
Journal of Software Engineering and Applications, 2019, 12, 199-214
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.126012 Jun. 24, 2019 199 Journal of Software Engineering and Applications

Multi-Task Learning for Semantic Relatedness
and Textual Entailment

Linrui Zhang, Dan Moldovan

Department of Computer Science, The University of Texas at Dallas, Richardson, USA

Abstract
Recently, several deep learning models have been successfully proposed and
have been applied to solve different Natural Language Processing (NLP)
tasks. However, these models solve the problem based on single-task super-
vised learning and do not consider the correlation between the tasks. Based
on this observation, in this paper, we implemented a multi-task learning
model to joint learn two related NLP tasks simultaneously and conducted
experiments to evaluate if learning these tasks jointly can improve the system
performance compared with learning them individually. In addition, a com-
parison of our model with the state-of-the-art learning models, including
multi-task learning, transfer learning, unsupervised learning and feature
based traditional machine learning models is presented. This paper aims to 1)
show the advantage of multi-task learning over single-task learning in train-
ing related NLP tasks, 2) illustrate the influence of various encoding struc-
tures to the proposed single- and multi-task learning models, and 3) compare
the performance between multi-task learning and other learning models in
literature on textual entailment task and semantic relatedness task.

Keywords
Deep Learning, Multi-Task Learning, Text Understanding

1. Introduction

Traditional Deep Learning models typically care about optimizing a single me-
tric. We generally train a model for a specific task and then fine-tune the model
until the system researches to the best performance [1]. A major problem with
this single task learning technique is the data insufficient issue, i.e. a model re-
quires a large number of training samples to achieve a satisfied accuracy. In re-
cent years, multi-task learning has provided a good solution to solve this issue.

How to cite this paper: Zhang, L.R. and
Moldovan, D. (2019) Multi-Task Learning
for Semantic Relatedness and Textual En-
tailment. Journal of Software Engineering
and Applications, 12, 199-214.
https://doi.org/10.4236/jsea.2019.126012

Received: May 13, 2019
Accepted: June 21, 2019
Published: June 24, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.126012
http://www.scirp.org
https://doi.org/10.4236/jsea.2019.126012
http://creativecommons.org/licenses/by/4.0/

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 200 Journal of Software Engineering and Applications

Inspired by human learning activities where people often apply the knowledge
learned from previous tasks to help learn a new task, we would also like to con-
currently train multiple related tasks, each of which has limited training samples,
within a single model, hoping that the knowledge contained in a task can be le-
veraged by other tasks [2].

In this paper, we implemented a multi-task learning model to joint learn two
related NLP tasks, semantic relatedness and textual entailment, simultaneously.
The proposed model contains two parts: a shared representation structure and
an output structure. Following the previous research [3], the hard parameter
sharing approach is used to build the representation structure, i.e. the parame-
ters of the representation layers are shared by both tasks. In the representation
structure, a variety of encoding models, such as Recurrent Neural Network
(RNN) models and Convolutional Neural Network (CNN) models, encoding
contexts, including attention layer, max pooling layer and projection layer, and
encoding directions (left-to-right or bi-directional) are implemented. The output
structure has two output layers and each of them generates training loss for the
corresponding task. The multi-task learning approach can be performed by
combing and backpropagating the training losses calculated from the two task
specific outputs.

The semantic relatedness (a.k.a. semantic textual similarity) and textual en-
tailment are two related semantic level NLP tasks. The first task measures the
semantic equivalence between two sentences. The output is a similarity score
scaling from 0 to 5. Higher scores indicate higher similarities between sentences.
The second task requires two input sentences as well, a premise sentence and a
hypothesis sentence. It measures whether the meaning of the hypothesis sen-
tence can be determined from the premise sentence. There are typically three
kinds of results: entailment, contradiction, and neutral, indicating that the
meaning of the hypothesis sentence can be determined, contradict, or have
nothing to do with the meaning of the premise sentence, respectively.

[4] made the first attempt to propose a joint model to predict outputs of the
semantic relatedness and textual entailment tasks. They used a multi-layer
Bi-LSTMs to joint five NLP tasks: part-of-speech tagging, chunking, syntactic
parsing, semantic relatedness and textual entailment. The lower tasks are trained
in lower layers of the multi-layer Bi-LSTMs and are used as auxiliary task to im-
prove the performance of the tasks in higher linguistic level. Their model ob-
tained state-of-the-art or competitive results in literature on the five tasks. Dif-
ferent from their work, the contributions of our paper are as follows:
• Unlike the above-mentioned paper that only evaluates the unidirectional in-

fluence from semantic relatedness to textual entailment, our work demon-
strates the mutual influence between semantic relatedness task and textual
entailment task.

• Compared with previous work that joint the tasks solely with a multi-layer
Bi-LSTM structure, our work implemented and evaluated the multi-task

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 201 Journal of Software Engineering and Applications

learning model based on a variety of structures with different encoding ar-
chitectures, encoding contexts and encoding directions, and analyzed the
impact of different encoding methods to the proposed single- and multi-task
learning models.

• Our system achieved comparative results to state-of-the-art multi-task learning
and transfer learning models and outperformed the state-of-the-art unsuper-
vised and feature based supervised machine learning models on the proposed
tasks.

Next section will give a brief mathematical background of the deep neural
structures as well as some preliminary knowledge of multi-task learning. After
that, we will illustrate the main structure of our system and discuss the training
process. The experimental details and results are described in section 4. In sec-
tion 5, we will show the results, including feature ablation, comparative studies
between the single- and multi-task learning models, and between our model and
other state-of-the-art learning models. At the end, we will offer some conclu-
sions and discuss future works.

2. Preliminaries

This section describes the background knowledge of this paper, including an in-
troduction of different encoding structures (CNNs and RNNs), encoding contexts
(attention layer, max pooling layer, and projection layer) and encoding directions
(left-to-right or bi-directional), and the preliminary of multi-task learning.

2.1. LSTM Neural Network

Recurrent neural network [5] is the most commonly used deep learning struc-
ture to model sequential input data, since it can capture the long-term depen-
dencies of inputs. However, due to the vanishing gradient problem [6], some
defects occur if the length of the sequences increases. LSTM neural network [7]
have been proposed for overcoming the gradient vanishing problem by using a
complex activation unit, LSTM unit, which is described below.

A regular LSTM unit contains five components: an input gate ti , a forget gate

tf , an output gate to , a new memory cell tc , and a final memory cell tc .
Three adaptive gates ti , tf , to and new memory cell tc are computed based
on the previous state 1th − , current input tx , and bias term b. The final memory
cell tc is a combination of previous cell content 1tc − and new memory cell tc
weighted by the forget gate tf and input gate ti . The final output of the LSTM
hidden state th is computed using the output gate to and final memory cell

tc . The mathematical representation of the input gate ti , forget gate tf , output
gate to , new memory cell tc , final memory cell tc and the final LSTM hid-
den state th is shown in Equations (1) to (6).

() ()()1 #i i
t t ti W x U hσ −= + (1)

() ()()1
f f

t t tf W x U hσ −= + (2)

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 202 Journal of Software Engineering and Applications

() ()()1
o o

t t to W x U hσ −= + (3)

() ()()1tanh c c
t t tc W x U h −= + (4)

1t t t t tcc f c i−= ⊗ + ⊗  (5)

()tanht t th o c= ⊗ (6)

Sometimes dependencies in sentences do not just appear from left-to-right
and a word can have a dependency on another word before it. In this case, Bidi-
rectional LSTM (Bi-LSTM) [8] is used to read input data from both left-to-right
and right-to-left directions.

A Bi-LSTM network could be viewed as a network that maintains two hidden
LSTM layers together, one for the forward propagation th



 and another for the
backward propagation th



 at each time-step t. The final prediction ˆty is gen-
erated through the combination of the score results produced by both hidden
layers th



 and th


. Equation (7) to (9) illustrate the mathematical representa-
tions of a Bi-LSTM:

()1t t th f Wx Vh b−= + +
 

 

 (7)

()1t t th f Wx Vh b−= + +
 

 

 (8)

() ()1 1ˆ ;t t t ty g Uh c g U h h c− −
 = + = + 
 

 (9)

Here, ˆty is the predication of the Bi-LSTM system. The symbols → and ← in-
dicate directions. W, U are weight matrices that are associated with input tx
and hidden states tx . U is used to combine the two hidden LSTM layers togeth-
er, b and c are bias terms, and g(x) and f(x) are activation functions.

2.2. Attention and Projection Layer

Different parts of an input sentence have different levels of significance. For in-
stance, in sentence “the ball is on the field”, the primary information of sentence
is carried by the words “ball”, “on”, and “field”. LSTM network, though can
handle gradient vanishing issue, still have a bias on the last few words over the
words appearing in the beginning or middle of sentences. This is clearly not the
natural way that we understand sentences. Attention mechanism [9] is a strategy
to aggregate more informative words and ignore less important words in input
sentences, and it is used to select important local patterns of inputs for the final
representation.

The attention mechanism is calculated in three steps. First, we feed the hidden
state th through a one-layer perceptron to get tu which could be viewed as a
hidden representation of th . We latter multiply tu with a context vector wu
and normalize results through a Softmax function to get the weight ta of each
hidden state th . The context vector could be viewed as a high-level vector to se-
lect informative hidden state and will be jointly learned during the training

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 203 Journal of Software Engineering and Applications

process. The final sentence representation is computed as a sum over of the hid-
den state th and its weights ta . The calculation steps of tu and ta are
shown in Equation (10) and Equation (11). The mathematic representation that
leads to the final sentence representation S is shown in Equation (12):

()tanht tu Wh b= + (10)
T

T

e
e

t w

t w

u u

t u u
t

a =
∑

 (11)

t ttS a h= ∑ (12)

A projection layer is another optimization layer to connect the hidden states
of LSTM units to output layers. It is usually used to reduce the dimensionality of
the representation (the LSTM output) without reducing its resolution. There are
several implementations of such layers and, in this paper, we select a simple im-
plementation which is a feed forward neural network with one hidden layer.

2.3. Basic CNN

Convolutional Neural Network [10] [11], which can extract high-level features
from groups of words, is another commonly used deep learning structure to
model input data. In a CNN, a word embedding is represented as d

iw R∈ ,
where i is the ith word in the sentence and d is the dimension of the word em-
bedding. Given a sentence with n words, the sentence can thus be represented as
an embedding matrix n dW R ×∈ .

In the convolutional layer, several filters, also known as kernels, hdk R∈ will
run over the embedding matrix W and perform convolutional operations to
generate features ic . The convolutional operation is calculated as:

()T
: 1i i i hc f w k b+ − ⋅= + (13)

where, b R∈ is the bias term and f is the activation function. For instance, a
sigmoid function. : 1i i hw + − is referred to the concatenation of vectors 1, ,i i hw w + − .
h is the number of words that a filter is applied to and usually there are three fil-
ters with h equals to one, two or three to simulate the uni-gram, bi-gram and
tri-gram models, respectively.

[]1 2 1, , , n hc c c c − +=  (14)

A convolutional layer is usually followed by a max-pooling layer to select the
most significant n-gram features across the whole sentence by applying a max
operation { }ˆ maxc c= on each filter.

Inspired by [12], in this paper, we implemented a Hierarchical ConvNet as the
representative of CNN models. The Hierarchical ConvNet is a network with
many CNN layers in a hierarchical level. Each CNN layer is followed by a
max-pooling layer to extract features from the CNN outputs. The final repre-
sentation of the sentence is the concatenation of the max-pooling outputs in dif-
ferent hierarchical levels.

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 204 Journal of Software Engineering and Applications

2.4. Multi-Task Learning

Multi-task Learning is a learning mechanism to improve performance on the
current task after having learned a different but related concept or skill on a pre-
vious task. It can be performed by learning tasks in parallel while using a shared
representation such that what is learned for each task can help other tasks be
learned better. This idea can be backtracked to 1998, when [13] used the predic-
tion of different characteristics of road as auxiliary tasks for predicting the
steering direction in a self-driving car. In recent years, multi-task learning has
been used successfully across all applications of machine learning, including,
speech recognition [14] [15] and [16] and computer vision [17] and [18].

In natural language processing, [19] proposed a language model using single
convolutional neural network architecture to joint train and output a host of
language processing predictions, including part-of-speech tags, chunks, named
entity tags, semantic roles, etc. In recent years, researchers focused on combin-
ing NLP tasks with hierarchical architectures, i.e. different NLP tasks are ranked
with their linguistic orders and the low-level tasks are supervised at lower layers
of the joint model as auxiliary task to improve the performance of high-level
tasks, such works include [20] and [4].

3. Approach
3.1. Problem Formulation

In order to formulate the problem, we first give the definition of Multi-task
Learning from [2].

Definition 1. (Multi-Task Learning) Given m learning tasks { } 1

m
i i

T
=

 where
all the tasks or a subset of them are related, multi-task learning aims to help im-
prove the learning of a model for iT by using the knowledge contained in all or
some of the m task.

Based on the definition of Multi-task Learning, we can formulate our problem
as { }2

1i i
T

=
, where m = 2 corresponding to the relatedness task (1T) and entail-

ment task (2T). Both tasks are supervised learning tasks accompanied by a
training dataset iD consisting of in training samples, i.e., { }

1
, ini i

i j j j
D x y

=
= ,

where idi
jx R∈ is the jth training instance in iT and i

jy is its label. We de-
note by iX the training data matrix for iT , ()1 , ,

i

i i i
nX x x=  and iY for its

label. In our case, the two tasks share the same training instance but with differ-
ent labels (1 2X X= and 1 2Y Y≠). Our object is to design and train a neural
network structure to learn a mapping F: { }1 1 2

1
 , in

j j j j
X Y Y

=
→ or { }2 1 2

1
 , in

j j j j
X Y Y

=
→ .

3.2. The System Structure

Following the hard parameter sharing approach, we implemented a feed-forward
neural network. The main structure of our system is illustrated in Figure 1. It
contains three major layers: the input layer, the concatenation layer and the
output layer.

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 205 Journal of Software Engineering and Applications

Figure 1. The main structure of our system. (a) Bi-LSTM with attention layer. (b) Hierarchical ConvNet with 2 CNN Layers and
tri-gram filter.

In the input layer, two sentence embedding layers will first transform the in-
put sentences into semantic vectors, which can represent the semantic meanings
of these sentences, using a variety of encoding structures. The part (a) and (b) of
the Figure 1 show two examples of sentence encoder structures, a Bi-LSTM with
attention and a Hierarchical ConvNet with two CNN layers.

Except for the two examples shown in Figure 1, we implemented and experi-
mented with a verity of RNN and CNN based structures. Specifically, for the
RNN based structures, we implemented a regular LSTM structure and compared
its performance with Bi-LSTM structure to show the effect of different encoding
directions (left-to-right and bi-directional) to the system. In addition, we added
three different encoding layers (attention layer, max pooling layer and projec-
tion layer) on top of the Bi-LSTM structure to evaluate the influence of various
encoding contexts to the system. For the CNN-based structures, we experi-
mented on different features of the Hierarchical ConvNet, such as different
CNN filters (uni-gram, bi-gram and tri-gram filters) and the number of CNN
layers (from one to four).

The concatenation layer aims to create a vector that can combine the informa-
tion of the two sentence vectors. Following the previous research [21], we
formed a semantic vector by concatenating the sentence vector pairs, together
with the element-wise absolute different and multiplication between them. The
concatenated vectors could be represented as (SV1, SV2, |SV1 − SV2|, SV1 ⊗
SV2).

The input layer and the concatenation layer are shared by both tasks. During
the training process, the input sentence pairs of both tasks will be processed by
these shared layers and the parameters in these shared layers will be affected by
both tasks simultaneously.

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 206 Journal of Software Engineering and Applications

On top of the shared structure, we build two output layers, one for each task,
to generate task specific outputs for the given two tasks. In term of machine
learning, the semantic relatedness task is a regression task, so a linear function is
used as the activation function to generate the relatedness scores between sen-
tence pairs. The textual entailment task is a classification problem, so a softmax
function is selected as the activation function to generate a probabilistic distri-
bution of the entailment labels between the sentence pairs.

3.3. Training

The system can be learned by jointing and optimizing the two task specific loss
functions simultaneously. For the relatedness task (1T), mean square error loss
between the system output y and the ground-true ŷ score labeled in the cor-
pora are used as the training loss function. The mathematical formula is:

()2

1

1 ˆ
n

mse i i
i

L y y
n =

= −∑ (15)

where, n is the number of training samples, and []1,i n∈ is the index number
of the training samples.

For the entailment task (2T), cross-entropy loss between the system output
ŷ and the ground-true label y is used as the loss function. The mathematical

formula can be described as:
3

1 1
log ˆ

n
j j

se i i
i j

yL y
= =

= −∑∑ (16)

where, n is the number of training samples, []1,i n∈ is the index number of the
training samples and []1,3j∈ is the index number of class labels.

The joint loss function is obtained by taking a weighted sum of the loss func-
tions of each of the two tasks, which is written as:

1 2mse ceLoss L Lλ λ= + (17)

where λ1 and λ2 are the weights of the loss function of similarity and entailment
task and they will be added as hyperparameters during the training process.
During the experiments, we first fine-turn the λ in a large range ϵ [0, 10000] and
then realize the system can achieve the best performance when λ is narrow down
to ϵ [1, 2].

4. Experimental Results

This section shows the experimental results of the proposed model. The details
of the experiments, including the use of the corpus, the evaluation metrics and
the parameter settings, will be discussed first and the experimental results of the
RNN and CNN based models will be shown afterwards.

4.1. Corpus and Evaluation Metrics

The Sentence Involving Compositional Knowledge (SICK) benchmark [22] is
used to evaluate the performance of our system. The corpus contains a large

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 207 Journal of Software Engineering and Applications

number of sentence pairs with rich lexical, syntactic and semantic phenomena,
and a semantic relatedness score and entailment labels are labeled for each sen-
tence pair. An example of the SICK benchmark is shown in Table 1.

We followed the standard split for the training, developing, and testing sets of
the corpus. The accuracy is used as the evaluation method for the entailment
task. The mathematic representation of the accuracy is:

correct

total

Accuracy
N
N

= (18)

where correctN is the number of examples that has correct entailment labels. The
and Pearson correlation coefficient (Pearson’s r) is used as the evaluation me-
thod for the relatedness task. The mathematic representation of the Pearson’s r is:

()
,

,
X Y

X Y

cov X Y
б б

ρ = (19)

where X and Y are the predicated and ground true relatedness score of the test-
ing examples. cov is the covariance and ,X Yб б are the standard deviation of X,
Y.

4.2. Experiment Settings

The neural network model was trained using the gradient-based optimization
Adam [23] with the learning rate of 0.01 and backpropagation. The word em-
beddings are initialized with 300-d Glove embeddings.

For the RNN models, the hidden layer size of LSTM is 128 and the hidden
layer size of the first fully connected layer is 128 and 256 corresponding to the
LSTM and Bi-LSTM models. The hidden layer size of the second fully connected
layer is 64.

For the CNN models, the parameters of the filters are length = 128, stride = 1
and padding = 1, and the layers of the Hierarchical ConvNet is from 1 to 4. The
hidden layer size of the fully connected layers is the same as the RNN models.
We run a max epoch of 20 and mini-batch of 64. All the experiments were per-
formed using PyTorch [24] on Nvidia GTX 1080 8 GBytes GPU server and Li-
nux 16.04-64 bit based operating system.

4.3. Experimental Results with RNN Models

For each RNN model, we compared between the single- and multi-task learning

Table 1. An example of SICK dataset.

Sentence Relatedness Entailment

A: A player is running with the ball.
B: Two teams are competing in a football match.

2.6 Neutral

A: A woman is dancing and singing in the train.
B: A woman is performing in the rain.

4.4 Entailment

A: Two dogs are wrestling and hugging.
B: There is no dog wrestling and hugging.

3.3 Contradiction

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 208 Journal of Software Engineering and Applications

models and illustrated the influence of different encoding methods (directions
and contexts) to these models. Figure 2 and Figure 3 show the performances of
single- and multi-task learning models with different encoding directions
(left-to-right or bi-directional) and contexts (attention, max-pooling or projec-
tion layers) on textual entailment and semantic relatedness tasks.

4.4. Experimental Results with CNN Models

For the CNN models, we showed the performance a Hierarchical ConvNet with
different convolutional layers and filters. Figure 4 and Figure 5 illustrate the
performance of the Hierarchical ConvNet with one to four convolutional layers
and three convolutional filters (uni-gram, bi-gram and tri-gram filters). CNN-2
means the Hierarchical ConvNet contains 2 convolutional layers.

5. Results Analysis and Comparison

In this section, we will analyze the results of our experiments, including the

Figure 2. The accuracy of the textual entailment task on the model with different encod-
ing contexts.

Figure 3. The Pearson’s r score of the semantic relatedness task on the model with dif-
ferent encoding contexts.

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 209 Journal of Software Engineering and Applications

Figure 4. The accuracy of the textual entailment task on the model with different filters
and CNN layers.

Figure 5. The Pearson’s r score of the semantic relatedness task on the model with dif-
ferent filters and CNN layers.

comparisons 1) between the proposed single- and multi-task learning models on
the given tasks, 2) among various encoding methods of the proposed RNN and
CNN models, and 3) between our multi-task learning model and other
state-of-the learning models in literature.

5.1. The Comparison between Single- and Multi-Task
Learning Models

From the experiments, it is obvious that multi-task learning can achieve better
results than single task learning on both tasks. In addition, we can observe that
the performance improvement has a bias on textual entailment task over seman-
tic relatedness task. This observation can be explained by the task hierarchy
theory in multi-task learning. In multi-task learning, the common features
learned from multiple tasks are usually more sensitive to the high-level tasks
than to the low-level tasks. In [4], they assumed that textual entailment task is in

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 210 Journal of Software Engineering and Applications

a higher linguistic level than semantic relatedness task and our experimental re-
sults are consistent with this assumption.

5.2. The Analysis of RNN Models

Observing that Bi-LSTM performs consistently better than LSTM under every
scenario from Figure 2 and Figure 3, we can conclude that bi-directional en-
coding is a better way to encoding sentences than unidirectional encoding for
the given tasks. In addition, we also observe that the proposed encoding contexts
(attention layer, max pooling layer and projection layer) can all increase the sys-
tem performance of the baseline Bi-LSTM model.

Among these encoding contexts, max pooling layer and projection layer can
achieve approximately the same performance and can both surpass the perfor-
mance of attention layer. This is because the limited amount of training data is
slightly insufficient to train the proposed model, so the model starts to overfit
the training data after the first several iterations of training. Projection layer and
max pooling layer can avoid overfitting by reducing the dimensionality of the
sentence representation. On the contrary, attention layer is used to select im-
portant components of sentences which does not have the ability to overcome
overfitting. As a result, projection layer and max pooling layer show a relatively
strong performance over attention layer.

5.3. The Analysis of CNN Models

We observe from Figure 4 and Figure 5 that uni-gram filter has the best per-
formance compared to bi-gram and tri-gram filters on both single- and mul-
ti-task learning models and this indicates that single word is better than group of
words in the CNN model for the given tasks.

We also observe that increasing the CNN layers of the Hierarchical ConvNet
can hardly improve the system performance. The reason is also overfitting. Even
though, increasing the number of CNN layers can gain the representation ability
of the system, it also increases the complexity of the system and raises the risk of
overfitting.

5.4. Comparison with State-of-the-Art Learning Models

Comparisons can also be made between our system with some of the recent
state-of-the art learning models on the same benchmark, including the best su-
pervised learning model Dependency-tree LSTM [25] and the best hand-engineered
models Illinois-LH [26], the best unsupervised sentence representation model
fastText [27] and SkipThought [28], the best transfer learning model InferSent
[29] and the previously mentioned the multitask-learning Joint Model [4]. The
results of the comparison are listed in Table 2.

From the results, we can observe that our system outperforms the best unsu-
pervised and feature engineered systems in literature on textual entailment task
and achieves very competitive results compared to the transfer learning and

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 211 Journal of Software Engineering and Applications

Table 2. The system performance of various architectures trained in different ways. Joint
Model used mean squared error as the evaluation method for relatedness task, thus are
not listed in the table.

Model Relatedness Entailment

Unsupervised Model
FastText 0.815 78.3

SkipThought 0.858 79.5

Feature Enginnerred Model
Dependency-Tree LSTM 0.868 --

Illinois-LH -- 84.5

Transfer Learning Model InferSent 0.885 86.3

Multi-task Learning Model

Joint -- 86.8

Ours-RNN 0.848 85.6

Ours-CNN 0.849 85.4

multi-task learning models. In addition, the performance of our model on se-
mantic relatedness task is comparable to other models in literature.

The reason that the transfer learning outperforms our models is that transfer
learning model takes advantage of knowledge learned from external tasks. For
instance, the InferSent system is pre-trained with SNLI dataset, containing 520 K
training instances on textual entailment tasks. When being applied to SICK
benchmark, the knowledge learned from previous task can be directly trans-
ferred to a new task and improved the learning ability of the new task. On the
contrary, our models do not rely on previous learned knowledge and were
trained absolutely from scratch.

The reason that the state-of-the-art multi-task learning model can outperform
our models is that it used a hierarchical architecture. Research [20] has shown
that hierarchical architecture is a better way than parallel architecture to com-
bine multiple tasks with different level, because such architecture can strength
the influence form the low-level to high-level task and increase the performance
of the high-level task. On the other side, parallel architecture allows us to ob-
serve the mutual influence between different tasks, instead of solely showing the
influence from low-level task to high-level task in hierarchical architecture.

6. Conclusion and Future Work

In this paper, we explored the multi-task learning mechanisms in training re-
lated NLP tasks. We performed single- and multi-task learning on textual en-
tailment and semantic relatedness task with a variety of Deep Learning struc-
tures. Experimental results showed that learning these tasks jointly can lead to
much performance improvement compared with learning them individually.

We believe that this work only scratches the surface of multi-task learning on
training related NLP tasks. Larger dataset, better architecture engineering and
probably combining pre-training knowledge in the training process could bring

https://doi.org/10.4236/jsea.2019.126012

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 212 Journal of Software Engineering and Applications

the system performance to the next level.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Ruder, S. (2017) An Overview of Multi-Task Learning in Deep Neural Networks.

arXiv: 1706.05098

[2] Zhang, Y. and Yang, Q. (2017) A Survey on Multi-Task Learning. arXiv: 1707.08114

[3] Caruana, R. (1993) Multitask Learning: A Knowledge-Based Source of Inductive
Bias. Proceedings of the Tenth International Conference on Machine Learning,
Amherst, 27-29 June 1993, 41-48.
https://doi.org/10.1016/B978-1-55860-307-3.50012-5

[4] Hashimoto, K., Xiong, C., Tsuruoka, Y. and Socher, R. (2017) A Joint Many-Task
Model: Growing a Neural Network for Multiple NLP Tasks. Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, Copenhagen,
Denmark, 7-11 September 2017, 1923-1933. https://doi.org/10.18653/v1/D17-1206

[5] Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986) Learning Representations
by Back-Propagating Errors. Nature, 323, 533-536.
https://doi.org/10.1038/323533a0

[6] Hochreiter, S., Bengio, Y., Frasconi, P. and Schmidhuber, J. (2001) Gradient Flow in
Recurrent Nets: The Difficulty of Learning Long-Term Dependencies.

[7] Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural
Computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735

[8] Schuster, M. and Paliwal, K.K. (1997) Bidirectional Recurrent Neural Networks.
IEEE Transactions on Signal Processing, 45, 2673-2681.
https://doi.org/10.1109/78.650093

[9] Lin, Z., Feng, M., dos Santos, C.N., Yu, M., Xiang, B., Zhou, B. and Bengio, Y.
(2017) A Structured Self-Attentive Sentence Embedding. arXiv: 1703.03130

[10] Lawrence, S., Giles, C.L., Tsoi, A.C. and Back, A.D. (1997) Face Recognition: A
Convolutional Neural-Network Approach. IEEE Transactions on Neural Networks,
8, 98-113. https://doi.org/10.1109/72.554195

[11] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) Imagenet Classification with
Deep Convolutional Neural Networks. NIPS'12 Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems, Lake Tahoe, Nevada,
3-6 December 2012, 1097-1105.

[12] Zhao, H., Lu, Z. and Poupart, P. (2015) Self-Adaptive Hierarchical Sentence Model.
Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos
Aires, Argentina, 25-31 July 2015, 4069-4076.

[13] Caruana, R. (1997) Multitask Learning. Machine Learning, 28, 41-75.
https://doi.org/10.1023/A:1007379606734

[14] Kim, S., Hori, T. and Watanabe, S. (2017) Joint CTC-Attention Based End-to-End
Speech Recognition Using Multi-Task Learning. 2017 IEEE International Confe-
rence on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 5-9 March 2017, 4835-4839. https://doi.org/10.1109/ICASSP.2017.7953075

[15] Wu, Z., Valentini-Botinhao, C., Watts, O. and King, S. (2015) Deep Neural Net-

https://doi.org/10.4236/jsea.2019.126012
https://doi.org/10.1016/B978-1-55860-307-3.50012-5
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.1038/323533a0
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/72.554195
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1109/ICASSP.2017.7953075

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 213 Journal of Software Engineering and Applications

works Employing Multi-Task Learning and Stacked Bottleneck Features for Speech
Synthesis. 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brisbane, QLD, Australia, 19-24 April 2015, 4460-4464.
https://doi.org/10.1109/ICASSP.2015.7178814

[16] Saon, G., Kurata, G., Sercu, T., Audhkhasi, K., Thomas, S., Dimitriadis, D., Cui, X.,
Ramabhadran, B., Picheny, M., Lim, L.-L., et al. (2017) English Conversational Tel-
ephone Speech Recognition by Humans and Machines. arXiv: 1703.02136
https://doi.org/10.21437/Interspeech.2017-405

[17] Long, M. and Wang, J. (2015) Learning Multiple Tasks with Deep Relationship
Networks. arXiv: 1506.021172

[18] Kendall, A., Gal, Y. and Cipolla, R. (2018) Multi-Task Learning Using Uncertainty
to Weigh Losses for Scene Geometry and Semantics. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18-23 June 2018, 7482-7491.

[19] Collobert, R. and Weston J. (2008) A Unified Architecture for Natural Language
Processing: Deep Neural Networks with Multitask Learning. Proceedings of the
25th International Conference on Machine Learning, Helsinki, Finland, 5-9 July
2008, 160-167. https://doi.org/10.1145/1390156.1390177

[20] Søgaard, A. and Goldberg, Y. (2016) Deep Multi-Task Learning with Low Level
Tasks Supervised at Lower Layers. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, Berlin, Germany, 7-12 August 2016,
231-235. https://doi.org/10.18653/v1/P16-2038

[21] Shao, Y. (2017) HCTI at SemEval-2017 Task 1: Use Convolutional Neural Network
to Evaluate Semantic Textual Similarity. Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, 3-4 Au-
gust 2017, 130-133. https://doi.org/10.18653/v1/S17-2016

[22] Marelli, M., Bentivogli, L., Baroni, M., Bernardi, R., Menini, S. and Zamparelli, R.
(2014) Semeval-2014 Task 1: Evaluation of Compositional Distributional Semantic
Models on Full Sentences through Semantic Relatedness and Textual Entailment.
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval
2014), Dublin, Ireland, 23-24 August 2014, 1-8. https://doi.org/10.3115/v1/S14-2001

[23] Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. ar-
Xiv: 1412.6980

[24] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L. and Lerer, A. (2017) Automatic Differentiation in Pytorch.
31st Conference on Neural Information Processing Systems (NIPS 2017), 4-9 De-
cember 2017, Long Beach, CA, USA, 1-4.

[25] Tai, K.S., Socher, R. and Manning, C.D. (2015) Improved Semantic Representations
from Tree-Structured Long Short Term Memory Networks. arXiv: 1503.00075
https://doi.org/10.3115/v1/P15-1150

[26] Lai, A. and Hockenmaier, J. (2014) Illinois-LH: A Denotational and Distributional
Approach to Semantics. Proceedings of the 8th International Workshop on Seman-
tic Evaluation (SemEval 2014), Dublin, Ireland, 23-24 August 2014, 329-334.
https://doi.org/10.3115/v1/S14-2055

[27] Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. (2017) Enriching Word Vec-
tors with Subword Information. Transactions of the Association for Computational
Linguistics, 5, 135-146. https://doi.org/10.1162/tacl_a_00051

[28] Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R., Urtasun, R., Torralba, A. and Fid-
ler, S. (2015) Skip-Thought Vectors. Advances in neural information processing

https://doi.org/10.4236/jsea.2019.126012
https://doi.org/10.1109/ICASSP.2015.7178814
https://doi.org/10.21437/Interspeech.2017-405
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/S17-2016
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/S14-2055
https://doi.org/10.1162/tacl_a_00051

L. R. Zhang, D. Moldovan

DOI: 10.4236/jsea.2019.126012 214 Journal of Software Engineering and Applications

systems 28 (NIPS 2015), Montreal, Canada, 7-12 December 2015, 3294-3302.

[29] Conneau, A., Kiela, D., Schwenk, H., Barrault, L. and Bordes, A. (2017) Supervised
Learning of Universal Sentence Representations from Natural Language Inference
Data. arXiv: 1705.02364.

https://doi.org/10.4236/jsea.2019.126012

	Multi-Task Learning for Semantic Relatedness and Textual Entailment
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. LSTM Neural Network
	2.2. Attention and Projection Layer
	2.3. Basic CNN
	2.4. Multi-Task Learning

	3. Approach
	3.1. Problem Formulation
	3.2. The System Structure
	3.3. Training

	4. Experimental Results
	4.1. Corpus and Evaluation Metrics
	4.2. Experiment Settings
	4.3. Experimental Results with RNN Models
	4.4. Experimental Results with CNN Models

	5. Results Analysis and Comparison
	5.1. The Comparison between Single- and Multi-Task Learning Models
	5.2. The Analysis of RNN Models
	5.3. The Analysis of CNN Models
	5.4. Comparison with State-of-the-Art Learning Models

	6. Conclusion and Future Work
	Conflicts of Interest
	References

