
Journal of Software Engineering and Applications, 2018, 11, 318-340
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2018.116020 Jun. 29, 2018 318 Journal of Software Engineering and Applications

Matching Source Code Using Abstract Syntax
Trees in Version Control Systems

Jonathan van den Berg, Hirohide Haga

Graduate School of Science and Engineering, Doshisha University, Kyoto, Japan

Abstract
Software projects are becoming larger and more complicated. Managing those
projects is based on several software development methodologies. One of
those methodologies is software version control, which is used in the majority
of worldwide software projects. Although existing version control systems
provide sufficient functionality in many situations, they are lacking in terms
of semantics and structure for source code. It is commonly believed that im-
proving software version control can contribute substantially to the develop-
ment of software. We present a solution that considers a structural model for
matching source code that can be used in version control.

Keywords
Version Control, Source Code Matching, Abstract Syntax Tree, Structured
Representation

1. Introduction

Version control systems are one of the most important tools in software
engineering. They are used to manage software projects that can consist of
millions of lines of code, and shared by hundreds of colleagues that all work on
the same software project. A version control system is the bridge between these
colleagues and allows them to work efficiently in the same computer documents
simultaneously. Nearly each and every software project where multiple people
collaborate to develop software uses such a version control system. Without
version control systems, the world would not have reached its current state as
software development would have proven to be a lot more difficult.

However, version control systems still have a lot of points for improvement.
Many problems still occur while using a version control system as its fundamentals
are flawed. Bryan O’Sullivan wrote the article “Making sense of revision-control

How to cite this paper: van den Berg, J.
and Haga, H. (2018) Matching Source Code
Using Abstract Syntax Trees in Version
Control Systems. Journal of Software Engi-
neering and Applications, 11, 318-340.
https://doi.org/10.4236/jsea.2018.116020

Received: May 29, 2018
Accepted: June 26, 2018
Published: June 29, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2018.116020
http://www.scirp.org
https://doi.org/10.4236/jsea.2018.116020
http://creativecommons.org/licenses/by/4.0/

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 319 Journal of Software Engineering and Applications

systems” in September 2009 [1] and stated that:
Much work could be done on version control systems’ formal foundations,

which could lead to more powerful and safer ways for developers to work
together.

This article is a research result that proposes one possible solution for such a
more powerful and safer version control system. This solution is inspired by the
research on version control systems conducted by Wouter Swierstra [2], who has
recently written the article “The Semantics of Version Control’’ [3] in 2014. In
his article he brings up several logical and mathematical solutions [4] to reason
about the state of a version control system. And does so by defining a semantics
and thus, laying a formal foundation.

Even though a formal foundation has been laid, the current solution still
seems to be flawed and can be further improved. This solution consists of a
mathematical approach that defines a semantics and while its approach does
allow us to reason about the state of a version control system, it does not truly
understand its contents. This has motivated us to come up with a better
approach that gives such insight to file contents. The contents of a software
project mainly consist of source code files, which are simple line-based text files
containing the source code of a software application. These lines of text contain
instructions for the computer to execute and are modeled after the chosen
programming language for the application. Therefore, they contain a certain
structure and have a syntax and a semantics so that the language can be reasoned
about. The solution we present is to utilize the structure and syntax of programming
languages in order to be able to reason about the semantics of a version control
system and is based upon “A 3-way merging algorithm for synchronizing
ordered trees: the 3DM merging and differencing tool for XML’’ [5] by Tancred
Lindholm. In the next few sections, we will show how it is related to our solution
for improving version control systems. Since then, however, no further essential
advancement was found in literatures. This is partly because of the less
understanding of the importance of theoretical background of version control
systems. Version control systems are widely used now and further advancement
requires the theoretical and semantical basis of them. Therefore, we try to
establish the more formal and theoretical basis of version control. By using our
proposed basis, advanced functions will be able to implement.

2. Problem Description
2.1. General Description

In this article, we will address how the structuring, matching and merging can be
improved over existing methods from an algorithmic point of view. When we
consider structuring, matching and merging, we will face certain problems that
many existing version control systems out there have been confronted with as
well:
 How can we convert source code into structured data?

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 320 Journal of Software Engineering and Applications

 How do we determine which parts they have in common in the structured
data?

 How can the structured data be merged both precisely and efficiently?
In addition, the algorithm that serves as a solution to the above stated

problems also faces certain requirements, with the most important requirements
being:
• Generalizable and applicable to multiple programming languages instead of a

single specific programming language.
• Well defined, a formal definition must be laid such that it can be reasoned

about and by all means undefined behavior should be avoided or even
impossible.

• No locking mechanisms can be involved; it should be possible to have
multiple branched files of a certain base file for optimal collaboration
possibilities.

• Deterministic, such that no randomness is involved and thus will always
produce the same output given some input or initial state.

Of course, there are other requirements as well, such as file management, but
we will consider those as basic version control system requirements and will
therefore not be discussed in this article. Conforming to all these requirements is
part of the challenge to design an algorithm that solves the previously mentioned
problems as well. Our approach regarding how we will meet these requirements
will be explained when we present the solution algorithm.

2.2. Converting Source Code into Structured Data

The approach used in popular version control systems is a line-based approach.
They divide a source code file in lines and structuring them in a linear manner,
such as a linked list or array. Given the fact that this method can be generalized
and used on any text-based file, it implies that it is a good method for merging
source code files as well. This answers the first problem regarding designing a
version control system in a simple way, but leads to issues when we face the
second problem. If we have to determine which parts two files have in common,
it will prove to be difficult as we have to check each line against another. Even if
we would consider this an efficient way, further difficulties will appear when
there are two simultaneous edits on the same line. In such a case there would be
a conflict, and it has to be resolved by either character by character merging or
manual conflict resolving as it does not truly understand the underlying
structure. It is commonly believed that general structural differencing problems
cannot be reduced to linear differencing problems [6]. In other words, we have
to provide a non-linear data structure that truly represents a source code file
contents.

2.3. Matching Common Parts in the Structured Data

The next problem we face is determining which parts two files have in common
in the structured data. If we want to change the structured data that represents a

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 321 Journal of Software Engineering and Applications

source file, then we have to change the algorithm that can detect parts that two
source files have in common, referred to as the matching algorithm from now on.
Ideally, we want to match as many parts as possible since it will save us the effort
in the merging stage. Although we will have a changed data structure, a
fundamental way of comparing should be obvious; string comparison. Since we
are dealing with plain text files, string comparison is almost unavoidable, just
like it is in existing version control systems. However, in the later section, we will
propose several other methods that can be used for the matching algorithm as
well.

3. Merging the Structured Data Precisely and Efficiently

Each time we want to merge two files, a so called conflict may occur. It means
that the version control system failed to merge the code and cannot proceed.
These conflicts have to be resolved by a developer and cannot be done
automatically. The correct source code has to be handpicked by the developer
and this has proven to be an annoying issue in the world of software engineering.
Resolving a conflict consumes time and slows down the development of the
software. In order to avoid conflicts, we should consider a precise but also
efficient algorithm based upon the matching algorithm. Part of this merging
algorithm is detecting where operations such as inserting, deleting and possibly
also replacing, moving and renaming find place [2].

Requirements for Matching and Merging

When a solution is provided, it also has to meet certain requirements. The first
and most important requirement it that it should be generalizable and applicable
to multiple programming languages. Being limited to a relatively small scope is
what we want to avoid, which is why we want it to be generalizable, much like
the common line-based approach. In order to be able to reason about, a well
defined and formation definition should be provided such that undefined
behavior can be avoided. In addition, the behavior of the algorithm should be
predictable in accordance with the definition, in such a way that developers are
not surprised when a conflict occurs. Although it is obvious in any modern
version control system, users should be able to work on the same file simultaneously.
Therefore, no locking mechanisms that restrict access to a certain file can be
involved such as in the case of the Source Code Control System (SCCS) [7]. In
fact, if such a locking mechanism were to be involved, it would be completely
unnecessary to provide a matching and merging algorithm in the first place. The
final major requirement is that the solution must be deterministic. No randomness
can be involved in the algorithm in such a way that a certain input always gives
the same output. In accordance to the second requirement specified, the
behavior should be well defined and predictable. No chances should be taken in
the matching algorithm, if we match two parts we need to be sure that they are
indeed the same. For the merging algorithm, operations should be detected in a
deterministic manner as well. The above requirements provide the fundamental

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 322 Journal of Software Engineering and Applications

basis of our algorithm as we should comply to them before considering a
solution that solves the problems mentioned in previous sections. We will
provided it exactly in next section.

4. Solution and Implementation

Throughout this section, we will provide the solution to the problem statement
described before. The semantics of current version control systems are lackluster
and should be redesigned in order to improve version control systems. As
Wouter Swierstra mentioned in his article “The Semantics of Version Control’’
[2]:

Version control systems manage the access to a (shared) mutable state.
Therefore, they should be designed using a logic for reasoning about such a
state.

He presents an approach where he sees a source code file as a sequence of
lines of text, which can be operated on by mathematical functions. This
approach allows us to reason about the mutable state of a version control system.
Although this allows us to reason about version control systems, it does not
allow us to reason about the true content of a source code file. Instead of a
line-based solution, we will present a solution with a syntax-based approach.

4.1. Using Abstract Syntax Trees as Internal Structure

The goal of our research is to merge source code by truly understanding its
contents. One thing that all programming languages have in common is that
they can be broken down into a so-called abstract syntax tree (AST), which is
commonly used in compilers and interpreters as well. For example, Figure 1 is
the data structure of a basic “if-statement’’:

Every programming language consists of a certain collection of syntax nodes
and syntax tokens. Usually syntax nodes correspond to non-terminal symbols
and syntax tokens correspond to terminal symbols. The scale of such a collection
is language specific and therefore a formal model exists for each individual
programming language. Syntax tokens are typically leaves in the AST as they are
merely a token and cannot be divided in to smaller components such that they
can have children as well. However, they can have so called syntax trivia, or
layout characters, which are essentially pieces of text that do not represent any
actual program code. Examples of trivia are white spaces, tabs, comments and so
on. Trivia are excluded from the AST when they are used to compile source code

Figure 1. The structure of “if-statement”.

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 323 Journal of Software Engineering and Applications

into an executable program, but for our case we should include them as we do
not want comments and white space to be discarded from our algorithm output.
Throughout this article, we will assume trivia to be included in their parent
token as it reduces tree size and reduces time complexity.

Tokens and trivia cannot construct a tree and that is where syntax nodes come
in. These do not represent any actual text content directly, but are composed of
syntax tokens and other syntax nodes rather than strings. In order to be able to
distinguish syntax nodes from each other they have a so called node kind, which
as one may expect, indicates the kind of the node.

Def. 1 Let n be a node in any given tree T, and *G the set of all possible
node kinds in a given programming language G, we denote the kind of n with
the function () *

GK n G∈ .
An example of a node kind would be a method declaration or an if-instruction.

Depending on the programming language, there may be very few to many kinds
of nodes. How this kind attribute will play a role in the matching algorithm, will
be made clear later in this section (Figure 2).

Although we have defined ASTs in a generic way above, it will quickly prove
that using only text-based nodes and tokens is not a feasible solution as
comparing text can be an expensive operation depending on the length of the
text. Therefore, we should provide another property that does not depend on the
input length, but only on the size of the AST in terms of nodes.

Hashing is a common method to determine equality between strings of large
sizes efficiently in constant or linear complexity. In order to apply hashing to an
AST, we have to apply hashing to every syntax token, syntax node and trivia in
the tree. We want each node to have a unique hash value depending on its
descendant nodes, such that we can determine equality between two hashed sub
trees. An existing data structure has already been invented roughly forty years
ago and is called a Merkle-tree, named after its inventor Ralph Merkle [8]. We
construct a tree based on the concept of a Merkle-tree in a bottom-up fashion,
where the leaves contain an initial hash value. The concept of this should sound
familiar, as the structure of it fits perfectly with the AST structure where leaves
are syntax tokens and all the ancestors are syntax nodes. Figure 3 is an example
tree where the leaves can be considered as syntax tokens (including trivia) and
its parents as syntax nodes:

Although the above example in Figure 3 shows a single hash value for each
node in the tree, our solution uses two hash values that can be used for two

Figure 2. An AST represented by nodes, tokens and trivia.

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 324 Journal of Software Engineering and Applications

Figure 3. An example of an a Merkle (hashed) tree.

kinds of equality between two nodes: a content hash and a structural hash. Both
are computed in a similar manner, as we described earlier, by computing a
node’s hash value based on its child nodes. However, there is a fundamental
difference; in an AST, both nodes and tokens have a structural kind. Therefore,
structural hashes can be calculated in a simple manner such as the pseudocode
described below:

On the contrary, only the tokens in the tree have a content value, as the

content of parent nodes is represented by the content of all descendant tokens in
left-to-right order. Therefore, we have to calculate the content hash depending
on whether it is a syntax token or not. Below is a similar but slightly altered
version of the one shown above:

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 325 Journal of Software Engineering and Applications

Using the two algorithms described above, we have a content hash and
structural hash for each syntax node and syntax token in the AST. In further
sections, it will become clear how we can utilize these hash values for an efficient
matching algorithm.

4.2. Determining Common and Similar Structured Data

Typically, determining common and similar parts between two pieces of text
does not prove to be a complicated process. However, these typical approaches
do not consider any structure other than a sequence of characters which is why
comparing characters is the only solution. In our case, we are dealing with a
more complicated structure that consists of many aspects and components.
Through out this section we will explain how we will utilize them in order to
produce an accurate, yet efficient algorithm to measure similarity.

We mentioned the use of hashing to solve the performance issue of comparing
large pieces of text, after having introduced use of hashing in an AST in the
previous section, we will now define two measures of node similarity; content
similarity and structural similarity. These similarity measures are used for the
matching algorithm and utilize the content hash and structural hash, when we
want to find a match for a certain node.

4.2.1. Measuring Content Similarity
Content similarity is defined by measuring similarity of the string content that is
contained by a pair of nodes n T∈ and m T ′∈ . A simple method to measure
string similarity between a pair of nodes is to perform a string similarity
algorithm on their entire content string at once. However, this gives us little
information about the amount of syntax tokens that were actually changed. In
order to get more information regarding tokens, we have to traverse descendant
tokens and compare the text they have in common instead. Which means they
must be structurally similar as well to a certain degree, otherwise its not possible
to know which syntax tokens to compare with each other. When comparing
syntax tokens, similarity is typically expressed in characters, in which case long
text tokens would be weighted heavier than short text tokens. This is something
we want to avoid, tokens should be weighted equally as a short text token
represents the same amount of information as a long text token. Therefore, for
syntax nodes and syntax tokens we define a fixed base weight to which we refer
to as node information weight. This weight may for example, differ depending
on the kind of the node.

While tokens only have a base weight, syntax nodes also include the weight of
their child nodes. In addition, we define content similarity based upon this
information weight. The definitions for information weight and content
similarity can be found below:

Def. 2 Let n be a node, we define the information weight for n as the base
weight plus the sum of its children () () ()

baseI I child IW n W n W n= +∑ .
Def. 3 Let n and m be a pair of syntax tokens, we denote the token

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 326 Journal of Software Engineering and Applications

information weight for n and m with the function () () (),
2

I I
I

W n W m
W n m

+
= .

Def. 4 Let n and m be a pair of syntax tokens, we denote content similarity
between n and m with () () (), , ,content text IS n m S n m W n m= ⋅ , where (),textS n m is
a normalized similarity algorithm such that ()0 , 1textS n m≤ ≤ .

The string similarity algorithm (),textS n m is undescribed thus far and can
be any string distance algorithm that produces acceptable results. There are
many existing string distance algorithms, such as the well-known “Levenshtein
distance’’ and Longest Common Subsequence algorithms’’. Although these
produce accurate results, we do not use the distance measure directly to measure
the similarity between a pair of nodes. This is because we use the string distance
as measure of certainty that one node really does match another, which we will
explain in further detail later on. Therefore, the time complexity becomes
important as long as the results of a given string similarity algorithm are
acceptable. Which means that we can use an algorithm that approximates string
similarity rather than precise string similarity.

The algorithm we use to measure string similarity is based on the “Q-gram
algorithm’’ which was originally defined in “Approximate string matching
with Q-grams and maximal matches’’ [9]. It was used instead of the more
commonly used edit distance, such as Levenshtein distance and Longest
Common Subsequence, due to running time complexity considerations. These
edit distance algorithms run in ()O nd , where d is the edit distance, whereas the
Q-gram distance can be computed in ()O n :

Def. 5 Let Σ be a finite set of elements (i.e. alphabet) and qΣ be all
sequences of length q over Σ . A Q-gram is a sequence 1 2, , , q qv a a a = ∈Σ  .

Def. 6 Let v be a Q-gram and []1 2, , , nx a a a=  a finite sequence. If

1 1, , ,i i i qv a a a x+ + − = ⊆  for some i, then v occurs in x. We denote the number
of occurrences of v in x with the function ()[]qG x v and denote the similarity
between two sequences x and y with: () ()[] ()[],q q qD x y G x v G y v= − .

In our algorithm we decide the length of Q based on the minimum length of
two sequences we want to compare, where the minimum length is denoted minl .
For a minimum length of equal to or less than 20, Q is 2 and otherwise Q is the
square root of minl :

() min
min

min

2 if 20

otherwise

l
Q l

l

≤= 


Based on the above definitions of the Q-gram algorithm, we have now defined
the measure that can evaluate the content similarity between a pair of syntax
tokens. The next step is to use the content similarity of tokens and propagate
their values up the tree structure as we want to be able to compare syntax nodes
as well. The concept behind content similarity between a pair of syntax nodes
(),n m is that we take the sum of the weighted content similarity of all
descendant syntax token pairs denoted (),i in m , such that:

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 327 Journal of Software Engineering and Applications

() () ()
()

, ,
,

,
text i i I i i

content
I i i

S n m W n m
S n m

W n m
⋅

= ∑
∑

This means that we must perform a certain kind of tree traversal, as we need
to construct the token pairs used in the above equation. Throughout this section,
“pair of nodes” has been mentioned several times for a reason. As in our
algorithm, we attempt to pair two nodes wherever it is possible, but without
spending too much time looking for the best match. The initial pair should be
straight-forward as it consists of the initial two input syntax nodes n and m such
that n T∈ and m T ′∈ . While the next step is to select a match for all childn
where childn is child node of n. The match is selected from m’s child nodes
denoted childm . The method to select a child from m that fits some childn
consists of two stages: filtering impossible matches and finding the best
matching child node within possible matches. The first stage is based on the kind
of a node, which we defined in previous section.

Def. 7 Let childn and childm be a pair of nodes, then childn and childm are
an impossible match if () ()G child G childK n K m≠ where ()G childK n and

()G childK m are the node kinds of childn and childm , and G is a given
programming language.

After filtering impossible matches and likely the majority of pairs, we should
find the best match from the possible matches. Should there be no matches left,
we then have a complete mismatch and content similarity of zero is assumed. If
we have only one possible match, our next iteration is clear as similarity should
be measured with the only possible match. However, in the case of multiple
possible matches we have to determine which match likely fits the original node,
referred to as the best match from here on.

We have to perform a matching procedure such that we compare the right
nodes with each other. This matching procedure is based upon the hash
algorithm explained previously and the structural similarity algorithm that we
will address in the next subsection. Even without knowing the exact details
regarding best match selection, the concept should be clear and the full content
similarity algorithm is below in pseudocode:

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 328 Journal of Software Engineering and Applications

4.2.2. Measuring Structural Similarity
Structural similarity is defined by comparing the kinds of the nodes in the
vicinity of two nodes n T∈ and m T ′∈ . First, we have to take certain subsets
of nodes S T⊆ and S T′ ′⊆ . In our solution we pick the nodes that are the
closest to the specified node. In addition, we specify a scope threshold and a
number threshold as we are only interested in a local scope within the vicinity of
the node. Based on our experiments, we found a scope threshold of 2 and a
number threshold of 20 to produce the best results, although this may vary
depending on the programming language. This leads to a result collection that
consists of (in order of selection):

1) Node itself 2) Left and right sibling
3) Parent 4) Children
5) Left-left and right-right sibling 6) Left and right siblings’ children
7) Grandchildren 8) Grandparent
If we define a scope and number threshold that are too small, the result will

represent similarity on a local level and a big scope and number threshold would
cause the result to represent similarity on a more global level. Therefore, we
should set them to values that gives us the best results. The method to build this
collection is an altered breadth first search and “explores” not only the edges of
the node, its parent and its children, but also its left sibling and right sibling.
Since we are working with a number threshold, we want a result collection that
contains as much valuable information as possible. Which is the reason why
edges were added for siblings, as they typically represent valuable structural
information about the location of a node.

Although the parent and children of a node describe its location as well, the
node kinds of its parent and children tend to be very similar or even the same for
all nodes of a certain kind, as in ASTs many nodes have a fixed set of possible
parents and children. For example, for a syntax token keyword “ class” its parent
will always be a class declaration syntax node. While the same thing applies to
siblings as well in some cases, ASTs tend to be very wide rather than deep, as a
result of the way programming languages are defined. Therefore, as they tend to
be more wide than deep, siblings contain more valuable information than

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 329 Journal of Software Engineering and Applications

parents and children, and is why we should add its left and right siblings first,
before adding its parent and children.

This leaves us with choosing priority between its parent and its children, of
which the decision is simple and straightforward. The children list can be very
long while a parent is only a single node by itself and with limited space in the
result collection, it is obvious that we should add a given node’s parent before its
children as the parent might be excluded if the child list fills the rest of the
results. The method can be implemented in ()O n where n is the number
threshold, since the AST is already sorted in depth-first-order. However, below
is a ()logO n n implementation for simplicity:

Now that a collection of closest nodes has been retrieved, the next step is to

determine how we can determine structural similarity between these two sets.
There are several algorithms that can measure the exact difference between two
trees, such as the tree edit distance (TED) algorithm developed by Zhang and
Shasha [6], and improved version of it such as RTED [10]. In order to run these
algorithms on our result collection, we would have to construct a tree structure
which would be possible in ()O n as they are ordered. However, these are
expensive in terms of both time and space complexity, for TED and RTED they
are ()4O n and ()3O n respectively. In addition, they consider distance per
operation, such as insert, edit and delete. They do not consider moving an entire
subtree as a specific operation, which we would like to treat as a special case and
preferably as a less expensive one.

Just like measuring content similarity, we can also approximate structural
similarity. Which means that we can use cheaper and less precise algorithms as
well, as long as they produce acceptable and representable results. In such a
context, we can again use the Q-gram algorithm [9]. In addition to the case with
content similarity, Q-gram goes not only provide a better time complexity, it
also solves the issues of subtrees moves being counted as an expensive operation
to a certain degree. The reason for this is that the Q-gram algorithm does not

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 330 Journal of Software Engineering and Applications

rely on the order of a sequence as much as other distance algorithms. For
example, consider we have two sequences x and y:

[]1,3,3,7,4,2,0x =

[]4,2,0,1,3,3,7y =

These two sequences can be seen as a sequence of node kinds represented by
string literals. Assuming Q = 2, then we can list all 2-grams [13, 33, 37, 74, 42, 20,
01], then the profile for x is []1,1,1,1,1,1,0 and for y []1,1,1,0,1,1,1 .
According to our definition giving for the Q-gram algorithm in the previous
section, ()2 ,D x y gives an edit distance of 2. Other algorithms such as
Levenshtein distance would give an edit distance of 6 while the only “change”
that actually happened was that a subsequence was moved. Tree edit distance
work in a similar way to Levenshtein distance and are therefore considered
inadequate for our similarity algorithm. Our conclusion is that the Q-gram
algorithm is the best solution for measuring local structural similarity and can be
defined as follows in pseudocode using our GetClosestNodes function we
defined earlier:

Based upon the above functions, we have defined a deterministic structural

similarity algorithm that runs in ()logO n n where n is the number threshold
for selecting the closest nodes. In the next section we will explain how we can
use structural similarity in the matching procedure.

4.3. Matching Nodes between ASTs

In the previous section we defined how we can separate measuring similarity
into two by defining content similarity and structural similarity. These
similarities are used in the matching algorithm to determine the certainty of
which node is the best match for some other node. This means that for each
node n in a tree T we try to find some matching node m in tree T’. At which
point we can say that its worst time complexity will be at least ()2O n . The
algorithm we present is based on the matching algorithm in “A 3-way merging
algorithm for synchronizing ordered trees - the 3DM merging and differencing
tool for XML’’ by Tancred Lindholm [5]. However, it is fundamentally different
in the actual matching stage as only its post-processing stage is similar.
Therefore, we will explain the matching stage in-depth while briefly explaining
the post-processing stage.

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 331 Journal of Software Engineering and Applications

4.3.1. Finding the Potential Candidates for a Node
Although the process of finding matches for a node is a part of the matching
stage, it is where we will use the content and structural similarity algorithms,
therefore it closely relates to the previous chapter and is the reason why we will
introduce it first. The match finding algorithm can be divided in two
components: finding exact or hash-based matches and finding fuzzy matches.

Finding a hash-based is as its name indicates, based on hash values. This is a
relatively simple process where for each node n ∈ tree T we look for a
matching node m ∈ tree T’ by comparing their content hash and structural
hash for equality. Since we are looking for an exact match, we should compare
more than hash values in case of hash collisions. Therefore, we also check for
equality for the following node attributes: node kind, total node information
weight, total (sub)tree size and total length of text contained within the node.
Although unequal nodes can still be a match, it is very unlikely and we will see in
the matching stage how we will deal with such collisions. A basic
implementation of a function that provides a list of exact or hash based matches
can be as follows:

In case no exact or hash-based matches are found, then we should look for

fuzzy matches as a node might have changed slightly and one is similar to a
certain degree. This degree we define as the fuzzy match threshold and is
necessary to make sure that we will not match nodes that are too dissimilar. In
our algorithm, we found a fuzzy matching threshold of 0.4 to be adequate as it
produced the best matching results without getting false matches.

When we iterate through a tree looking for a match, we first check whether
the candidate’s node kind is the same as the node we are trying to match to. If it
is not the same, we discard the node since it is an impossible match. Next we use
fuzzy matching threshold to compare to a weighted similarity between the
possible candidate and the node, using the content and structural similarity
algorithms we defined in the previous section. This weighted similarity value
calculated by defining a weight for both the content similarity and structural
similarity, denoted Wc and Ws. These weights can then be used to define the
weight similarity between two nodes n and m, such that:

() () (), , ,c content s structureS n m W S n m W S n m= ⋅ + ⋅

Using the above similarity function, for a node n we add a candidate m to our
set of candidate matches if (), tS n m F< where tF is the fuzzy matching
threshold. Similar to finding exact matches, we traverse a tree looking for a
match and make sure if the match is possible by comparing node kinds. An

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 332 Journal of Software Engineering and Applications

example of its implementation can be:

From the matches that are either an exact or fuzzy match, we select the best

match based upon its similarity distance. However, under the above definitions a
node can be part of multiple matches. The entire match procedure is more
complicated and can be divided into three sub-procedures and how we will deal
with multiple matches will be explained throughout the next few sections.

4.3.2. Matching Nodes with Potential Candidates
Our matching algorithm is partially based on the matching algorithm used in
3DM, and we explain the differences as well as why a different approach was
chosen. The fundamental thing we should realize is that if a match is found
between two nodes, then the entire subtree probably matches as well. Which is
why we should consider matching based on subtrees and is also where the first
difference is with 3DM as we do not use a so called truncated subtree as stated
by Tancred Lindhol [5]:

Let T be a tree, and T’ a tree for which all nodes n T ′∈ : n T∈ . Let Ts be the
tree which is obtained from T’ by replacing all leaf nodes in T’ with the subtrees
of T rooted at the leaf nodes. T’ is a truncated subtree of T iff Ts is a subtree of T.

Instead of a truncated subtree, we designed the algorithm around a complete
subtree. The procedure works by iteratively traversing T in breadth-first-order
and looking for matching nodes (or entire subtrees) in T’. Usually several
matching subtree candidates are found, in which case the subtree with the lowest
distance is used, unlike 3DM where it selects the subtree with the most nodes. In
case there are multiple matches with the same lowest distance, another selection
is performed based on previous matches done. For example, if the left siblings of
both nodes are matched to each other, then we prefer to use that match over
another match with the same distance.

Once the best matching subtree has been selected, the subtree nodes in T and
T’ are matched if they are structurally equal. We already have made a definition
for this when we defined a structural hash for each node, representing the
structure of its subtree. This allows us to check for equality in ()1O , and all we
have to do after match all the corresponding descendant nodes. In addition, the
subtree nodes in T are also tagged with a subtree tag, which uniquely identifies
the subtree. This is done to keep track of of the matched subtrees for later the

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 333 Journal of Software Engineering and Applications

post-processing stages. However, if there is no structural equality between the
matched nodes, the procedure iterates again for each child node of the matched
node, i.e. the nodes that were not yet matched. We will now look at each step of
the matching stage in some detail.

The tree traversal starts with breadth-first traversal using a queue, starting
each node im T ′∈ , we take the most similar candidate which is found by
searching for matches for some node m in T’. Nodes who match exactly (based
upon procedure FindExactMatches are considered first. If no such nodes are
found, we return all candidate nodes in T∈ for which (), i tS n m F≤ , provided
by FindFuzzyMatches and are then sorted by their distance similarity. We then
attempt to match the entire subtree to the most similar candidate if they are
structurally equal based on their structural hash. Should a hash collision occur,
we perform a rollback, unset all matches there were set in the subtree (identified
by subtree tag) and attempt matching to the next best candidate if it exists.
Otherwise, if no match was found or match was made that was no structurally
equal, then we enqueue all child nodes of mi and iteratively repeat the process
until the queue is empty. The entire procedure is described in pseudocode
below:

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 334 Journal of Software Engineering and Applications

4.3.3. Removing Matches of Small Copies
In our matching algorithm defined above, multiple nodes mi in tree T’ can be
matched with the same node n in tree T. A common case in matching source is
that curly brackets get matched together, even though they are structurally
barely related or not related at all to each other. Although this is completely fine,
we would like to be able to identify which match contains the original nodes and
remove copied matches such that they can be inserted in the merging algorithm
instead. The first post-processing procedure called RemoveSmallCopies stage
deals with this issue by defining a copy threshold on how much data must be
duplicated before we can consider it a copy rather than an insertion. The
procedure checks all nodes in T’, whose base match in T has several matches in
T’ (i.e. the base match is copied). If the copied subtree of T to which the node
belongs has an information weight smaller than a certain threshold, the match
should be removed and considered inserted instead. The information weight of a
node or subtree is the same as we defined in the content similarity section, and is
denoted ()IW n .

Sometimes, the subtrees mi of all matches to a node n are smaller than the
copy threshold. In this case we do not want to remove all the matchings, but
rather try to identify the original match, and leave it matched. We do it by
looking at the neighbors of the match’s subtree root: if the left and right siblings
match the left and right siblings in T, we add the information weight of the
matching trees to that of the candidate for match removal. Candidates that gets
an information weight higher than the copy threshold, or the candidate with the
highest information weight in case all subtrees have an information weight lower
than the copy threshold, will be considered valid matches.

4.3.4. Matching Similar Unmatched Nodes
Based on the matchings that were made before in the matching stage, we can
attempt to make additional matchings by looking at neighboring matches. The
second post-processing procedure called MatchSimilarUnmatched does exactly
that, and its task is to find such pairs of nodes and match them accordingly. The
procedure is relatively simple was defined as follows [5]:

Let m and n be a pair of unmatched nodes. If the parents of m and n are
matched, and if either the left or right siblings (if they exist) of m and n are
matched, m and n should be matched. If neither siblings match (possibly
because they do not exist), we will also match the nodes if both m and n are the
last or first node in the child list. Finally, if the child nodes of both m and n
match each other, then m and n should be matched as well.

4.3.5. Time Complexity Analysis of the Full Algorithm
We conclude the presentation of the matching algorithm by analyzing its
complexity. For the sake of the analysis we divide the matching algorithm in
four steps: structural similarity, content similarity, matching subtrees, and
removing small copies and matching similar unmatched nodes. In reality the
similarity algorithms are included in the matching subtrees step. Without

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 335 Journal of Software Engineering and Applications

further a due, based upon the descriptions of the algorithms described in
previous sections, we can define their time complexity as:

1) The procedure GetStructuralSimilarity is performed in ()logt tO C C ,
where tC a circumference threshold. This is trivially defined, since we visit at
most ()tO C nodes and then sort them in ()logt tO C C .

2) The procedure GetContentSimilarity is performed in ()logb aO S , where S is
the length of the string content with a subtree, a the branching factor of the trees
and the subtree has logb S levels, such that the total number of leaves is

log logb bS aa S= . This is true since similarity is measured per token pair which can
only be done from the leaves. The top node has work ()f S associated with it,
the next level has work ()f S b associated with each of a nodes and so forth.

3) The procedure MatchSubTrees is performed in

() ()()()log logb a
t tO N M O S O C C⋅ ⋅ + . For each node n in a tree T we look for a

matching node m in tree T’, where we have to check for both structural
similarity and content similarity in the worse case. Therefore, it’s time
complexity is ()()log logb a

t tO N M S C C⋅ ⋅ + using previous definitions.
4) The procedures RemoveSmallCopies and MatchSimilarUnmatched are

performed in ()logO N N and ()O N respectively as has been proven before
[5].

Our full algorithm consists of the above procedures, and in a reasonable
matching case we can make the assumption that; tC is so small compared to
the tree size that the time complexity of GetStructuralSimilarity can be reduced
to ()1O . Therefore, we can write the worst case time complexity of the full
algorithm as follows:

()() () () ()log log1 logb ba aO N M S O N N O N O N M S⋅ ⋅ + + + = ⋅ ⋅

However, this is absolute worst case where no matching subtrees are found at
all, which is never the case any realistic matching scenario. Typically we will be
able to to match entire subtrees at once in ()O N time in the procedure
MatchSubTrees, and if we assume there are D matched subtrees, we can define
the full algorithms worst time complexity as ()logb aO N D S⋅ ⋅ , where logb aS is
the amount of syntax tokens.

4.4. Merging Matched ASTs

Merging ASTs is the last stage of the algorithm and is where merging is
performed based on the matches that were made in the matching stage. During
this stage, certain ambiguities may occur which is referred to as a conflict. A
typical case of a conflict is that a merging algorithm cannot make sense of the
ASTs due to dissimilar structure, and in our case it can happen when no matches
were found for a certain node that already existed. This is the reason why the
matching stage of the algorithm is can be considered the most important.
Nonetheless, the merging stage is also important due to considerations such as
minimal distance and time complexity.

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 336 Journal of Software Engineering and Applications

In the Section 4.3 we introduced several algorithms how similarity can be
measured between nodes such that it can be used to match nodes between two
given trees. Based upon these matches, perform a merging algorithm that merges
these two trees into a merged one. Due to the amount of research already
performed on merging tree structures, there is actually no need for us to design
our own algorithm. Which is why we have chosen an existing merging algorithm
that is compatible with our matching algorithm; “A 3-way merging algorithm
for synchronizing ordered trees” by Tancred Lindholm [5].

The general idea of the algorithm he proposes is to traverse the trees T and T’
simultaneously such that matched nodes are traversed at the same time. Each
iteration of the traversal outputs a merge of two matched nodes that are
currently being visited to TM. In addition, the concept of a tree cursor is
introduced which points to the current position in a tree. The tree cursor may
point to a null node, which means the cursor is inactive. Cursors are denoted by
CT, where T is the tree that will be traversed by the cursor, while the the null
node is denoted ε. For example, suppose we have two trees T and T’, then the
cursors are written as TC and TC ′ .

Nodes that are put together for merging are called a merge pair and denoted
(),n m , where n and m are the nodes in the pair. Merge pairs can also contain
one null node, which represents an existing node for which we could not find a
match. In this case, the merge pair is denoted (),n ε . Lastly, the merge
algorithm assumes that the trees T and T’ are non-empty, that the matchings M
and M’ exist, and all cursors are initially positioned at the root of their associated
tree. These are the initial conditions for the algorithm and our matching
algorithm defined in the previous section provides such conditions and is
therefore compatible with the merging algorithm.

5. Testing and Evaluation

Now that the problem has been stated and its theoretical solution has been
proposed, the real-world experiments and their results can be presented which
have been carried out as a demonstration that the solution truly does work. In
this chapter, we will explain how we have implemented the solution and what
environment is required to be able to use the theoretical solution.

As an example programming language for the research, Microsoft’s. NET
language C# has been chosen as it is a well defined language and is commonly
used in real-world applications. Our theoretical solution defined in Chapter 4
assumes that a given AST as its input, which means a source code parser is
required. Although it is possible to write our own parser, we have decided not to
reinvent the wheel. Instead, we have chosen Roslyn as our parser, which was
recently released (July 2015). Since its release Roslyn is the official C# language
parser and compiler, developed by Microsoft over the past few years. In addition,
we have chosen MurmurHash3 as our hashing algorithm due to its simple
implementation, fast performance and low collision rate. Lastly, it should be
mentioned that no other libraries were used such that the implementation can be

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 337 Journal of Software Engineering and Applications

replicated in any other programming language provided that a parser is
available.

5.1. Overview of the Implementation

For testing and evaluation, the algorithm was implemented in C# and runs on
both. NET and Mono. C# was selected due mainly to the availability of a parser
that could parse C#, namely Roslyn. Although it would have been possible to use
another programming language as well, C# is similar to Java and both are widely
accepted in the current generation. In addition, thanks to several. NET standard
library features such as LINQ it saved a lot of time implementing basic
algorithms such as sorting algorithms. In this section, we give a brief overview of
the structure of the implementation. Readers who are interested in the details of
the implementation are recommended to start by reading this section to get an
overview and thereafter to read trough the source code.

The main class in the framework is Matching.cs, where you will find imple-
mentations of the matching algorithms can be found, such as MatchSubTrees,
RemoveSmallCopies and MatchSimilarUnmatched which were presented in the
previous chapter. The Matching class constructor takes two parameters, a base
node and a branch node where each of them represents the root of a source code
file.

Roots of both a base node and branch node can be constructed in a simple
manner by calling its constructor and passing a syntax tree that was parsed by
Roslyn. An example of constructing such a root node would be:

Most of the implementation of how nodes are built from their constructor can

be found in Node.cs, while the derivations BaseNode and BranchNode have
additional minor functionality and their definitions can be found in BaseNode.cs
and BranchNode.cs.

The high-level similarity algorithms can be found in Similarity.cs, such as
GetContentDistance, GetStructuralDistance and GetClosestNodes. The high-level
algorithms can make use of certain low-level similarity algorithms that can be
found in Distance.cs. The low-level algorithms implemented are Q-gram,
Levenshtein edit distance, Jaro-Wrinkler edit distance, Sift4 edit distance, and
Zhang and Shasha’s tree edit distance algorithms [11]. These algorithms have
been implemented to thoroughly test real-world examples in terms of matching
accuracy, consistency and time complexity. One of these real-world examples
will be shown in the next section.

5.2. A Real-World Example of Matching Two Files

Although we have tested many real-world cases throughout our research, we will
show one rather extreme example where many changes were applied to a file in

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 338 Journal of Software Engineering and Applications

order to demonstrate how robust the matching algorithm is. As the edited file is
a lot bigger than the original, we will simply the source code and only show the
areas where the code actually changed. In short, a new using directive was added,
the class identifiers were swapped, the order of methods was changed significantly
and other minor changes within those methods. This includes changes a method
declaration identifier and return type, while writing an additional invocation
expression with two parameters:

In the above example, we have a matching rate of 100%. Which means that we

were able to matched every node that existed in the original source code file, in
this case 76 out of all 76 nodes. The accuracy of our matching algorithm in this
example (and many others) is quite high considering how much the environment
changed.

6. Conclusion and Future Work

Throughout this article, we have introduced several existing version control
systems and explained why they need improvement in certain areas. One of
those areas is matching source code while truly understanding its actual content
which is the main topic we have chosen for this article. As such, we have defined

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 339 Journal of Software Engineering and Applications

a problem statement as to what problems need to be solved and which
requirements the solution must conform to. Although there are already several
existing matching and merging algorithms, none of these target programming
languages as a special case such that they can be reasoned about in a more
specific way.

The solution we present consists of a similarity algorithm and matching
algorithm that are partially based on the 3DM merging and differencing tool for
XML [5]. Although several concepts were derived from it, our solution is
fundamentally different in both implementation and accuracy for the similarity
and matching algorithm. We make use of both a content and structural hash,
based on the concept of a Merkle tree [8], such that equality checks can be
performed in constant time, where entire subtrees can be matched at once as
long as hash collisions are avoided. In addition, we define structural similarity of
a node based on its circumference within a certain scope and size threshold, and
perform a linear time similarity algorithm on its circumference that surprisingly
accurately approximates the distance. Content similarity has also been defined
and is measured by measuring similarity of each token’s content rather than an
entire string or line of text at once.

The matching algorithm accurately finds matches between two trees through
hash-based matching and fuzzy matching that uses the similarity algorithms.
Something that also should be noted is that all algorithms designed in this article
have been defined as iterative procedures rather than recursive procedures in
order to avoid stack overflows for large source code files. Examples of this are
use of breadth-first-search based on a queue and depth-first-search based on a
stack.

The theoretical solution has been thoroughly tested by developing a
framework based on the theory defined in Chapter 4. Using this framework, tests
on several real-world examples have been performed, of which one of them has
been presented in Chapter 5. The outcome of article experiments were satisfying
results, where source code files were often matched optimal and others
near-optimal. In some cases, matches were not found due to the text of tokens
being too dissimilar. Based on these results, a more advanced algorithm could be
designed that uses the values of content similarity and structural similarity in a
different manner.

We have addressed all problems and requirements stated in the problem
description by having defined several new algorithms that handle source code
matching efficiently and accurately. However, there is still a lot of points for
improvement in them, such improving the content similarity algorithm. The
amount of trivia surrounding a syntax token can be a huge amount compared to
the actual token, the content similarity algorithm does not consider this. In the
case of a large difference in the trivia, certain tokens may not be matched due to
trivia being too dissimilar. A possible solution would be to consider trivia
separately and giving them a small weight compared to the syntax token itself.

Furthermore, it should be investigated whether structural similarity can be

https://doi.org/10.4236/jsea.2018.116020

J. van den Berg, H. Haga

DOI: 10.4236/jsea.2018.116020 340 Journal of Software Engineering and Applications

performed in linear time rather than line arithmic time. The AST should already
have been sorted in depth-first-order by the parser, such that any particular
subtree can perhaps be generated in linear time as well by possibly using a linked
list structure.

In conclusion, we have designed a matching algorithm that performs
reasonably to very well in a real-world environment in terms of both time
complexity and matching precision. This article was inspired by Wouter
Swierstra who wrote the article “The Semantics of Version Control” [3] and the
solution algorithm has been based on the thesis of Tancred Lindholm, who
defined a three-way merging algorithm [5]. The author intends to develop
algorithms defined in this thesis further and strive to find a solution that will
truly be an improvement for existing version control systems, such that
developers can work more efficiently in software projects.

References
[1] O’Sullivan, B. (2009) Making Sense of Revision-Control Systems. Communications

of the ACM, 52, 56-62. https://doi.org/10.1145/1562164.1562183

[2] Loh, A. and Swierstra, W. (2008) A Principled Approach to Version Control.
http://www.andres-loeh.de/fase2007.pdf

[3] Jiang, L., Misherghi, G., Su, Z. and Glondu, S. (2007) DECKARD: Scalable and Ac-
curate Tree-Based Detection of Code Clones. Proceedings of 29th International
Conference on Software Engineering, Minneapolis, 20-26 May 2007, 96-105.

[4] Reynolds, J., et al. (2002) Separation Logic: A Logic for Shared Mutable Data Struc-
tures. Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science, Copenhagen, 22-25 July 2002, 55-74.
https://doi.org/10.1109/LICS.2002.1029817

[5] Lindholm, T., et al. (2001) A 3-Way Merging Algorithm for Synchronizing Ordered
Trees—The 3 dm Merging and Differencing Tool for X ml. Master’s Thesis, Helsin-
ki University of Technology, Otaniemi.

[6] Zhang, K. and Shasha, D. (1997) Approximate Tree Pattern Matching. Pattern
Matching in String, Trees and Arrays, Oxford University Press, Oxford, 341-371.

[7] Rochkind, M. (1975) The Source Code Control System (SCCS). Software Engineer-
ing, 1, 364-370. https://doi.org/10.1109/TSE.1975.6312866

[8] Merkle, R. (1979) Secrecy, Authentication, and Public Key Systems. Stanford Uni-
versity, Stanford, 86-95.

[9] Zhang, K. and Shasha, D. (1989) Simple Fast Algorithms for the Editing Distance
between Trees and Related Problems. SIAM Journal on Computing, 18, 1245-1262.
https://doi.org/10.1137/0218082

[10] Demaine, E.D., Mozes, S., Rossman, B. and Weimann, O. (2009) An Optimal De-
composition Algoritm for Tree Edit Distance. ACM Transactions on Algorithms, 6,
2:1-2:19.

[11] Fast Algorithms for the Unit Cost Editing Distance between Trees (1990) Compari-
son and Evaluation of Clone Detection Tools. Journal of Algorithms, 4, 581-621.

https://doi.org/10.4236/jsea.2018.116020
https://doi.org/10.1145/1562164.1562183
http://www.andres-loeh.de/fase2007.pdf
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/TSE.1975.6312866
https://doi.org/10.1137/0218082

	Matching Source Code Using Abstract Syntax Trees in Version Control Systems
	Abstract
	Keywords
	1. Introduction
	2. Problem Description
	2.1. General Description
	2.2. Converting Source Code into Structured Data
	2.3. Matching Common Parts in the Structured Data

	3. Merging the Structured Data Precisely and Efficiently
	Requirements for Matching and Merging

	4. Solution and Implementation
	4.1. Using Abstract Syntax Trees as Internal Structure
	4.2. Determining Common and Similar Structured Data
	4.2.1. Measuring Content Similarity
	4.2.2. Measuring Structural Similarity

	4.3. Matching Nodes between ASTs
	4.3.1. Finding the Potential Candidates for a Node
	4.3.2. Matching Nodes with Potential Candidates
	4.3.3. Removing Matches of Small Copies
	4.3.4. Matching Similar Unmatched Nodes
	4.3.5. Time Complexity Analysis of the Full Algorithm

	4.4. Merging Matched ASTs

	5. Testing and Evaluation
	5.1. Overview of the Implementation
	5.2. A Real-World Example of Matching Two Files

	6. Conclusion and Future Work
	References

