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Abstract 
In this paper, we consider a fuzzy c-means (FCM) clustering algorithm com-
bined with the deterministic annealing method and the Tsallis entropy max-
imization. The Tsallis entropy is a q-parameter extension of the Shannon en-
tropy. By maximizing the Tsallis entropy within the framework of FCM, 
membership functions similar to statistical mechanical distribution functions 
can be derived. One of the major considerations when using this method is 
how to determine appropriate q  values and the highest annealing tempera-
ture, highT , for a given data set. Accordingly, in this paper, a method for de-

termining these values simultaneously without introducing any additional 
parameters is presented. In our approach, the membership function is ap-
proximated by a series of expansion methods and the K-means clustering al-
gorithm is utilized as a preprocessing step to estimate a radius of each data 
distribution. The results of experiments indicate that the proposed method is 
effective and both q  and highT  can be determined automatically and alge-

braically from a given data set. 
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1. Introduction 

Techniques from statistical mechanics can be used for the investigation of the 
macroscopic properties of a physical system consisting of many elements. Re-
cently, research activities utilizing statistical mechanical models or techniques 
for information processing have become increasingly popular.  
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Rose et al. [1] [2] proposed deterministic annealing (DA) as a deterministic 
variant of simulated annealing (SA) [3]. In DA, the minimization problem for an 
objective function is treated as the minimization of the free energy of a system. 
The DA approach tracks the function’s minimum with decreasing the system 
temperature, thus allowing the deterministic optimization of the objective func-
tion at each temperature. Hence, DA is more efficient than SA, but does not 
guarantee that the solution is the global optimal solution. From the viewpoint of 
statistical mechanics, the membership functions of the fuzzy c-means (FCM) 
clustering [4] with maximum entropy or entropy regularization methods [5] [6] 
can be seen as distribution functions from statistical mechanics. For example, 
FCM maximized with the Shannon entropy gives a membership function similar 
to the Boltzmann distribution function [1].  

Tsallis [7], inspired by multi-fractal, non-extensively extended the Boltzmann– 
Gibbs statistics by postulating a generalized form of the entropy (the Tsallis 
entropy) with a generalization parameter q. The Tsallis entropy is proved to 
be applicable to the numerous systems [8] [9]. In the field of fuzzy clustering, a 
membership function was derived by maximizing the Tsallis entropy within 
the framework of FCM [10] [11] [12]. This membership function has a similar 
form to the statistical mechanical distribution function, and is suitable for use 
with annealing methods because it contains a parameter corresponding to the 
system temperature. Accordingly, the Tsallis entropy maximized FCM was 
successfully combined with the DA method as Tsallis-DAFCM in [13].  

One of the major challenges with using Tsallis-DAFCM is the determination 
of an appropriate value for q  and the highest (or initial) annealing temperature, 

highT , for a given data set. Especially, the determination of a suitable q  value is 
a fundamental problem for systems where the Tsallis entropy is applied. Even in 
physics, quite a few systems are known in which q  is calculable. In the pre-
vious study [13], the values were experimentally determined, and only roughly 
optimized. 

Accordingly, we presented a method that can determine both q  and highT  
simultaneously from a given data set without introducing additional parameters 
[14]. The membership function of Tsallis-DAFCM was approximated by a series 
expansion to simplify the function. Based on this simplified formula, both q  
and highT  could be estimated along with the membership function for a given 
data set. However, it was also found that the results from this method depend on 
the estimation of the radius of the distribution of the data or the location of 
clusters.  

To overcome this difficulty, in this study, we propose a method that utilizes 
K-means [15] as a preprocessing step of the approximation method. That is, a 
data set is clustered by K-means roughly. We then estimate the radius of the dis-
tribution of the data set, and apply the approximation method to determine q  
and highT .  

Experiments are performed on numerical data and the Iris Data Set [16], and 
the results show that the proposed method can be used to determine q  and 
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highT  automatically and algebraically from a data set. It is also confirmed that 
the data can be partitioned into clusters appropriately using these parameters.  

2. FCM with Tsallis Entropy Maximization 

Let { } ( )( )1
1, , , , p p

n k k kX x x R= = ∈x x x   be a data set in p-dimensional real 

space, and let { } ( )( )1
1, , , , p

c i i iV v v= =v v v   be the c  distinct clusters. Let 

[ ]( )0,1 1, , ; 1, ,iku i c k n∈ = =   be the membership function, and let 

( )
1 1

1
n c

m
ik ik

k i
J u d m

= =

= <∑∑                       (1) 

be the objective function of FCM, where ik k id = −x v . 
On the other hand, the Tsallis entropy is defined as 

1 1
1

q
q i

i
S p

q
 = − − −  
∑                       (2) 

where ip  is the probability of the 𝑖𝑖th event and q  is a real number [7]. The 
Tsallis entropy reaches the Shannon entropy as 1q → . 

Next, we apply the Tsallis entropy maximization method to FCM [12] [13]. 
First, Equation (2) is rewritten as 

1 1

1 1
1

n c
q

q ik
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S u
q = =

 = − − −  
∑∑                    (3) 

Then, the objective function in Equation (1) is rewritten as  
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Under the normalization constraint of  
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1
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the Tsallis entropy functional becomes  

( )
1 1 1 1

1
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where kα  and β  are the Lagrange multipliers. By applying the variational 
method, the stationary condition for the Tsallis entropy functional yields the 
following membership function for Tsallis-FCM [12]: 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From Equation (7), the expression for iv  becomes  
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3. Approximation of Membership Function 

The performance of Tsallis-DAFCM is superior to those of other entropy-based- 
FCM methods [12]. However, it is still unknown how to determine an appropri-
ate q  value and a highest annealing temperature highT  for a given data set. To 
tackle this problem, we first simplify the membership function using a series ex-
pansion.  

3.1. Series Expansion of iku  

iku  in Equation (7) can be expanded to a power of β  as follows:  

( )
0

01
!

n
ik n

ik n
n

u
u

n
β

β

∞

=

∂
=

∂∑                      (10) 

When the temperature is high enough, if the series expansion up to the third 
order terms is used, Equation (10) becomes  

2 2 2
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3.2. Determination of q  and highT  

Based on the results in Section 3.1, we propose a method for determining both 
q  and β  simultaneously.  

First, to ensure the convergence of Equation (10), we use the following ex-
pression for β :  

( )
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where N  and ( )l  denote the maximum number of iterations, and the num-
ber of iterations to be used in the calculation of ikL , respectively. highT  can be 
calculated as 1highT β= .  

Then, setting i =v 0  and replacing kx  with the continuous variable x , 
Equation (11) becomes  
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where 
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From this equation, q  can be determined as follows. By designating the 
range of the dataset as ( )1, , pR R R=  , the maximum range of the distribution 

maxR  is defined as  

max
1

arg max
p

R R Rθ

θ

Θ

≤ ≤

 = Θ = 
 

                  (16) 

Furthermore, by assuming that the radius r  of each cluster is between 

max max2 2R c r R≤ ≤ , and ( )u′ x  tends to 0u  at  
( )1 0, , , , 0px x r xΘ′ = = = =x   , Equation (14) can be solved for q . Conse-

quently, we have the following formula for q .  
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It should be noted that in this equation, for simplicity, 0u  is set to  

0
1u
c

=                            (18) 

because Equation (7) tends to 1 c  as kx  goes to ∞ .  

4. Proposed Algorithm 

By combining the method presented in the previous section with Tsallis- 
DAFCM, we proposed the following fuzzy c-means clustering algorithm [14]. In 
this algorithm, the number of clusters in the data is assumed to be known in ad-
vance.  

In the first algorithm shown in Figure 1, the parameters q  and 1 highTβ =  
for a given data set are determined ( N  is the maximum number of iteration. In 
Equation (17), ( )1L ′x  and ( )2L ′x  are approximated by 1kL  and 2kL , re-
spectively.).   

The second algorithm is the conventional Tsallis-DAFCM algorithm [12].  
1) Set the temperature reduction rate rT , and the thresholds for convergence 

1δ  and 2δ .   
2) Generate c initial clusters at random locations. Set the current temperature 

T  to 1 β . 
3) Calculate iku  using Equation (7).   
4) Calculate the cluster centers using Equation (9).   
5) Compare the difference between the current centers and the centers of the 

previous iteration obtained using the same temperature i′v . If the convergence 
condition 1 1max i c i i δ≤ ≤ ′− <v v  is satisfied, then go to Step 2.6. Otherwise re- 
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Figure 1. Processing flow of the conventional method. 

 
turn to Step 2.3.   
6) Compare the difference between the current centers and the centers of the 

previous iteration obtained using a lower temperature v′′ . If the convergence 
condition 1 2max i c i i δ≤ ≤ ′′− <v v  is satisfied, then stop. Otherwise decrease the 
temperature; rT T T= ⋅ , and return to Step 2.3.  

The experimental results in [14] confirmed that the first algorithm can deter-
mine β  desirably. However, they also revealed that q from this algorithm 
strongly depends on the estimation of the radius r in Equation (17). According-
ly, as shown in Figure 2, the first algorithm is divided in two parts. The first one 
determines β . In the second part, the K-means algorithm is utilized to calculate 
r by assuming that each data point belongs to its nearest cluster. 

5. Experiments 

To examine the effectiveness of the proposed algorithm, we conducted two ex-
periments.  
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Figure 2. Processing flow of the proposed method. 

5.1. Experiment 1 

The first experiment examined whether appropriate q  and 1 highTβ =  values 
can be determined for a given data set, and the relation between the number of 
iterations N  and the parameters q  and β . 

In this experiment, data sets containing (a) three clusters and (b) five clusters 
were used, as shown in Figure 3. Each cluster follows a normal distribution, and 
contains 2, 250 data points.  

Dependencies of the maximum, minimum, mean and standard deviation of 
β , a mean radius of the data distribution and q for Figure 3(a) on the number 
of iterations N are summarized in Table 1, Table 2 and Table 7. Figure 4 shows 
the plots of the maximum, minimum, and mean of q. In these tables, maxr  and 

meanr  denote max 2R  and the mean of max 2R c  and max 2R , respectively. 
k

maxr  and k
meanr , on the other hand, denote the maximum and mean radius of the 

distribution obtained by K-means, respectively. 
In Table 7, the value of q for rmax for example is calculated using Equation (17) 

as ( )maxq rϑ= . Based on the results in Table 1, the value of q was calculated by  
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(a) 

 
(b) 

Figure 3. Numerical data ( xC  denotes the cluster number). (a) 3c = ; (b) 5c = . 

 

 
Figure 4. Maximum, minimum, and mean of q  ( 3c = , 5.351e 06β = − ). 
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Table 1. Maximum, minimum, mean, and standard deviation of β  ( 3c = ).  

N Maximum Minimum Mean Std. deviation 

10 5.624e−06 3.877e−06 5.147e−06 6.568e−07 

100 6.098e−06 3.446e−06 5.350e−06 6.024e−07 

1000 6.121e−06 2.793e−06 5.353e−06 5.775e−07 

10,000 6.207e−06 2.497e−06 5.351e−06 5.914e−07 

 
Table 2. Maximum, minimum, mean, and standard deviation of k

maxr  and k
meanr  ( 3c = ). 

 N  Maximum Minimum Mean Std. deviation 

 k
maxr  

5 200.4 196.8 198.8 1.7 

10 204.6 196.8 200.1 2.2 

100 203.8 195.7 198.8 1.7 

1000 305.9 195.0 199.3 6.2 

10,000 313.4 194.8 199.6 8.1 

 k
meanr  

5 197.5 190.3 192.0 2.8 

10 193.3 190.7 193.8 2.7 

100 198.3 189.5 193.1 3.0 

1000 292.8 188.1 194.1 8.8 

10,000 298.0 188.2 194.0 8.6 

 
fixing β  to its mean value 5.351e−06. maxR , maxr , and meanr  for Figure 3(a) 
are 860.0, 430.0 and 286.7, respectively.  

From Table 1, it can be seen that the maximum of β  tends to increase and 
the minimum of β  tends to decrease with increasing N. However, when N be-
come 100 or more, the mean of β  does not depend on N. 

From Table 2, it can be seen that the mean of k
maxr  and k

meanr  hardly de-
pends on N, though the standard deviation becomes larger when N become 1, 
000 or more. This is caused by a very seldom misclassification of K-means.  

Comparing the results in Table 7, it can be found that, when r is set to k
maxr  

or k
meanr , q has smaller standard deviations, and the magnitude of the change in 

the mean values of q is comparatively small. This shows that q can be calculated 
stably by performing K-means first. It is also can be found that the maximum of 
q increases with increasing N, because of the random locations of clusters. Even 
though maxr  overestimates the mean radius of the clusters, clustering can be 
performed properly in this case. 

Accordingly, q  has little impact on clustering in this experiment.  
Dependencies of the maximum, minimum, mean and standard deviation of 

β , a mean radius of the data distribution and q  for Figure 3(b) on the num-
ber of iterations N  are summarized in Table 3, Table 4 and Table 8. Figure 5 
shows the plots of the maximum, minimum, and mean of q . 
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Figure 5. Maximum, minimum, and mean of q  ( 5c = , 3.608e 06β = − ). 
 
Table 3. Maximum, minimum, mean, and standard deviation of β  ( 5c = ). 

N Maximum Minimum Mean Std. deviation 

10 5.878e−06 2.686e−06 4.030e−06 9.264e−07 

100 5.088e−06 2.466e−06 3.618e−06 5.801e−07 

1000 6.738e−06 2.316e−06 3.608e−06 6.117e−07 

10,000 7.060e−06 2.118e−06 3.608e−06 6.320e−07 

 
Table 4. Maximum, minimum, mean, and standard deviation of k

maxr  and k
meanr ( 5c = ). 

 N Maximum Minimum Mean Std. deviation 

k
maxr  

5 343.2 116.1 236.0 99.0 

10 353.4 116.1 229.4 93.7 

100 356.4 116.0 193.8 91.0 

1000 394.2 115.7 203.8 92.3 

10,000 395.0 115.7 198.4 91.6 

k
meanr  

5 189.6 115.3 150.4 33.2 

10 151.7 115.1 121.9 13.1 

100 190.2 115.2 134.7 24.5 

1000 249.5 115.1 138.3 30.0 

10,000 279.5 115.0 134.4 29.5 

 

maxR , maxr , and meanr  for Figure 3(b) are 860.0, 430.0 and 258.0, respective-
ly. Based on the results in Table 3, the value of q  was calculated by fixing β  
to 3.608e−06. 

Comparing these results with those in Table 1, Table 2 and Table 7, it can be 
found that q  for 5c =  has larger standard deviations than those for 3c = . 
This is caused by an increase in the number of combinations of data points and 
clusters.  
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In Table 8, it can be seen that q  for k
maxr  has the largest standard deviations. 

This is considered to be caused by the significant standard deviations of k
maxr  

shown in Table 2, suggesting a variation of the estimation of the radius of the 
distribution. On the other hand, q  for k

meanr  has the smallest standard devia-
tions. 

Substituting the values of β  and q  in Table 3 and Table 8 directly, Figure 
6 and Figure 7 compare the membership function for the cluster 2C ,  

( ) ( ){ }

( ){ }
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2
2 1
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1

1 1
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q
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− − −∑
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             (19) 
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+ −
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− − − + −
+
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x x v x v
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     (20) 

for 5c = , k
maxr r=  and k

meanr , and 10N =  and 10,000. In the equations, jv  
is set to each of the cluster coordinates in Figure 3(b). The data projections on 
the xz and yz planes are also plotted. 

The figures show no significant difference between ( )2u x  and ( )2u′ x  and 
between k

maxr  and k
meanr .  

 

 
Figure 6. Comparisons of the membership functions calculated by Equations (19) and 
(20) ( 5c = , k

maxr r= , 1 010 000N = ， ， ). 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Figure 7. Comparisons of the membership functions calculated by Equations (19) and 
(20) ( 5c = , k

meanr r= , 1 010 000N = ， ， ).  

 
Compared with the clusters in Figure 3(a), those in Figure 3(b) are not 

aligned in a straight line. However, the results for 5c =  are as accurate as those 
for 3c = . As a result, the maximum error factor is considered to be β . Since 
the clusters in Figure 3(a) are aligned in a straight line, β  cannot be deter-
mined optimally by locating clusters randomly as does in the algorithm in Fig-
ure 1.  

From these results, it can be confirmed that 100N =  is sufficient to deter-
mine both β  and q  for the data sets in Figure 1. 

5.2. Experiment 2 

In this experiment, the Iris Data Set [16], which comprises data from 150 iris 
flowers with four-dimensional vectors, is used. The three clusters to be detected 
are Versicolor, Virginia and Setosa, and the parameters in the algorithm in Fig-
ure 2 are set as follows: 1 0.02δ = , and 2 0.01δ = , and 0.8rT = .  

maxR , maxr , and meanr  are 5.90, 2.95 and 1.97, respectively.  

5.2.1. Determination of Parameters 
The maximum, minimum, mean, and standard deviation of β , k

maxr , k
meanr  

and q  are summarized in Table 5, Table 6 and Table 9. Figure 8 shows the 
plots of the maximum, minimum, and mean of q . Based on the results in Table 
5, the value of q  was calculated by fixing β  to 1.076e-01.  

From Table 5, it can be seen that a dependency of β  on N  is same as 
those in Table 1 and Table 3. Table 6 shows that the mean of k

maxr  and k
meanr   
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Figure 8. Maximum, minimum, and mean of q  for the Iris data set ( 1.076e 01β = − ). 
 
Table 5. Maximum, minimum, mean, and standard deviation of β  for the Iris data set. 

N Maximum Minimum Mean Std. deviation 

10 1.455e−01 8.040e−02 1.097e−01 1.554e−02 

100 1.455e−01 7.409e−02 1.081e−01 1.765e−02 

1000 1.810e−01 5.978e−02 1.075e−01 1.872e−02 

10,000 1.857e−01 5.893e−02 1.076e−01 1.949e−02 

 
Table 6. Maximum, minimum, mean, and standard deviation of k

maxr  and k
meanr  for the 

Iris data set. 

 N Maximum Minimum Mean Std. deviation 

k
maxr  

5 3.855 3.855 3.855 0.000 

10 3.855 3.855 3.855 0.000 

100 4.935 3.855 3.866 0.107 

1000 4.935 3.855 3.861 0.083 

10,000 4.935 3.855 3.862 0.085 

k
meanr  

5 2.066 2.066 2.066 0.000 

10 2.066 2.066 2.066 0.000 

100 2.066 1.849 2.064 0.022 

1000 2.066 1.849 2.063 0.026 

10,000 2.066 1.849 2.063 0.027 

 
can be calculated regardless of the value of N .  

Table 9 shows that the standard deviations of q for k
maxr  and k

meanr  are 
smaller than those of maxr  and meanr  showing the effectiveness of the proposed 
method. 

It can be found that these tables show that the proposed method gives similar 
results to those in the Section 5.1, and 5N =  to 10 is sufficient to determine 
β , k

maxr , k
meanr , and q . In the algorithm shown in Figure 1, it is unnecessary to 
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repeat the calculations of the means of β  and q  the same number of times 
N . 

It is also found that not only the estimations of the radius are important to 
improve the accuracy because k

meanr  gives superior result compared with those 
of k

maxr . For this reason, a preprocessing method that can estimate the location 
of clusters quickly, such as the Canopy method [17] might be suitable for the 
proposed method to be more effective.  

5.2.2. Clustering Accuracy 
The maximum and mean number of data points misclassified by the previous 
method [14], the proposed method, and Tsallis-DAFCM in 1, 000 trials are 
summarized in Table 10 and Figure 9. 1highT β=  is fixed to 1/1.076e−01 = 
9.294. In Tsallis-DAFCM, as a typical value, q  is changed from 1.2 to 2.8. 

Even though the experiment was repeated 1000 times, the results obtained 
with the proposed method were almost identical.  

By comparing the mean number of misclassified data points of the proposed 
method with those of the previous method, it can be confirmed the results from 
both methods are not significantly different when maxr r=  and k

maxr r=  or 
when meanr r= and k

meanr r= .  
By comparing the mean number of misclassified data points of the proposed 

method with those of Tsallis-DAFCM, it can be confirmed the proposed method 
can get slightly better results. By examining the maximum number of misclassi-
fied, we see that Tsallis-DAFCM misclassifies data more often than does the 
proposed method.  

These results confirm that appropriate values of q  and 1highT β=  for the 
Iris Data Set can be estimated by the proposed method. Setting k

meanr r=  is 
most suitable for this data set. 

5.2.3. Computational Time 
Figure 10 compares the mean of computational times of β  and q , and clus- 
 

 
Figure 9. Maximum, minimum, and mean numbers of misclassified data points for the 
Iris Data Set of the previous method, the proposed method and Tsallis-DAFCM 
( 1.076e 01β = − , 9.294highT = ). 
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(a) 

 
(b) 

 
(c) 

Figure 10. Mean of computational times of ,qβ , and clustering for the Iris Data Set. (a) 
β ; (b) q ; (c) Clustering. 
 
tering in 1000 trials (Executions were conducted on an Intel(R) Core(TM)2 Duo 
CPU E6550 @ 2.33 GHz). 

Figure 10(a) shows that the computational time of β  does not depend on 
r  and increases proportionally to N  because, as can be seen from Equations 
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(12) and (13), the value of β  is determined independently of r  and 1kL  is 
calculated N  times. 

Figure 8(b), on the other hand, shows that the calculation of q  for k
maxr  

sometimes takes time suggesting that, in this case, k
maxr  becomes too large to 

give an appropriate q  value.  
Figure 10(c) shows that that when r  is set to meanr  or k

meanr , clustering can 
be conducted quickly and stably. 

5.3. Evaluation of the Proposed Algorithm 

From the experimental results in 5.1 and 5.2, the effectiveness of the proposed 
algorithm using K-means can be evaluated as follows:  
1) k

maxr  and k
meanr  can be obtained with very small variances without consuming 

much computational time;   
2) q  can be determined with a very small variance using 

k
meanr  without con-

suming; 
3) Much computational time;   
4) The numerical data sets and the Iris Data Set can be clustered desirably using 

k
meanr .  

6. Conclusions 

The Tsallis entropy is a q-parameter extension of the Shannon entropy. FCM 
with the Tsallis entropy maximization has a proper characteristic for clustering, 
especially when it is combined with DA as Tsallis-DAFCM. The extent of its 
membership function strongly depends on the parameter q  and the initial an-
nealing temperature highT .  

In this study, we proposed a method for approximating the membership func-
tion of Tsallis-DAFCM which, by using the K-means method as a preprocessing 
step, determines q  and 1 highTβ =  automatically and algebraically from a 
given data set.  

Experiments were performed on the numerical data sets and the Iris Data Set, 
and showed that the proposed method can more accurately and stably determine 
q  and β  algebraically than the previous method without consuming much 
computational time. It was also confirmed that the data can be partitioned into 
clusters appropriately using these parameters.  

In the future, as described in 5.1, we first intend to explore ways to improve 
the accuracy of the estimates for β  and q  by using other rough clustering 
methods. We then intend to examine the effectiveness of the method using very 
complicated real world data set [18].  
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Appendix 

Table 7. Maximum, minimum, mean, and standard deviation of q  ( 3c = ,  
5.351e 06β = − ). 

 N Maximum Minimum Mean Std. deviation 

maxr  

5 1.825 1.165 1.437 0.225 
10 2.089 1.290 1.688 0.249 
100 2.823 1.029 1.667 0.320 

1000 5.699 1.006 1.631 0.374 
10,000 9.884 1.001 1.632 0.412 

meanr  

5 2.256 1.820 2.043 0.160 
10 2.279 1.959 2.038 0.106 
100 2.612 1.501 2.072 0.235 

1000 2.749 1.255 2.050 0.247 
10,000 2.889 1.198 2.060 0.244 

k
maxr  

5 2.415 2.394 2.405 0.006 
10 2.415 2.372 2.397 0.014 
100 2.421 2.374 2.404 0.010 

1000 2.427 1.888 2.401 0.031 
10,000 2.430 1.827 2.400 0.040 

k
meanr  

5 2.461 2.410 2.449 0.019 
10 2.459 2.404 2.438 0.020 
100 2.461 2.404 2.440 0.021 

1000 2.476 1.909 2.435 0.046 

10,000 2.474 1.913 2.436 0.046 

 
Table 8. Maximum, minimum, mean, and standard deviation of q  ( 5c = , 

3.608e 06β = − ). 

 N Maximum Minimum Mean Std. deviation 

maxr  

5 2.266 1.042 1.616 0.498 

10 2.106 1.122 1.650 0.330 

100 2.596 1.018 1.784 0.281 

1000 2.400 1.020 1.781 0.238 

10,000 8.514 1.002 1.789 0.259 

meanr  

5 2.884 2.308 2.562 0.184 
10 2.816 1.218 2.514 0.181 

100 3.125 1.890 2.489 0.227 

1000 3.381 1.855 2.490 0.213 

10,000 4.355 1.730 2.482 0.220 

k
maxr  

5 3.452 2.245 2.790 0.543 
10 3.452 1.860 2.786 0.567 
100 3.453 1.841 3.005 0.525 

1000 3.454 1.765 2.946 0.535 

10,000 3.454 1.760 2.979 0.529 

k
meanr  

5 3.456 2.966 3.240 0.223 

10 3.457 3.205 3.421 0.077 

100 3.488 2.962 3.361 0.151 

1000 3.492 2.630 3.341 0.183 

10,000 3.496 2.455 3.344 0.181 
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Table 9. Maximum, minimum, mean, and standard deviation of q  for the Iris Data Set 
( 1.076e 01β = − ). 

 N Maximum Minimum Mean Std. deviation 

maxr  

5 1.606 1.314 1.515 0.110 

10 1.829 1.057 1.412 0.268 

100 1.952 1.011 1.382 0.218 

1000 1.993 1.011 1.408 0.209 

10,000 2.000 1.010 1.410 0.205 

meanr  

5 1.920 1.649 1.821 0.093 

10 1.953 1.628 1.767 0.099 

100 1.984 1.270 1.730 0.160 

1000 1.998 1.201 1.744 0.164 

10,000 2.000 1.170 1.746 0.163 

k
maxr  

5 1.069 1.013 1.044 0.022 

10 1.105 1.013 1.050 0.030 

100 1.962 1.013 1.062 0.095 

1000 1.962 1.013 1.057 0.056 

10,000 1.962 1.013 1.056 0.055 

k
meanr  

5 1.876 1.876 1.876 0.000 

10 1.876 1.876 1.876 0.000 

100 1.993 1.876 1.877 0.012 

1000 1.993 1.876 1.878 0.012 

10,000 1.993 1.876 1.877 0.012 

 
Table 10. Maximum, minimum, and mean numbers of misclassified data points for the 
Iris Data Set of the previous method, the proposed method and Tsallis-DAFCM 
( 1.076e 01β = − , 9.294highT = ). 

Method N  q  Maximum Minimum Mean 

Previous method 
( maxr ) 

5 1.515 14 14 14.00 

10 1.412 16 15 16.00 

100 1.382 16 16 16.00 

1000 1.408 16 14 16.00 

10,000 1.410 17 16 16.00 

Previous method 
( meanr ) 

5 1.821 13 13 13.00 

10 1.767 13 13 13.00 

100 1.730 14 13 13.05 

1000 1.744 13 13 13.00 

10,000 1.746 13 13 13.00 
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Continued 

Proposed method 
( k

maxr ) 

5 1.044 17 17 17.00 

10 1.050 17 17 17.00 

100 1.062 17 17 17.00 

1000 1.057 17 17 17.00 

10,000 1.056 17 17 17.00 

Proposed method 
( k

meanr ) 

5 1.876 16 13 13.00 

10 1.876 13 13 13.00 

100 1.877 13 13 13.00 

1000 1.877 13 13 13.00 

10,000 1.877 13 13 13.00 

Tsallis-DAFCM 

1.2 16 16 16.00 

1.6 16 14 15.91 

2.0 14 14 14.00 

2.4 27 13 13.01 

2.8 26 13 13.01 

 
Table 11. Computational times of β , q , and clustering for the Iris data set. 

 N  β  q  Clustering 

maxr  

5 0.000 0.000 0.049 

10 0.000 0.000 0.059 

100 0.000 0.000 0.060 

1000 0.016 0.023 0.059 

10,000 0.156 0.242 0.059 

meanr  

5 0.000 0.000 0.047 

10 0.000 0.000 0.047 

100 0.000 0.000 0.047 

1000 0.016 0.023 0.047 

10,000 0.156 0.219 0.047 

k
maxr  

5 0.000 0.000 0.068 

10 0.000 0.023 0.067 

100 0.000 0.188 0.068 

1000 0.016 1.695 0.068 

10,000 0.156 17.586 0.068 

k
meanr  

5 0.000 0.000 0.047 

10 0.000 0.000 0.047 

100 0.000 0.000 0.047 

1000 0.016 0.039 0.047 

10,000 0.156 0.430 0.047  
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