent from their work, the contributions of our paper are as follows: 
• Unlike the above-mentioned paper that only evaluates the unidirectional in-

fluence from semantic relatedness to textual entailment, our work demon-
strates the mutual influence between semantic relatedness task and textual 
entailment task. 

• Compared with previous work that joint the tasks solely with a multi-layer 
Bi-LSTM structure, our work implemented and evaluated the multi-task 
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learning model based on a variety of structures with different encoding ar-
chitectures, encoding contexts and encoding directions, and analyzed the 
impact of different encoding methods to the proposed single- and multi-task 
learning models. 

• Our system achieved comparative results to state-of-the-art multi-task learning 
and transfer learning models and outperformed the state-of-the-art unsuper-
vised and feature based supervised machine learning models on the proposed 
tasks. 

Next section will give a brief mathematical background of the deep neural 
structures as well as some preliminary knowledge of multi-task learning. After 
that, we will illustrate the main structure of our system and discuss the training 
process. The experimental details and results are described in section 4. In sec-
tion 5, we will show the results, including feature ablation, comparative studies 
between the single- and multi-task learning models, and between our model and 
other state-of-the-art learning models. At the end, we will offer some conclu-
sions and discuss future works. 

2. Preliminaries 

This section describes the background knowledge of this paper, including an in-
troduction of different encoding structures (CNNs and RNNs), encoding contexts 
(attention layer, max pooling layer, and projection layer) and encoding directions 
(left-to-right or bi-directional), and the preliminary of multi-task learning. 

2.1. LSTM Neural Network 

Recurrent neural network [5] is the most commonly used deep learning struc-
ture to model sequential input data, since it can capture the long-term depen-
dencies of inputs. However, due to the vanishing gradient problem [6], some 
defects occur if the length of the sequences increases. LSTM neural network [7] 
have been proposed for overcoming the gradient vanishing problem by using a 
complex activation unit, LSTM unit, which is described below. 

A regular LSTM unit contains five components: an input gate ti , a forget gate 

tf , an output gate to , a new memory cell tc , and a final memory cell tc . 
Three adaptive gates ti , tf , to  and new memory cell tc  are computed based 
on the previous state 1th − , current input tx , and bias term b. The final memory 
cell tc  is a combination of previous cell content 1tc −  and new memory cell tc  
weighted by the forget gate tf  and input gate ti . The final output of the LSTM 
hidden state th  is computed using the output gate to  and final memory cell 

tc . The mathematical representation of the input gate ti , forget gate tf , output 
gate to , new memory cell tc , final memory cell tc  and the final LSTM hid-
den state th  is shown in Equations (1) to (6). 

( ) ( )( )1 #i i
t t ti W x U hσ −= +                     (1) 

( ) ( )( )1
f f

t t tf W x U hσ −= +                     (2) 
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( ) ( )( )1
o o

t t to W x U hσ −= +                      (3) 

( ) ( )( )1tanh c c
t t tc W x U h −= +                     (4) 

1t t t t tcc f c i−= ⊗ + ⊗                        (5) 

( )tanht t th o c= ⊗                        (6) 

Sometimes dependencies in sentences do not just appear from left-to-right 
and a word can have a dependency on another word before it. In this case, Bidi-
rectional LSTM (Bi-LSTM) [8] is used to read input data from both left-to-right 
and right-to-left directions. 

A Bi-LSTM network could be viewed as a network that maintains two hidden 
LSTM layers together, one for the forward propagation th



 and another for the 
backward propagation th



 at each time-step t. The final prediction ˆty  is gen-
erated through the combination of the score results produced by both hidden 
layers th



 and th


. Equation (7) to (9) illustrate the mathematical representa-
tions of a Bi-LSTM: 

( )1t t th f Wx Vh b−= + +
 

 

                     (7) 

( )1t t th f Wx Vh b−= + +
 

 

                     (8) 

( ) ( )1 1ˆ ;t t t ty g Uh c g U h h c− −
 = + = + 
 

               (9) 

Here, ˆty  is the predication of the Bi-LSTM system. The symbols → and ← in-
dicate directions. W, U are weight matrices that are associated with input tx  
and hidden states tx . U is used to combine the two hidden LSTM layers togeth-
er, b and c are bias terms, and g(x) and f(x) are activation functions. 

2.2. Attention and Projection Layer 

Different parts of an input sentence have different levels of significance. For in-
stance, in sentence “the ball is on the field”, the primary information of sentence 
is carried by the words “ball”, “on”, and “field”. LSTM network, though can 
handle gradient vanishing issue, still have a bias on the last few words over the 
words appearing in the beginning or middle of sentences. This is clearly not the 
natural way that we understand sentences. Attention mechanism [9] is a strategy 
to aggregate more informative words and ignore less important words in input 
sentences, and it is used to select important local patterns of inputs for the final 
representation. 

The attention mechanism is calculated in three steps. First, we feed the hidden 
state th  through a one-layer perceptron to get tu  which could be viewed as a 
hidden representation of th . We latter multiply tu  with a context vector wu  
and normalize results through a Softmax function to get the weight ta  of each 
hidden state th . The context vector could be viewed as a high-level vector to se-
lect informative hidden state and will be jointly learned during the training 
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process. The final sentence representation is computed as a sum over of the hid-
den state th  and its weights ta . The calculation steps of tu  and ta  are 
shown in Equation (10) and Equation (11). The mathematic representation that 
leads to the final sentence representation S is shown in Equation (12): 

( )tanht tu Wh b= +                       (10) 
T

T

e 
e

t w

t w

u u

t u u
t

a =
∑

                        (11) 

t ttS a h= ∑                          (12) 

A projection layer is another optimization layer to connect the hidden states 
of LSTM units to output layers. It is usually used to reduce the dimensionality of 
the representation (the LSTM output) without reducing its resolution. There are 
several implementations of such layers and, in this paper, we select a simple im-
plementation which is a feed forward neural network with one hidden layer. 

2.3. Basic CNN 

Convolutional Neural Network [10] [11], which can extract high-level features 
from groups of words, is another commonly used deep learning structure to 
model input data. In a CNN, a word embedding is represented as d

iw R∈ , 
where i is the ith word in the sentence and d is the dimension of the word em-
bedding. Given a sentence with n words, the sentence can thus be represented as 
an embedding matrix n dW R ×∈ . 

In the convolutional layer, several filters, also known as kernels, hdk R∈  will 
run over the embedding matrix W and perform convolutional operations to 
generate features ic . The convolutional operation is calculated as: 

( )T
: 1i i i hc f w k b+ − ⋅= +                     (13) 

where, b R∈  is the bias term and f is the activation function. For instance, a 
sigmoid function. : 1i i hw + −  is referred to the concatenation of vectors 1, ,i i hw w + − . 
h is the number of words that a filter is applied to and usually there are three fil-
ters with h equals to one, two or three to simulate the uni-gram, bi-gram and 
tri-gram models, respectively. 

[ ]1 2 1, , , n hc c c c − +=                        (14) 

A convolutional layer is usually followed by a max-pooling layer to select the 
most significant n-gram features across the whole sentence by applying a max 
operation { }ˆ maxc c=  on each filter. 

Inspired by [12], in this paper, we implemented a Hierarchical ConvNet as the 
representative of CNN models. The Hierarchical ConvNet is a network with 
many CNN layers in a hierarchical level. Each CNN layer is followed by a 
max-pooling layer to extract features from the CNN outputs. The final repre-
sentation of the sentence is the concatenation of the max-pooling outputs in dif-
ferent hierarchical levels. 
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2.4. Multi-Task Learning 

Multi-task Learning is a learning mechanism to improve performance on the 
current task after having learned a different but related concept or skill on a pre-
vious task. It can be performed by learning tasks in parallel while using a shared 
representation such that what is learned for each task can help other tasks be 
learned better. This idea can be backtracked to 1998, when [13] used the predic-
tion of different characteristics of road as auxiliary tasks for predicting the 
steering direction in a self-driving car. In recent years, multi-task learning has 
been used successfully across all applications of machine learning, including, 
speech recognition [14] [15] and [16] and computer vision [17] and [18]. 

In natural language processing, [19] proposed a language model using single 
convolutional neural network architecture to joint train and output a host of 
language processing predictions, including part-of-speech tags, chunks, named 
entity tags, semantic roles, etc. In recent years, researchers focused on combin-
ing NLP tasks with hierarchical architectures, i.e. different NLP tasks are ranked 
with their linguistic orders and the low-level tasks are supervised at lower layers 
of the joint model as auxiliary task to improve the performance of high-level 
tasks, such works include [20] and [4]. 

3. Approach 
3.1. Problem Formulation 

In order to formulate the problem, we first give the definition of Multi-task 
Learning from [2]. 

Definition 1. (Multi-Task Learning) Given m learning tasks { } 1

m
i i

T
=

 where 
all the tasks or a subset of them are related, multi-task learning aims to help im-
prove the learning of a model for iT  by using the knowledge contained in all or 
some of the m task. 

Based on the definition of Multi-task Learning, we can formulate our problem 
as { }2

1i i
T

=
, where m = 2 corresponding to the relatedness task ( 1T ) and entail-

ment task ( 2T ). Both tasks are supervised learning tasks accompanied by a 
training dataset iD  consisting of in  training samples, i.e., { }

1
, ini i

i j j j
D x y

=
= , 

where idi
jx R∈  is the jth training instance in iT  and i

jy  is its label. We de-
note by iX  the training data matrix for iT , ( )1 , ,

i

i i i
nX x x=   and iY  for its 

label. In our case, the two tasks share the same training instance but with differ-
ent labels ( 1 2X X=  and 1 2Y Y≠ ). Our object is to design and train a neural 
network structure to learn a mapping F: { }1 1 2

1
 , in

j j j j
X Y Y

=
→  or { }2 1 2

1
 , in

j j j j
X Y Y

=
→ . 

3.2. The System Structure 

Following the hard parameter sharing approach, we implemented a feed-forward 
neural network. The main structure of our system is illustrated in Figure 1. It 
contains three major layers: the input layer, the concatenation layer and the 
output layer. 
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Figure 1. The main structure of our system. (a) Bi-LSTM with attention layer. (b) Hierarchical ConvNet with 2 CNN Layers and 
tri-gram filter. 
 

In the input layer, two sentence embedding layers will first transform the in-
put sentences into semantic vectors, which can represent the semantic meanings 
of these sentences, using a variety of encoding structures. The part (a) and (b) of 
the Figure 1 show two examples of sentence encoder structures, a Bi-LSTM with 
attention and a Hierarchical ConvNet with two CNN layers. 

Except for the two examples shown in Figure 1, we implemented and experi-
mented with a verity of RNN and CNN based structures. Specifically, for the 
RNN based structures, we implemented a regular LSTM structure and compared 
its performance with Bi-LSTM structure to show the effect of different encoding 
directions (left-to-right and bi-directional) to the system. In addition, we added 
three different encoding layers (attention layer, max pooling layer and projec-
tion layer) on top of the Bi-LSTM structure to evaluate the influence of various 
encoding contexts to the system. For the CNN-based structures, we experi-
mented on different features of the Hierarchical ConvNet, such as different 
CNN filters (uni-gram, bi-gram and tri-gram filters) and the number of CNN 
layers (from one to four). 

The concatenation layer aims to create a vector that can combine the informa-
tion of the two sentence vectors. Following the previous research [21], we 
formed a semantic vector by concatenating the sentence vector pairs, together 
with the element-wise absolute different and multiplication between them. The 
concatenated vectors could be represented as (SV1, SV2, |SV1 − SV2|, SV1 ⊗ 
SV2). 

The input layer and the concatenation layer are shared by both tasks. During 
the training process, the input sentence pairs of both tasks will be processed by 
these shared layers and the parameters in these shared layers will be affected by 
both tasks simultaneously. 
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On top of the shared structure, we build two output layers, one for each task, 
to generate task specific outputs for the given two tasks. In term of machine 
learning, the semantic relatedness task is a regression task, so a linear function is 
used as the activation function to generate the relatedness scores between sen-
tence pairs. The textual entailment task is a classification problem, so a softmax 
function is selected as the activation function to generate a probabilistic distri-
bution of the entailment labels between the sentence pairs. 

3.3. Training 

The system can be learned by jointing and optimizing the two task specific loss 
functions simultaneously. For the relatedness task ( 1T ), mean square error loss 
between the system output y and the ground-true ŷ  score labeled in the cor-
pora are used as the training loss function. The mathematical formula is: 

( )2

1

1 ˆ 
n

mse i i
i

L y y
n =

= −∑                      (15) 

where, n is the number of training samples, and [ ]1,i n∈  is the index number 
of the training samples. 

For the entailment task ( 2T ), cross-entropy loss between the system output 
ŷ  and the ground-true label y is used as the loss function. The mathematical 

formula can be described as: 
3

1 1
log ˆ

n
j j

se i i
i j

yL y
= =

= −∑∑                      (16) 

where, n is the number of training samples, [ ]1,i n∈  is the index number of the 
training samples and [ ]1,3j∈  is the index number of class labels. 

The joint loss function is obtained by taking a weighted sum of the loss func-
tions of each of the two tasks, which is written as: 

1 2mse ceLoss L Lλ λ= +                      (17) 

where λ1 and λ2 are the weights of the loss function of similarity and entailment 
task and they will be added as hyperparameters during the training process. 
During the experiments, we first fine-turn the λ in a large range ϵ [0, 10000] and 
then realize the system can achieve the best performance when λ is narrow down 
to ϵ [1, 2]. 

4. Experimental Results 

This section shows the experimental results of the proposed model. The details 
of the experiments, including the use of the corpus, the evaluation metrics and 
the parameter settings, will be discussed first and the experimental results of the 
RNN and CNN based models will be shown afterwards. 

4.1. Corpus and Evaluation Metrics 

The Sentence Involving Compositional Knowledge (SICK) benchmark [22] is 
used to evaluate the performance of our system. The corpus contains a large 
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number of sentence pairs with rich lexical, syntactic and semantic phenomena, 
and a semantic relatedness score and entailment labels are labeled for each sen-
tence pair. An example of the SICK benchmark is shown in Table 1. 

We followed the standard split for the training, developing, and testing sets of 
the corpus. The accuracy is used as the evaluation method for the entailment 
task. The mathematic representation of the accuracy is: 

correct

total

Accuracy
N
N

=                       (18) 

where correctN  is the number of examples that has correct entailment labels. The 
and Pearson correlation coefficient (Pearson’s r) is used as the evaluation me-
thod for the relatedness task. The mathematic representation of the Pearson’s r is: 

( )
,

,
X Y

X Y

cov X Y
б б

ρ =                       (19) 

where X and Y are the predicated and ground true relatedness score of the test-
ing examples. cov is the covariance and ,X Yб б  are the standard deviation of X, 
Y. 

4.2. Experiment Settings 

The neural network model was trained using the gradient-based optimization 
Adam [23] with the learning rate of 0.01 and backpropagation. The word em-
beddings are initialized with 300-d Glove embeddings. 

For the RNN models, the hidden layer size of LSTM is 128 and the hidden 
layer size of the first fully connected layer is 128 and 256 corresponding to the 
LSTM and Bi-LSTM models. The hidden layer size of the second fully connected 
layer is 64. 

For the CNN models, the parameters of the filters are length = 128, stride = 1 
and padding = 1, and the layers of the Hierarchical ConvNet is from 1 to 4. The 
hidden layer size of the fully connected layers is the same as the RNN models. 
We run a max epoch of 20 and mini-batch of 64. All the experiments were per-
formed using PyTorch [24] on Nvidia GTX 1080 8 GBytes GPU server and Li-
nux 16.04-64 bit based operating system. 

4.3. Experimental Results with RNN Models 

For each RNN model, we compared between the single- and multi-task learning  
 

Table 1. An example of SICK dataset. 

Sentence Relatedness Entailment 

A: A player is running with the ball. 
B: Two teams are competing in a football match. 

2.6 Neutral 

A: A woman is dancing and singing in the train. 
B: A woman is performing in the rain. 

4.4 Entailment 

A: Two dogs are wrestling and hugging. 
B: There is no dog wrestling and hugging. 

3.3 Contradiction 
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models and illustrated the influence of different encoding methods (directions 
and contexts) to these models. Figure 2 and Figure 3 show the performances of 
single- and multi-task learning models with different encoding directions 
(left-to-right or bi-directional) and contexts (attention, max-pooling or projec-
tion layers) on textual entailment and semantic relatedness tasks. 

4.4. Experimental Results with CNN Models 

For the CNN models, we showed the performance a Hierarchical ConvNet with 
different convolutional layers and filters. Figure 4 and Figure 5 illustrate the 
performance of the Hierarchical ConvNet with one to four convolutional layers 
and three convolutional filters (uni-gram, bi-gram and tri-gram filters). CNN-2 
means the Hierarchical ConvNet contains 2 convolutional layers. 

5. Results Analysis and Comparison 

In this section, we will analyze the results of our experiments, including the  
 

 
Figure 2. The accuracy of the textual entailment task on the model with different encod-
ing contexts. 

 

 
Figure 3. The Pearson’s r score of the semantic relatedness task on the model with dif-
ferent encoding contexts. 
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Figure 4. The accuracy of the textual entailment task on the model with different filters 
and CNN layers. 

 

 
Figure 5. The Pearson’s r score of the semantic relatedness task on the model with dif-
ferent filters and CNN layers. 

 
comparisons 1) between the proposed single- and multi-task learning models on 
the given tasks, 2) among various encoding methods of the proposed RNN and 
CNN models, and 3) between our multi-task learning model and other 
state-of-the learning models in literature. 

5.1. The Comparison between Single- and Multi-Task  
Learning Models 

From the experiments, it is obvious that multi-task learning can achieve better 
results than single task learning on both tasks. In addition, we can observe that 
the performance improvement has a bias on textual entailment task over seman-
tic relatedness task. This observation can be explained by the task hierarchy 
theory in multi-task learning. In multi-task learning, the common features 
learned from multiple tasks are usually more sensitive to the high-level tasks 
than to the low-level tasks. In [4], they assumed that textual entailment task is in 
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a higher linguistic level than semantic relatedness task and our experimental re-
sults are consistent with this assumption. 

5.2. The Analysis of RNN Models 

Observing that Bi-LSTM performs consistently better than LSTM under every 
scenario from Figure 2 and Figure 3, we can conclude that bi-directional en-
coding is a better way to encoding sentences than unidirectional encoding for 
the given tasks. In addition, we also observe that the proposed encoding contexts 
(attention layer, max pooling layer and projection layer) can all increase the sys-
tem performance of the baseline Bi-LSTM model. 

Among these encoding contexts, max pooling layer and projection layer can 
achieve approximately the same performance and can both surpass the perfor-
mance of attention layer. This is because the limited amount of training data is 
slightly insufficient to train the proposed model, so the model starts to overfit 
the training data after the first several iterations of training. Projection layer and 
max pooling layer can avoid overfitting by reducing the dimensionality of the 
sentence representation. On the contrary, attention layer is used to select im-
portant components of sentences which does not have the ability to overcome 
overfitting. As a result, projection layer and max pooling layer show a relatively 
strong performance over attention layer. 

5.3. The Analysis of CNN Models 

We observe from Figure 4 and Figure 5 that uni-gram filter has the best per-
formance compared to bi-gram and tri-gram filters on both single- and mul-
ti-task learning models and this indicates that single word is better than group of 
words in the CNN model for the given tasks. 

We also observe that increasing the CNN layers of the Hierarchical ConvNet 
can hardly improve the system performance. The reason is also overfitting. Even 
though, increasing the number of CNN layers can gain the representation ability 
of the system, it also increases the complexity of the system and raises the risk of 
overfitting. 

5.4. Comparison with State-of-the-Art Learning Models 

Comparisons can also be made between our system with some of the recent 
state-of-the art learning models on the same benchmark, including the best su-
pervised learning model Dependency-tree LSTM [25] and the best hand-engineered 
models Illinois-LH [26], the best unsupervised sentence representation model 
fastText [27] and SkipThought [28], the best transfer learning model InferSent 
[29] and the previously mentioned the multitask-learning Joint Model [4]. The 
results of the comparison are listed in Table 2. 

From the results, we can observe that our system outperforms the best unsu-
pervised and feature engineered systems in literature on textual entailment task 
and achieves very competitive results compared to the transfer learning and  
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Table 2. The system performance of various architectures trained in different ways. Joint 
Model used mean squared error as the evaluation method for relatedness task, thus are 
not listed in the table. 

Model Relatedness Entailment 

Unsupervised Model 
FastText 0.815 78.3 

SkipThought 0.858 79.5 

Feature Enginnerred Model 
Dependency-Tree LSTM 0.868 -- 

Illinois-LH -- 84.5 

Transfer Learning Model InferSent 0.885 86.3 

Multi-task Learning Model 

Joint -- 86.8 

Ours-RNN 0.848 85.6 

Ours-CNN 0.849 85.4 

 
multi-task learning models. In addition, the performance of our model on se-
mantic relatedness task is comparable to other models in literature. 

The reason that the transfer learning outperforms our models is that transfer 
learning model takes advantage of knowledge learned from external tasks. For 
instance, the InferSent system is pre-trained with SNLI dataset, containing 520 K 
training instances on textual entailment tasks. When being applied to SICK 
benchmark, the knowledge learned from previous task can be directly trans-
ferred to a new task and improved the learning ability of the new task. On the 
contrary, our models do not rely on previous learned knowledge and were 
trained absolutely from scratch. 

The reason that the state-of-the-art multi-task learning model can outperform 
our models is that it used a hierarchical architecture. Research [20] has shown 
that hierarchical architecture is a better way than parallel architecture to com-
bine multiple tasks with different level, because such architecture can strength 
the influence form the low-level to high-level task and increase the performance 
of the high-level task. On the other side, parallel architecture allows us to ob-
serve the mutual influence between different tasks, instead of solely showing the 
influence from low-level task to high-level task in hierarchical architecture. 

6. Conclusion and Future Work 

In this paper, we explored the multi-task learning mechanisms in training re-
lated NLP tasks. We performed single- and multi-task learning on textual en-
tailment and semantic relatedness task with a variety of Deep Learning struc-
tures. Experimental results showed that learning these tasks jointly can lead to 
much performance improvement compared with learning them individually. 

We believe that this work only scratches the surface of multi-task learning on 
training related NLP tasks. Larger dataset, better architecture engineering and 
probably combining pre-training knowledge in the training process could bring 
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the system performance to the next level. 
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