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Abstract 
Software projects are becoming larger and more complicated. Managing those 
projects is based on several software development methodologies. One of 
those methodologies is software version control, which is used in the majority 
of worldwide software projects. Although existing version control systems 
provide sufficient functionality in many situations, they are lacking in terms 
of semantics and structure for source code. It is commonly believed that im-
proving software version control can contribute substantially to the develop-
ment of software. We present a solution that considers a structural model for 
matching source code that can be used in version control. 
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1. Introduction 

Version control systems are one of the most important tools in software 
engineering. They are used to manage software projects that can consist of 
millions of lines of code, and shared by hundreds of colleagues that all work on 
the same software project. A version control system is the bridge between these 
colleagues and allows them to work efficiently in the same computer documents 
simultaneously. Nearly each and every software project where multiple people 
collaborate to develop software uses such a version control system. Without 
version control systems, the world would not have reached its current state as 
software development would have proven to be a lot more difficult. 

However, version control systems still have a lot of points for improvement. 
Many problems still occur while using a version control system as its fundamentals 
are flawed. Bryan O’Sullivan wrote the article “Making sense of revision-control 
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systems” in September 2009 [1] and stated that: 
Much work could be done on version control systems’ formal foundations, 

which could lead to more powerful and safer ways for developers to work 
together. 

This article is a research result that proposes one possible solution for such a 
more powerful and safer version control system. This solution is inspired by the 
research on version control systems conducted by Wouter Swierstra [2], who has 
recently written the article “The Semantics of Version Control’’ [3] in 2014. In 
his article he brings up several logical and mathematical solutions [4] to reason 
about the state of a version control system. And does so by defining a semantics 
and thus, laying a formal foundation. 

Even though a formal foundation has been laid, the current solution still 
seems to be flawed and can be further improved. This solution consists of a 
mathematical approach that defines a semantics and while its approach does 
allow us to reason about the state of a version control system, it does not truly 
understand its contents. This has motivated us to come up with a better 
approach that gives such insight to file contents. The contents of a software 
project mainly consist of source code files, which are simple line-based text files 
containing the source code of a software application. These lines of text contain 
instructions for the computer to execute and are modeled after the chosen 
programming language for the application. Therefore, they contain a certain 
structure and have a syntax and a semantics so that the language can be reasoned 
about. The solution we present is to utilize the structure and syntax of programming 
languages in order to be able to reason about the semantics of a version control 
system and is based upon “A 3-way merging algorithm for synchronizing 
ordered trees: the 3DM merging and differencing tool for XML’’ [5] by Tancred 
Lindholm. In the next few sections, we will show how it is related to our solution 
for improving version control systems. Since then, however, no further essential 
advancement was found in literatures. This is partly because of the less 
understanding of the importance of theoretical background of version control 
systems. Version control systems are widely used now and further advancement 
requires the theoretical and semantical basis of them. Therefore, we try to 
establish the more formal and theoretical basis of version control. By using our 
proposed basis, advanced functions will be able to implement. 

2. Problem Description 
2.1. General Description 

In this article, we will address how the structuring, matching and merging can be 
improved over existing methods from an algorithmic point of view. When we 
consider structuring, matching and merging, we will face certain problems that 
many existing version control systems out there have been confronted with as 
well: 
 How can we convert source code into structured data? 
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 How do we determine which parts they have in common in the structured 
data? 

 How can the structured data be merged both precisely and efficiently? 
In addition, the algorithm that serves as a solution to the above stated 

problems also faces certain requirements, with the most important requirements 
being: 
• Generalizable and applicable to multiple programming languages instead of a 

single specific programming language. 
• Well defined, a formal definition must be laid such that it can be reasoned 

about and by all means undefined behavior should be avoided or even 
impossible. 

• No locking mechanisms can be involved; it should be possible to have 
multiple branched files of a certain base file for optimal collaboration 
possibilities. 

• Deterministic, such that no randomness is involved and thus will always 
produce the same output given some input or initial state. 

Of course, there are other requirements as well, such as file management, but 
we will consider those as basic version control system requirements and will 
therefore not be discussed in this article. Conforming to all these requirements is 
part of the challenge to design an algorithm that solves the previously mentioned 
problems as well. Our approach regarding how we will meet these requirements 
will be explained when we present the solution algorithm. 

2.2. Converting Source Code into Structured Data 

The approach used in popular version control systems is a line-based approach. 
They divide a source code file in lines and structuring them in a linear manner, 
such as a linked list or array. Given the fact that this method can be generalized 
and used on any text-based file, it implies that it is a good method for merging 
source code files as well. This answers the first problem regarding designing a 
version control system in a simple way, but leads to issues when we face the 
second problem. If we have to determine which parts two files have in common, 
it will prove to be difficult as we have to check each line against another. Even if 
we would consider this an efficient way, further difficulties will appear when 
there are two simultaneous edits on the same line. In such a case there would be 
a conflict, and it has to be resolved by either character by character merging or 
manual conflict resolving as it does not truly understand the underlying 
structure. It is commonly believed that general structural differencing problems 
cannot be reduced to linear differencing problems [6]. In other words, we have 
to provide a non-linear data structure that truly represents a source code file 
contents. 

2.3. Matching Common Parts in the Structured Data 

The next problem we face is determining which parts two files have in common 
in the structured data. If we want to change the structured data that represents a 
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source file, then we have to change the algorithm that can detect parts that two 
source files have in common, referred to as the matching algorithm from now on. 
Ideally, we want to match as many parts as possible since it will save us the effort 
in the merging stage. Although we will have a changed data structure, a 
fundamental way of comparing should be obvious; string comparison. Since we 
are dealing with plain text files, string comparison is almost unavoidable, just 
like it is in existing version control systems. However, in the later section, we will 
propose several other methods that can be used for the matching algorithm as 
well. 

3. Merging the Structured Data Precisely and Efficiently 

Each time we want to merge two files, a so called conflict may occur. It means 
that the version control system failed to merge the code and cannot proceed. 
These conflicts have to be resolved by a developer and cannot be done 
automatically. The correct source code has to be handpicked by the developer 
and this has proven to be an annoying issue in the world of software engineering. 
Resolving a conflict consumes time and slows down the development of the 
software. In order to avoid conflicts, we should consider a precise but also 
efficient algorithm based upon the matching algorithm. Part of this merging 
algorithm is detecting where operations such as inserting, deleting and possibly 
also replacing, moving and renaming find place [2]. 

Requirements for Matching and Merging 

When a solution is provided, it also has to meet certain requirements. The first 
and most important requirement it that it should be generalizable and applicable 
to multiple programming languages. Being limited to a relatively small scope is 
what we want to avoid, which is why we want it to be generalizable, much like 
the common line-based approach. In order to be able to reason about, a well 
defined and formation definition should be provided such that undefined 
behavior can be avoided. In addition, the behavior of the algorithm should be 
predictable in accordance with the definition, in such a way that developers are 
not surprised when a conflict occurs. Although it is obvious in any modern 
version control system, users should be able to work on the same file simultaneously. 
Therefore, no locking mechanisms that restrict access to a certain file can be 
involved such as in the case of the Source Code Control System (SCCS) [7]. In 
fact, if such a locking mechanism were to be involved, it would be completely 
unnecessary to provide a matching and merging algorithm in the first place. The 
final major requirement is that the solution must be deterministic. No randomness 
can be involved in the algorithm in such a way that a certain input always gives 
the same output. In accordance to the second requirement specified, the 
behavior should be well defined and predictable. No chances should be taken in 
the matching algorithm, if we match two parts we need to be sure that they are 
indeed the same. For the merging algorithm, operations should be detected in a 
deterministic manner as well. The above requirements provide the fundamental 

https://doi.org/10.4236/jsea.2018.116020


J. van den Berg, H. Haga    
 

 

DOI: 10.4236/jsea.2018.116020 322 Journal of Software Engineering and Applications 
 

basis of our algorithm as we should comply to them before considering a 
solution that solves the problems mentioned in previous sections. We will 
provided it exactly in next section. 

4. Solution and Implementation 

Throughout this section, we will provide the solution to the problem statement 
described before. The semantics of current version control systems are lackluster 
and should be redesigned in order to improve version control systems. As 
Wouter Swierstra mentioned in his article “The Semantics of Version Control’’ 
[2]: 

Version control systems manage the access to a (shared) mutable state. 
Therefore, they should be designed using a logic for reasoning about such a 
state. 

He presents an approach where he sees a source code file as a sequence of 
lines of text, which can be operated on by mathematical functions. This 
approach allows us to reason about the mutable state of a version control system. 
Although this allows us to reason about version control systems, it does not 
allow us to reason about the true content of a source code file. Instead of a 
line-based solution, we will present a solution with a syntax-based approach. 

4.1. Using Abstract Syntax Trees as Internal Structure 

The goal of our research is to merge source code by truly understanding its 
contents. One thing that all programming languages have in common is that 
they can be broken down into a so-called abstract syntax tree (AST), which is 
commonly used in compilers and interpreters as well. For example, Figure 1 is 
the data structure of a basic “if-statement’’: 

Every programming language consists of a certain collection of syntax nodes 
and syntax tokens. Usually syntax nodes correspond to non-terminal symbols 
and syntax tokens correspond to terminal symbols. The scale of such a collection 
is language specific and therefore a formal model exists for each individual 
programming language. Syntax tokens are typically leaves in the AST as they are 
merely a token and cannot be divided in to smaller components such that they 
can have children as well. However, they can have so called syntax trivia, or 
layout characters, which are essentially pieces of text that do not represent any 
actual program code. Examples of trivia are white spaces, tabs, comments and so 
on. Trivia are excluded from the AST when they are used to compile source code 

 

 
Figure 1. The structure of “if-statement”. 

https://doi.org/10.4236/jsea.2018.116020


J. van den Berg, H. Haga 
 

 

DOI: 10.4236/jsea.2018.116020 323 Journal of Software Engineering and Applications 
 

into an executable program, but for our case we should include them as we do 
not want comments and white space to be discarded from our algorithm output. 
Throughout this article, we will assume trivia to be included in their parent 
token as it reduces tree size and reduces time complexity. 

Tokens and trivia cannot construct a tree and that is where syntax nodes come 
in. These do not represent any actual text content directly, but are composed of 
syntax tokens and other syntax nodes rather than strings. In order to be able to 
distinguish syntax nodes from each other they have a so called node kind, which 
as one may expect, indicates the kind of the node. 

Def. 1 Let n be a node in any given tree T, and *G  the set of all possible 
node kinds in a given programming language G, we denote the kind of n with 
the function ( ) *

GK n G∈ . 
An example of a node kind would be a method declaration or an if-instruction. 

Depending on the programming language, there may be very few to many kinds 
of nodes. How this kind attribute will play a role in the matching algorithm, will 
be made clear later in this section (Figure 2). 

Although we have defined ASTs in a generic way above, it will quickly prove 
that using only text-based nodes and tokens is not a feasible solution as 
comparing text can be an expensive operation depending on the length of the 
text. Therefore, we should provide another property that does not depend on the 
input length, but only on the size of the AST in terms of nodes. 

Hashing is a common method to determine equality between strings of large 
sizes efficiently in constant or linear complexity. In order to apply hashing to an 
AST, we have to apply hashing to every syntax token, syntax node and trivia in 
the tree. We want each node to have a unique hash value depending on its 
descendant nodes, such that we can determine equality between two hashed sub 
trees. An existing data structure has already been invented roughly forty years 
ago and is called a Merkle-tree, named after its inventor Ralph Merkle [8]. We 
construct a tree based on the concept of a Merkle-tree in a bottom-up fashion, 
where the leaves contain an initial hash value. The concept of this should sound 
familiar, as the structure of it fits perfectly with the AST structure where leaves 
are syntax tokens and all the ancestors are syntax nodes. Figure 3 is an example 
tree where the leaves can be considered as syntax tokens (including trivia) and 
its parents as syntax nodes: 

Although the above example in Figure 3 shows a single hash value for each 
node in the tree, our solution uses two hash values that can be used for two 

 

 
Figure 2. An AST represented by nodes, tokens and trivia. 
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Figure 3. An example of an a Merkle (hashed) tree. 

 
kinds of equality between two nodes: a content hash and a structural hash. Both 
are computed in a similar manner, as we described earlier, by computing a 
node’s hash value based on its child nodes. However, there is a fundamental 
difference; in an AST, both nodes and tokens have a structural kind. Therefore, 
structural hashes can be calculated in a simple manner such as the pseudocode 
described below: 

 
On the contrary, only the tokens in the tree have a content value, as the 

content of parent nodes is represented by the content of all descendant tokens in 
left-to-right order. Therefore, we have to calculate the content hash depending 
on whether it is a syntax token or not. Below is a similar but slightly altered 
version of the one shown above: 
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Using the two algorithms described above, we have a content hash and 
structural hash for each syntax node and syntax token in the AST. In further 
sections, it will become clear how we can utilize these hash values for an efficient 
matching algorithm. 

4.2. Determining Common and Similar Structured Data 

Typically, determining common and similar parts between two pieces of text 
does not prove to be a complicated process. However, these typical approaches 
do not consider any structure other than a sequence of characters which is why 
comparing characters is the only solution. In our case, we are dealing with a 
more complicated structure that consists of many aspects and components. 
Through out this section we will explain how we will utilize them in order to 
produce an accurate, yet efficient algorithm to measure similarity. 

We mentioned the use of hashing to solve the performance issue of comparing 
large pieces of text, after having introduced use of hashing in an AST in the 
previous section, we will now define two measures of node similarity; content 
similarity and structural similarity. These similarity measures are used for the 
matching algorithm and utilize the content hash and structural hash, when we 
want to find a match for a certain node. 

4.2.1. Measuring Content Similarity 
Content similarity is defined by measuring similarity of the string content that is 
contained by a pair of nodes n T∈  and m T ′∈ . A simple method to measure 
string similarity between a pair of nodes is to perform a string similarity 
algorithm on their entire content string at once. However, this gives us little 
information about the amount of syntax tokens that were actually changed. In 
order to get more information regarding tokens, we have to traverse descendant 
tokens and compare the text they have in common instead. Which means they 
must be structurally similar as well to a certain degree, otherwise its not possible 
to know which syntax tokens to compare with each other. When comparing 
syntax tokens, similarity is typically expressed in characters, in which case long 
text tokens would be weighted heavier than short text tokens. This is something 
we want to avoid, tokens should be weighted equally as a short text token 
represents the same amount of information as a long text token. Therefore, for 
syntax nodes and syntax tokens we define a fixed base weight to which we refer 
to as node information weight. This weight may for example, differ depending 
on the kind of the node. 

While tokens only have a base weight, syntax nodes also include the weight of 
their child nodes. In addition, we define content similarity based upon this 
information weight. The definitions for information weight and content 
similarity can be found below: 

Def. 2 Let n be a node, we define the information weight for n as the base 
weight plus the sum of its children ( ) ( ) ( )

baseI I child IW n W n W n= +∑ . 
Def. 3 Let n and m be a pair of syntax tokens, we denote the token 
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information weight for n and m with the function ( ) ( ) ( ),
2

I I
I

W n W m
W n m

+
= . 

Def. 4 Let n and m be a pair of syntax tokens, we denote content similarity 
between n and m with ( ) ( ) ( ), , ,content text IS n m S n m W n m= ⋅ , where ( ),textS n m  is 
a normalized similarity algorithm such that ( )0 , 1textS n m≤ ≤ . 

The string similarity algorithm ( ),textS n m  is undescribed thus far and can 
be any string distance algorithm that produces acceptable results. There are 
many existing string distance algorithms, such as the well-known “Levenshtein 
distance’’ and Longest Common Subsequence algorithms’’. Although these 
produce accurate results, we do not use the distance measure directly to measure 
the similarity between a pair of nodes. This is because we use the string distance 
as measure of certainty that one node really does match another, which we will 
explain in further detail later on. Therefore, the time complexity becomes 
important as long as the results of a given string similarity algorithm are 
acceptable. Which means that we can use an algorithm that approximates string 
similarity rather than precise string similarity. 

The algorithm we use to measure string similarity is based on the “Q-gram 
algorithm’’ which was originally defined in “Approximate string matching 
with Q-grams and maximal matches’’ [9]. It was used instead of the more 
commonly used edit distance, such as Levenshtein distance and Longest 
Common Subsequence, due to running time complexity considerations. These 
edit distance algorithms run in ( )O nd , where d is the edit distance, whereas the 
Q-gram distance can be computed in ( )O n : 

Def. 5 Let Σ  be a finite set of elements (i.e. alphabet) and qΣ  be all 
sequences of length q over Σ . A Q-gram is a sequence 1 2, , , q qv a a a = ∈Σ  . 

Def. 6 Let v be a Q-gram and [ ]1 2, , , nx a a a=   a finite sequence. If 

1 1, , ,i i i qv a a a x+ + − = ⊆   for some i, then v occurs in x. We denote the number 
of occurrences of v in x with the function ( )[ ]qG x v  and denote the similarity 
between two sequences x and y with: ( ) ( )[ ] ( )[ ],q q qD x y G x v G y v= − . 

In our algorithm we decide the length of Q based on the minimum length of 
two sequences we want to compare, where the minimum length is denoted minl . 
For a minimum length of equal to or less than 20, Q is 2 and otherwise Q is the 
square root of minl : 

( ) min
min

min

2 if 20

otherwise

l
Q l

l

≤= 


 

Based on the above definitions of the Q-gram algorithm, we have now defined 
the measure that can evaluate the content similarity between a pair of syntax 
tokens. The next step is to use the content similarity of tokens and propagate 
their values up the tree structure as we want to be able to compare syntax nodes 
as well. The concept behind content similarity between a pair of syntax nodes 
( ),n m  is that we take the sum of the weighted content similarity of all 
descendant syntax token pairs denoted ( ),i in m , such that: 
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( ) ( ) ( )
( )

, ,
,

,
text i i I i i

content
I i i

S n m W n m
S n m

W n m
⋅

= ∑
∑

 

This means that we must perform a certain kind of tree traversal, as we need 
to construct the token pairs used in the above equation. Throughout this section, 
“pair of nodes” has been mentioned several times for a reason. As in our 
algorithm, we attempt to pair two nodes wherever it is possible, but without 
spending too much time looking for the best match. The initial pair should be 
straight-forward as it consists of the initial two input syntax nodes n and m such 
that n T∈  and m T ′∈ . While the next step is to select a match for all childn  
where childn  is child node of n. The match is selected from m’s child nodes 
denoted childm . The method to select a child from m that fits some childn  
consists of two stages: filtering impossible matches and finding the best 
matching child node within possible matches. The first stage is based on the kind 
of a node, which we defined in previous section. 

Def. 7 Let childn  and childm  be a pair of nodes, then childn  and childm  are 
an impossible match if ( ) ( )G child G childK n K m≠  where ( )G childK n  and 

( )G childK m  are the node kinds of childn  and childm , and G is a given 
programming language. 

After filtering impossible matches and likely the majority of pairs, we should 
find the best match from the possible matches. Should there be no matches left, 
we then have a complete mismatch and content similarity of zero is assumed. If 
we have only one possible match, our next iteration is clear as similarity should 
be measured with the only possible match. However, in the case of multiple 
possible matches we have to determine which match likely fits the original node, 
referred to as the best match from here on. 

We have to perform a matching procedure such that we compare the right 
nodes with each other. This matching procedure is based upon the hash 
algorithm explained previously and the structural similarity algorithm that we 
will address in the next subsection. Even without knowing the exact details 
regarding best match selection, the concept should be clear and the full content 
similarity algorithm is below in pseudocode: 
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4.2.2. Measuring Structural Similarity 
Structural similarity is defined by comparing the kinds of the nodes in the 
vicinity of two nodes n T∈  and m T ′∈ . First, we have to take certain subsets 
of nodes S T⊆  and S T′ ′⊆ . In our solution we pick the nodes that are the 
closest to the specified node. In addition, we specify a scope threshold and a 
number threshold as we are only interested in a local scope within the vicinity of 
the node. Based on our experiments, we found a scope threshold of 2 and a 
number threshold of 20 to produce the best results, although this may vary 
depending on the programming language. This leads to a result collection that 
consists of (in order of selection): 

1) Node itself     2) Left and right sibling 
3) Parent     4) Children 
5) Left-left and right-right sibling 6) Left and right siblings’ children 
7) Grandchildren     8) Grandparent 
If we define a scope and number threshold that are too small, the result will 

represent similarity on a local level and a big scope and number threshold would 
cause the result to represent similarity on a more global level. Therefore, we 
should set them to values that gives us the best results. The method to build this 
collection is an altered breadth first search and “explores” not only the edges of 
the node, its parent and its children, but also its left sibling and right sibling. 
Since we are working with a number threshold, we want a result collection that 
contains as much valuable information as possible. Which is the reason why 
edges were added for siblings, as they typically represent valuable structural 
information about the location of a node. 

Although the parent and children of a node describe its location as well, the 
node kinds of its parent and children tend to be very similar or even the same for 
all nodes of a certain kind, as in ASTs many nodes have a fixed set of possible 
parents and children. For example, for a syntax token keyword “ class” its parent 
will always be a class declaration syntax node. While the same thing applies to 
siblings as well in some cases, ASTs tend to be very wide rather than deep, as a 
result of the way programming languages are defined. Therefore, as they tend to 
be more wide than deep, siblings contain more valuable information than 
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parents and children, and is why we should add its left and right siblings first, 
before adding its parent and children. 

This leaves us with choosing priority between its parent and its children, of 
which the decision is simple and straightforward. The children list can be very 
long while a parent is only a single node by itself and with limited space in the 
result collection, it is obvious that we should add a given node’s parent before its 
children as the parent might be excluded if the child list fills the rest of the 
results. The method can be implemented in ( )O n  where n is the number 
threshold, since the AST is already sorted in depth-first-order. However, below 
is a ( )logO n n  implementation for simplicity: 

 
Now that a collection of closest nodes has been retrieved, the next step is to 

determine how we can determine structural similarity between these two sets. 
There are several algorithms that can measure the exact difference between two 
trees, such as the tree edit distance (TED) algorithm developed by Zhang and 
Shasha [6], and improved version of it such as RTED [10]. In order to run these 
algorithms on our result collection, we would have to construct a tree structure 
which would be possible in ( )O n  as they are ordered. However, these are 
expensive in terms of both time and space complexity, for TED and RTED they 
are ( )4O n  and ( )3O n  respectively. In addition, they consider distance per 
operation, such as insert, edit and delete. They do not consider moving an entire 
subtree as a specific operation, which we would like to treat as a special case and 
preferably as a less expensive one. 

Just like measuring content similarity, we can also approximate structural 
similarity. Which means that we can use cheaper and less precise algorithms as 
well, as long as they produce acceptable and representable results. In such a 
context, we can again use the Q-gram algorithm [9]. In addition to the case with 
content similarity, Q-gram goes not only provide a better time complexity, it 
also solves the issues of subtrees moves being counted as an expensive operation 
to a certain degree. The reason for this is that the Q-gram algorithm does not 
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rely on the order of a sequence as much as other distance algorithms. For 
example, consider we have two sequences x and y: 

[ ]1,3,3,7,4,2,0x =  

[ ]4,2,0,1,3,3,7y =  

These two sequences can be seen as a sequence of node kinds represented by 
string literals. Assuming Q = 2, then we can list all 2-grams [13, 33, 37, 74, 42, 20, 
01], then the profile for x is [ ]1,1,1,1,1,1,0  and for y [ ]1,1,1,0,1,1,1 . 
According to our definition giving for the Q-gram algorithm in the previous 
section, ( )2 ,D x y  gives an edit distance of 2. Other algorithms such as 
Levenshtein distance would give an edit distance of 6 while the only “change” 
that actually happened was that a subsequence was moved. Tree edit distance 
work in a similar way to Levenshtein distance and are therefore considered 
inadequate for our similarity algorithm. Our conclusion is that the Q-gram 
algorithm is the best solution for measuring local structural similarity and can be 
defined as follows in pseudocode using our GetClosestNodes function we 
defined earlier: 

 
Based upon the above functions, we have defined a deterministic structural 

similarity algorithm that runs in ( )logO n n  where n is the number threshold 
for selecting the closest nodes. In the next section we will explain how we can 
use structural similarity in the matching procedure. 

4.3. Matching Nodes between ASTs 

In the previous section we defined how we can separate measuring similarity 
into two by defining content similarity and structural similarity. These 
similarities are used in the matching algorithm to determine the certainty of 
which node is the best match for some other node. This means that for each 
node n in a tree T we try to find some matching node m in tree T’. At which 
point we can say that its worst time complexity will be at least ( )2O n . The 
algorithm we present is based on the matching algorithm in “A 3-way merging 
algorithm for synchronizing ordered trees - the 3DM merging and differencing 
tool for XML’’ by Tancred Lindholm [5]. However, it is fundamentally different 
in the actual matching stage as only its post-processing stage is similar. 
Therefore, we will explain the matching stage in-depth while briefly explaining 
the post-processing stage. 
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4.3.1. Finding the Potential Candidates for a Node 
Although the process of finding matches for a node is a part of the matching 
stage, it is where we will use the content and structural similarity algorithms, 
therefore it closely relates to the previous chapter and is the reason why we will 
introduce it first. The match finding algorithm can be divided in two 
components: finding exact or hash-based matches and finding fuzzy matches. 

Finding a hash-based is as its name indicates, based on hash values. This is a 
relatively simple process where for each node n ∈  tree T we look for a 
matching node m ∈  tree T’ by comparing their content hash and structural 
hash for equality. Since we are looking for an exact match, we should compare 
more than hash values in case of hash collisions. Therefore, we also check for 
equality for the following node attributes: node kind, total node information 
weight, total (sub)tree size and total length of text contained within the node. 
Although unequal nodes can still be a match, it is very unlikely and we will see in 
the matching stage how we will deal with such collisions. A basic 
implementation of a function that provides a list of exact or hash based matches 
can be as follows: 

 
In case no exact or hash-based matches are found, then we should look for 

fuzzy matches as a node might have changed slightly and one is similar to a 
certain degree. This degree we define as the fuzzy match threshold and is 
necessary to make sure that we will not match nodes that are too dissimilar. In 
our algorithm, we found a fuzzy matching threshold of 0.4 to be adequate as it 
produced the best matching results without getting false matches. 

When we iterate through a tree looking for a match, we first check whether 
the candidate’s node kind is the same as the node we are trying to match to. If it 
is not the same, we discard the node since it is an impossible match. Next we use 
fuzzy matching threshold to compare to a weighted similarity between the 
possible candidate and the node, using the content and structural similarity 
algorithms we defined in the previous section. This weighted similarity value 
calculated by defining a weight for both the content similarity and structural 
similarity, denoted Wc and Ws. These weights can then be used to define the 
weight similarity between two nodes n and m, such that: 

( ) ( ) ( ), , ,c content s structureS n m W S n m W S n m= ⋅ + ⋅  

Using the above similarity function, for a node n we add a candidate m to our 
set of candidate matches if ( ), tS n m F<  where tF  is the fuzzy matching 
threshold. Similar to finding exact matches, we traverse a tree looking for a 
match and make sure if the match is possible by comparing node kinds. An 
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example of its implementation can be: 

 

 
From the matches that are either an exact or fuzzy match, we select the best 

match based upon its similarity distance. However, under the above definitions a 
node can be part of multiple matches. The entire match procedure is more 
complicated and can be divided into three sub-procedures and how we will deal 
with multiple matches will be explained throughout the next few sections. 

4.3.2. Matching Nodes with Potential Candidates 
Our matching algorithm is partially based on the matching algorithm used in 
3DM, and we explain the differences as well as why a different approach was 
chosen. The fundamental thing we should realize is that if a match is found 
between two nodes, then the entire subtree probably matches as well. Which is 
why we should consider matching based on subtrees and is also where the first 
difference is with 3DM as we do not use a so called truncated subtree as stated 
by Tancred Lindhol [5]: 

Let T be a tree, and T’ a tree for which all nodes n T ′∈ : n T∈ . Let Ts be the 
tree which is obtained from T’ by replacing all leaf nodes in T’ with the subtrees 
of T rooted at the leaf nodes. T’ is a truncated subtree of T iff Ts is a subtree of T. 

Instead of a truncated subtree, we designed the algorithm around a complete 
subtree. The procedure works by iteratively traversing T in breadth-first-order 
and looking for matching nodes (or entire subtrees) in T’. Usually several 
matching subtree candidates are found, in which case the subtree with the lowest 
distance is used, unlike 3DM where it selects the subtree with the most nodes. In 
case there are multiple matches with the same lowest distance, another selection 
is performed based on previous matches done. For example, if the left siblings of 
both nodes are matched to each other, then we prefer to use that match over 
another match with the same distance. 

Once the best matching subtree has been selected, the subtree nodes in T and 
T’ are matched if they are structurally equal. We already have made a definition 
for this when we defined a structural hash for each node, representing the 
structure of its subtree. This allows us to check for equality in ( )1O , and all we 
have to do after match all the corresponding descendant nodes. In addition, the 
subtree nodes in T are also tagged with a subtree tag, which uniquely identifies 
the subtree. This is done to keep track of of the matched subtrees for later the 
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post-processing stages. However, if there is no structural equality between the 
matched nodes, the procedure iterates again for each child node of the matched 
node, i.e. the nodes that were not yet matched. We will now look at each step of 
the matching stage in some detail. 

The tree traversal starts with breadth-first traversal using a queue, starting 
each node im T ′∈ , we take the most similar candidate which is found by 
searching for matches for some node m in T’. Nodes who match exactly (based 
upon procedure FindExactMatches are considered first. If no such nodes are 
found, we return all candidate nodes in T∈  for which ( ), i tS n m F≤ , provided 
by FindFuzzyMatches and are then sorted by their distance similarity. We then 
attempt to match the entire subtree to the most similar candidate if they are 
structurally equal based on their structural hash. Should a hash collision occur, 
we perform a rollback, unset all matches there were set in the subtree (identified 
by subtree tag) and attempt matching to the next best candidate if it exists. 
Otherwise, if no match was found or match was made that was no structurally 
equal, then we enqueue all child nodes of mi and iteratively repeat the process 
until the queue is empty. The entire procedure is described in pseudocode 
below: 
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4.3.3. Removing Matches of Small Copies 
In our matching algorithm defined above, multiple nodes mi in tree T’ can be 
matched with the same node n in tree T. A common case in matching source is 
that curly brackets get matched together, even though they are structurally 
barely related or not related at all to each other. Although this is completely fine, 
we would like to be able to identify which match contains the original nodes and 
remove copied matches such that they can be inserted in the merging algorithm 
instead. The first post-processing procedure called RemoveSmallCopies stage 
deals with this issue by defining a copy threshold on how much data must be 
duplicated before we can consider it a copy rather than an insertion. The 
procedure checks all nodes in T’, whose base match in T has several matches in 
T’ (i.e. the base match is copied). If the copied subtree of T to which the node 
belongs has an information weight smaller than a certain threshold, the match 
should be removed and considered inserted instead. The information weight of a 
node or subtree is the same as we defined in the content similarity section, and is 
denoted ( )IW n . 

Sometimes, the subtrees mi of all matches to a node n are smaller than the 
copy threshold. In this case we do not want to remove all the matchings, but 
rather try to identify the original match, and leave it matched. We do it by 
looking at the neighbors of the match’s subtree root: if the left and right siblings 
match the left and right siblings in T, we add the information weight of the 
matching trees to that of the candidate for match removal. Candidates that gets 
an information weight higher than the copy threshold, or the candidate with the 
highest information weight in case all subtrees have an information weight lower 
than the copy threshold, will be considered valid matches. 

4.3.4. Matching Similar Unmatched Nodes 
Based on the matchings that were made before in the matching stage, we can 
attempt to make additional matchings by looking at neighboring matches. The 
second post-processing procedure called MatchSimilarUnmatched does exactly 
that, and its task is to find such pairs of nodes and match them accordingly. The 
procedure is relatively simple was defined as follows [5]: 

Let m and n be a pair of unmatched nodes. If the parents of m and n are 
matched, and if either the left or right siblings (if they exist) of m and n are 
matched, m and n should be matched. If neither siblings match (possibly 
because they do not exist), we will also match the nodes if both m and n are the 
last or first node in the child list. Finally, if the child nodes of both m and n 
match each other, then m and n should be matched as well. 

4.3.5. Time Complexity Analysis of the Full Algorithm 
We conclude the presentation of the matching algorithm by analyzing its 
complexity. For the sake of the analysis we divide the matching algorithm in 
four steps: structural similarity, content similarity, matching subtrees, and 
removing small copies and matching similar unmatched nodes. In reality the 
similarity algorithms are included in the matching subtrees step. Without 
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further a due, based upon the descriptions of the algorithms described in 
previous sections, we can define their time complexity as: 

1) The procedure GetStructuralSimilarity is performed in ( )logt tO C C , 
where tC  a circumference threshold. This is trivially defined, since we visit at 
most ( )tO C  nodes and then sort them in ( )logt tO C C . 

2) The procedure GetContentSimilarity is performed in ( )logb aO S , where S is 
the length of the string content with a subtree, a the branching factor of the trees 
and the subtree has logb S  levels, such that the total number of leaves is 

log logb bS aa S= . This is true since similarity is measured per token pair which can 
only be done from the leaves. The top node has work ( )f S  associated with it, 
the next level has work ( )f S b  associated with each of a nodes and so forth. 

3) The procedure MatchSubTrees is performed in  

( ) ( )( )( )log logb a
t tO N M O S O C C⋅ ⋅ + . For each node n in a tree T we look for a 

matching node m in tree T’, where we have to check for both structural 
similarity and content similarity in the worse case. Therefore, it’s time 
complexity is ( )( )log logb a

t tO N M S C C⋅ ⋅ +  using previous definitions. 
4) The procedures RemoveSmallCopies and MatchSimilarUnmatched are 

performed in ( )logO N N  and ( )O N  respectively as has been proven before 
[5]. 

Our full algorithm consists of the above procedures, and in a reasonable 
matching case we can make the assumption that; tC  is so small compared to 
the tree size that the time complexity of GetStructuralSimilarity can be reduced 
to ( )1O . Therefore, we can write the worst case time complexity of the full 
algorithm as follows: 

( )( ) ( ) ( ) ( )log log1 logb ba aO N M S O N N O N O N M S⋅ ⋅ + + + = ⋅ ⋅  

However, this is absolute worst case where no matching subtrees are found at 
all, which is never the case any realistic matching scenario. Typically we will be 
able to to match entire subtrees at once in ( )O N  time in the procedure 
MatchSubTrees, and if we assume there are D matched subtrees, we can define 
the full algorithms worst time complexity as ( )logb aO N D S⋅ ⋅ , where logb aS  is 
the amount of syntax tokens. 

4.4. Merging Matched ASTs 

Merging ASTs is the last stage of the algorithm and is where merging is 
performed based on the matches that were made in the matching stage. During 
this stage, certain ambiguities may occur which is referred to as a conflict. A 
typical case of a conflict is that a merging algorithm cannot make sense of the 
ASTs due to dissimilar structure, and in our case it can happen when no matches 
were found for a certain node that already existed. This is the reason why the 
matching stage of the algorithm is can be considered the most important. 
Nonetheless, the merging stage is also important due to considerations such as 
minimal distance and time complexity. 
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In the Section 4.3 we introduced several algorithms how similarity can be 
measured between nodes such that it can be used to match nodes between two 
given trees. Based upon these matches, perform a merging algorithm that merges 
these two trees into a merged one. Due to the amount of research already 
performed on merging tree structures, there is actually no need for us to design 
our own algorithm. Which is why we have chosen an existing merging algorithm 
that is compatible with our matching algorithm; “A 3-way merging algorithm 
for synchronizing ordered trees” by Tancred Lindholm [5]. 

The general idea of the algorithm he proposes is to traverse the trees T and T’ 
simultaneously such that matched nodes are traversed at the same time. Each 
iteration of the traversal outputs a merge of two matched nodes that are 
currently being visited to TM. In addition, the concept of a tree cursor is 
introduced which points to the current position in a tree. The tree cursor may 
point to a null node, which means the cursor is inactive. Cursors are denoted by 
CT, where T is the tree that will be traversed by the cursor, while the the null 
node is denoted ε. For example, suppose we have two trees T and T’, then the 
cursors are written as TC  and TC ′ . 

Nodes that are put together for merging are called a merge pair and denoted 
( ),n m , where n and m are the nodes in the pair. Merge pairs can also contain 
one null node, which represents an existing node for which we could not find a 
match. In this case, the merge pair is denoted ( ),n ε . Lastly, the merge 
algorithm assumes that the trees T and T’ are non-empty, that the matchings M 
and M’ exist, and all cursors are initially positioned at the root of their associated 
tree. These are the initial conditions for the algorithm and our matching 
algorithm defined in the previous section provides such conditions and is 
therefore compatible with the merging algorithm. 

5. Testing and Evaluation 

Now that the problem has been stated and its theoretical solution has been 
proposed, the real-world experiments and their results can be presented which 
have been carried out as a demonstration that the solution truly does work. In 
this chapter, we will explain how we have implemented the solution and what 
environment is required to be able to use the theoretical solution. 

As an example programming language for the research, Microsoft’s. NET 
language C# has been chosen as it is a well defined language and is commonly 
used in real-world applications. Our theoretical solution defined in Chapter 4 
assumes that a given AST as its input, which means a source code parser is 
required. Although it is possible to write our own parser, we have decided not to 
reinvent the wheel. Instead, we have chosen Roslyn as our parser, which was 
recently released (July 2015). Since its release Roslyn is the official C# language 
parser and compiler, developed by Microsoft over the past few years. In addition, 
we have chosen MurmurHash3 as our hashing algorithm due to its simple 
implementation, fast performance and low collision rate. Lastly, it should be 
mentioned that no other libraries were used such that the implementation can be 
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replicated in any other programming language provided that a parser is 
available. 

5.1. Overview of the Implementation 

For testing and evaluation, the algorithm was implemented in C# and runs on 
both. NET and Mono. C# was selected due mainly to the availability of a parser 
that could parse C#, namely Roslyn. Although it would have been possible to use 
another programming language as well, C# is similar to Java and both are widely 
accepted in the current generation. In addition, thanks to several. NET standard 
library features such as LINQ it saved a lot of time implementing basic 
algorithms such as sorting algorithms. In this section, we give a brief overview of 
the structure of the implementation. Readers who are interested in the details of 
the implementation are recommended to start by reading this section to get an 
overview and thereafter to read trough the source code. 

The main class in the framework is Matching.cs, where you will find imple- 
mentations of the matching algorithms can be found, such as MatchSubTrees, 
RemoveSmallCopies and MatchSimilarUnmatched which were presented in the 
previous chapter. The Matching class constructor takes two parameters, a base 
node and a branch node where each of them represents the root of a source code 
file. 

Roots of both a base node and branch node can be constructed in a simple 
manner by calling its constructor and passing a syntax tree that was parsed by 
Roslyn. An example of constructing such a root node would be: 

 
Most of the implementation of how nodes are built from their constructor can 

be found in Node.cs, while the derivations BaseNode and BranchNode have 
additional minor functionality and their definitions can be found in BaseNode.cs 
and BranchNode.cs. 

The high-level similarity algorithms can be found in Similarity.cs, such as 
GetContentDistance, GetStructuralDistance and GetClosestNodes. The high-level 
algorithms can make use of certain low-level similarity algorithms that can be 
found in Distance.cs. The low-level algorithms implemented are Q-gram, 
Levenshtein edit distance, Jaro-Wrinkler edit distance, Sift4 edit distance, and 
Zhang and Shasha’s tree edit distance algorithms [11]. These algorithms have 
been implemented to thoroughly test real-world examples in terms of matching 
accuracy, consistency and time complexity. One of these real-world examples 
will be shown in the next section. 

5.2. A Real-World Example of Matching Two Files 

Although we have tested many real-world cases throughout our research, we will 
show one rather extreme example where many changes were applied to a file in 
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order to demonstrate how robust the matching algorithm is. As the edited file is 
a lot bigger than the original, we will simply the source code and only show the 
areas where the code actually changed. In short, a new using directive was added, 
the class identifiers were swapped, the order of methods was changed significantly 
and other minor changes within those methods. This includes changes a method 
declaration identifier and return type, while writing an additional invocation 
expression with two parameters: 

 
In the above example, we have a matching rate of 100%. Which means that we 

were able to matched every node that existed in the original source code file, in 
this case 76 out of all 76 nodes. The accuracy of our matching algorithm in this 
example (and many others) is quite high considering how much the environment 
changed. 

6. Conclusion and Future Work 

Throughout this article, we have introduced several existing version control 
systems and explained why they need improvement in certain areas. One of 
those areas is matching source code while truly understanding its actual content 
which is the main topic we have chosen for this article. As such, we have defined 

https://doi.org/10.4236/jsea.2018.116020


J. van den Berg, H. Haga 
 

 

DOI: 10.4236/jsea.2018.116020 339 Journal of Software Engineering and Applications 
 

a problem statement as to what problems need to be solved and which 
requirements the solution must conform to. Although there are already several 
existing matching and merging algorithms, none of these target programming 
languages as a special case such that they can be reasoned about in a more 
specific way. 

The solution we present consists of a similarity algorithm and matching 
algorithm that are partially based on the 3DM merging and differencing tool for 
XML [5]. Although several concepts were derived from it, our solution is 
fundamentally different in both implementation and accuracy for the similarity 
and matching algorithm. We make use of both a content and structural hash, 
based on the concept of a Merkle tree [8], such that equality checks can be 
performed in constant time, where entire subtrees can be matched at once as 
long as hash collisions are avoided. In addition, we define structural similarity of 
a node based on its circumference within a certain scope and size threshold, and 
perform a linear time similarity algorithm on its circumference that surprisingly 
accurately approximates the distance. Content similarity has also been defined 
and is measured by measuring similarity of each token’s content rather than an 
entire string or line of text at once. 

The matching algorithm accurately finds matches between two trees through 
hash-based matching and fuzzy matching that uses the similarity algorithms. 
Something that also should be noted is that all algorithms designed in this article 
have been defined as iterative procedures rather than recursive procedures in 
order to avoid stack overflows for large source code files. Examples of this are 
use of breadth-first-search based on a queue and depth-first-search based on a 
stack. 

The theoretical solution has been thoroughly tested by developing a 
framework based on the theory defined in Chapter 4. Using this framework, tests 
on several real-world examples have been performed, of which one of them has 
been presented in Chapter 5. The outcome of article experiments were satisfying 
results, where source code files were often matched optimal and others 
near-optimal. In some cases, matches were not found due to the text of tokens 
being too dissimilar. Based on these results, a more advanced algorithm could be 
designed that uses the values of content similarity and structural similarity in a 
different manner. 

We have addressed all problems and requirements stated in the problem 
description by having defined several new algorithms that handle source code 
matching efficiently and accurately. However, there is still a lot of points for 
improvement in them, such improving the content similarity algorithm. The 
amount of trivia surrounding a syntax token can be a huge amount compared to 
the actual token, the content similarity algorithm does not consider this. In the 
case of a large difference in the trivia, certain tokens may not be matched due to 
trivia being too dissimilar. A possible solution would be to consider trivia 
separately and giving them a small weight compared to the syntax token itself. 

Furthermore, it should be investigated whether structural similarity can be 
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performed in linear time rather than line arithmic time. The AST should already 
have been sorted in depth-first-order by the parser, such that any particular 
subtree can perhaps be generated in linear time as well by possibly using a linked 
list structure. 

In conclusion, we have designed a matching algorithm that performs 
reasonably to very well in a real-world environment in terms of both time 
complexity and matching precision. This article was inspired by Wouter 
Swierstra who wrote the article “The Semantics of Version Control” [3] and the 
solution algorithm has been based on the thesis of Tancred Lindholm, who 
defined a three-way merging algorithm [5]. The author intends to develop 
algorithms defined in this thesis further and strive to find a solution that will 
truly be an improvement for existing version control systems, such that 
developers can work more efficiently in software projects. 
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