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Abstract 
Today’s mobile devices and networks enable the development of novel mobile 
service applications. Developing such applications raises many challenges in-
cluding heterogeneity in terms of mobile operating systems and APIs, service 
availability and scalability, and providing for the diverse communication 
needs of different applications. In this paper, we present an overview of the 
Odin middleware platform whose aim is to address these challenges. Odin uti-
lises a surrogate-based architectural model to promote a mobile service’s sca-
lability and availability. The middleware is reconfigurable, allowing mobile 
applications to adapt to changing operating conditions and minimise resource 
consumption. It also includes an optimised communication channel that 
masks the complexity of interacting with mobile services over mobile tele-
communications networks. Using Odin’s interfaces and standards com-
pliance, mobile applications and services with consistent communication be-
haviour can be easily implemented on heterogeneous platforms. Through 
quantitative evaluation, Odin’s message-based communication primitives 
have been demonstrated to perform favourably with leading industry push 
messaging providers.  
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1. Introduction 

Mobile device and networking hardware continue to advance at a rapid rate, 
providing essential infrastructure for the next new generation of mobile applica-
tions and services. However, software development kits for today’s prevalent 
mobile platforms lack abstractions and functionality to easily and fully leverage 
the hardware’s potential. Furthermore, mobile platforms such as iOS and An-
droid tend to exhibit much heterogeneity, making development of application 
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software that has common behaviour across multiple platforms challenging. 
With the increase in on-board computational resources, devices are no longer 

limited to playing the client role. Rather, a modern device can host a mobile ser-
vice. Similarly to services on the fixed network, mobile services must publish 
their service endpoints and interfaces, and process requests on behalf of clients, 
be they mobile or otherwise. 

Emerging mobile applications require rich communication abstractions. Di-
verse applications, including those concerned with news, sports scores, stock 
markets, driving [1] [2] and healthcare [3] need to disseminate updates and an-
nouncements in a timely fashion to mobile users. For such cases, push notifica-
tion, which is widely embedded in major mobile operating systems, is appropri-
ate. Push notification alone, however, is insufficient for many applications. Bi- 
directional asynchronous and synchronous messaging, publish/subscribe com-
munication, streaming and peer-to-peer capabilities are also desirable. For ex-
ample, in a social networking application mobile users often need to broadcast 
content to peers. In other cases, such as an application that monitors the 
well-being of operatives in dangerous environments, data should be streamed 
from operatives’ devices to other users responsible for monitoring them. 

Supporting the development of non-trivial networked mobile application 
software introduces several challenges:  
• Heterogeneity. Mobile-device operating systems vary significantly in terms of 

the communication facilities and APIs that they offer to application develop-
ers. In addition, service interfaces provided by Cloud-based operators that 
enable clients to communicate with mobile applications (in particular when 
making push notification requests) are non-standard and proprietary.  

• Reachability. Mobile devices are typically connected to mobile telecommuni-
cations networks (3G and 4G) whose operators impose restrictions on net-
work use. In general, network operators do not publish the (dynamic) net-
work addresses of devices they host, giving rise to the addressability problem 
—where there is no obvious destination for a message. Accessibility is a re-
lated problem whereby network operators routinely employ firewalls that fil-
ter out certain kinds of network messages (particularly those originating out-
side of the mobile network and which attempt to establish connection with a 
hosted mobile device).  

• Reliability. Mobile applications and services differ in their needs for reliable 
communication. Applications like remote patient monitoring have strong 
requirements for data delivery, while others—for example location-updating 
for social networking—can tolerate some data loss.  

• Efficiency. Given the resource-constrained nature of mobile devices, particu-
larly relating to power supply and network bandwidth, communication facil-
ities should aim to use only necessary resources.  

• Availability. Unlike conventional services, mobile services are susceptible to 
transient availability due to their limited power supplies and intermittent 
network connectivity.  
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• Scalability. Mobile service applications generally need to accommodate in-
creasing numbers of mobile users and their clients. As with conventional ser-
vice-oriented applications, mobile services often need to manage bursty and 
unpredictable client request rates.  

In this paper, we present an overview of Odin [4], a middleware platform 
whose aim is to address the above challenges. It simplifies development of mo-
bile services and applications. The middleware has four novel aspects:  
1) Surrogate architectural model. An Odin application is partitioned across 

surrogate and mobile-device components. The surrogate is located on the 
fixed (wired) Internet and mediates communication between clients and mo-
bile devices. The surrogate can offload processing from the mobile device, 
promoting scalability. Similarly, in cases where the mobile device becomes 
unavailable, clients may still receive service from the surrogate, enhancing 
perceived availability.  

2) (Re) configurable implementation. The middleware is based on an open 
component model that can be statically configured and dynamically reconfi-
gured to meet application requirements. At deployment time, for example, 
the middleware can be configured with a communication layer offering par-
ticular delivery guarantees. At run-time, surrogate components can be mi-
grated across hosts, and interconnect components (communication channels 
that connect surrogates to devices) can be switched depending on operating 
conditions.  

3) Optimised communication protocol. A key component of the middleware is 
an interconnect implementation that has been developed to support mobile 
applications and services. The necessarily interconnect addresses the reacha-
bility problem. Based on quantitative evaluation, the interconnect has been 
demonstrated to efficiently transport messages when compared to the push 
notification solutions embedded in prominent mobile operating systems.  

4) Technology agnostic communication. The middleware defines uniform com- 
munication interfaces that support several communication primitives. The 
primitives allow for applications to be developed that behave similarly, re-
gardless of the underlying device operating system. With substitutable inter-
connects, applications are independent of particular networking protocols 
and technology. In addition, Odin surrogates expose a standards-compliant 
messaging interface, allowing clients to send messages in a platform neutral 
manner. The combination of interfaces, separable interconnects and stan-
dards compliance tackles heterogeneity.  

The remainder of this paper is structured as follows. In Section 2, we elaborate 
on the motivation for Odin by describing three diverse mobile-service applica-
tions. In Section 3, we focus on push notification since it offers a basic messaging 
primitive that is ubiquitous in mobile operating systems. We continue in Section 
4 by presenting Odin and outline its key functionality and capabilities. We then 
report on a performance evaluation in Section 5 that measures Odin’s messaging 
performance with that of industry push services. The industry push solutions 
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provide a convenient means to benchmark Odin’s messaging functionality, upon 
which higher-level primitives are implemented. In Section 6 we describe related 
work concerned with networked mobile applications. Finally, we conclude and 
outline future research directions in Section 7. 

2. Motivation 

Traditionally, mobile devices have played the role of service consumers, but us-
ing today’s mobile hardware they are capable of hosting mobile services. A mo-
bile service, like a conventional service, is discoverable and exposes a well-de- 
fined interface through which clients consume the service. Unlike services con-
nected to the fixed Internet, mobile services allow data from in-built and exter-
nal sensors, such as GPS, camera and environmental sensors, to be accessible to 
clients, are they mobile or otherwise. Mobile service applications thus have the 
potential to offer new and novel services. In this section, we introduce three di-
verse examples of mobile services with differing communication requirements: a 
media service, a remote monitoring service and a social networking service. 

Figure 1 introduces the mobile media service. Over time, the service captures 
images and video using its device’s cameras. Clients request image and video 
content according to specified criteria, such as time and location. In addition, 
clients can make requests of the mobile service to take still images and record 
video. 

The service needs to be able to return media to clients upon request. This 
could be handled by either request-response messaging or publish/subscribe 
communication. With request-response messaging, clients would send a request 
message, identifying required content, which would result in a consequent re-
sponse message containing the data. Alternatively, clients could subscribe to the 
mobile service, specifying content of interest to them, and be asynchronously 
notified via publish messages when the content is available. 

A very different mobile service is shown in Figure 2. This service is concerned 
with remotely monitoring operatives who work in isolated and potentially dan-
gerous environments, for example power company employees who maintain 
power lines. Such operatives regularly need to work in rural and uninhabited re-
gions that are not supported by mobile networks. In such areas, satellite com-
munication links must be used. Hence, operatives carry a satellite transceiver 
that connects to their smartphone and which provides connectivity to a central 
monitoring location. 

With this well-being service, operatives also wear a body-area network of vi-
tal-sign sensors, which communicate with the operative’s smartphone. The in-
formation acquired by the sensors is transmitted to the central location in 
real-time. Any anomalies in the sensor data detected by the mobile service or at 
the central location are processed and lead to appropriate actions, for example 
summoning emergency crews and directing them to the operative’s location, 
which is made available by the service. During monitoring, central location staff 
might push notifications to operatives giving them advice and support. Similarly,  
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Figure 1. Mobile media service. 

 

 
Figure 2. Operative monitoring mobile service. 

 

 
Figure 3. Social networking mobile service. 

 
central staff might request an operative’s service to take additional measure-
ments to effectively monitor their well-being. At any time, operatives can log 
symptom reports, to be reviewed by central staff. 

The communication primitives required for the well-being service include 
streaming and messaging. Streaming is required to continuously transmit vi-
tal-sign data, while asynchronous messages are necessary to exchange advisory 
notices and symptom reports. Synchronous messaging is required to allow the 
mobile service to respond with results to requests for additional health data. 

The third motivating application is a social networking mobile service, shown 
in Figure 3. Using this service, users can broadcast their location along with 
other state-changes to members of the social network. The unique communica-
tion requirement in this case is for multicast or broadcast communication. With 
multicasting, a user’s updates can be sent to selected members of the network, 
and, with broadcasting, all members are updated. Multicasting can be combined 
with publish/subscribe communication, allowing members to register for up-
dates from particular users. Furthermore, synchronous messaging can be incor-
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porated allowing users to multicast/broadcast requests that result in responses 
from peers. 

In addition to their varying requirements concerning communication, the 
above services also differ with respect to some of the fundamental challenges in-
troduced in Section 1. Of the three services, the operative monitoring service has 
strong reliability requirements. Given the nature of the service, data integrity is 
critical and it is imperative that there is no data loss. The mobile media service 
has particular scalability requirements since the service manages high-band- 
width data and might attract many clients. Mobile devices alone are unlikely to 
be sufficiently preferment to meet the needs of concurrent clients. Table 1 
summarizes the key requirements of the services. 

Other challenges tend to cross-cut all three services. It is desirable that they 
each accommodate heterogeneous mobile platforms, allowing the services to be 
developed and deployed on different mobile devices. Being mobile services, they 
each need to be reachable when connected to mobile networks. Similarly, their 
limited computational resources must be conserved, requiring efficient commu-
nication solutions. Finally, since mobile devices are susceptible to availability is-
sues, additional infrastructure is required to mitigate device unavailability. 

Meeting these challenges suggests the development and adoption of suitable 
middleware. Prior to describing our Odin middleware (in Section 4), we focus 
on push notification, which has been universally adopted by mobile platform 
vendors as an asynchronous publish/subscribe messaging primitive.  

3. Push Notification 

The push notification paradigm essentially involves mobile devices (smart-
phones) subscribing to a, typically Cloud-based, notification service. The service 
is responsible for pushing content to subscribers when appropriate. In support 
of push notification, the OMA (Open Mobile Alliance)—whose goal is to pro-
mote interoperability through open specifications—has developed a set of speci-
fications that collectively constitute a framework that is represented abstractly in  

 
Table 1. Mobile service applications’ requirements. 

Application Requirements 

Media service Request-response messaging 

 Publish-subscribe communication 

 Caching 

Operative monitoring service Asynchronous messaging 

 Request-response messaging 

 Streaming 

 Data integrity 

 Specialist communication links 

Social network service Broadcast messaging 

 Multicast messaging 
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Figure 4. OMA reference model for Push Notification. 

 
Figure 4. Being a framework, many implementations are possible that differ in 
terms of functionality and technology choices. The key entities in the framework 
interact using two families of protocols, OTA (Over The Air) and PAP (Push 
Access Protocol). OTA protocols ship notification messages between a PPG 
(Push Proxy Gateway) and a mobile device, while the PAP enables PIs (Push In-
itiators) to make push requests of the PPG. 

At the heart of the framework lies the PPG, this plays the role of the Push ser-
vice. The PPG is a proxy in that it exposes an interface to PIs and masks the 
complexity associated with delivering notifications to devices. To send a message 
to a device, the PI simply makes a call to the PPG, which is responsible for 
routing and delivering the message to the device. The PPG is also a gateway 
since it converts incoming requests into a form that can be delivered using a 
particular OTA protocol. In support of these roles, the PPG handles client regis-
tration, device address translation, push content transformation and transac-
tional support for storing and forwarding push messages. 

Where devices are connected to PPGs over mobile networks, the reachability 
problem [5] must be addressed by the OTA protocol. Reachability poses two 
sub-problems: addressability and accessibility, introduced briefly in Section 1. 
Addressability concerns the communication endpoint (destination) for a push 
notification; mobile network operators typically hide the addresses they assign to 
devices hosted by their networks—hence there is no clear destination address 
with which to target a push notification. Accessibility deals with how to route a 
push notification to a device with a dynamic point of network attachment; in 
general, mobile network operators use firewalls to deny connection requests ori-
ginating from outside of the network through to hosted devices. 

Appendices 1.1 and 1.2 further detail the OTA and PAP protocols respective-
ly. The OMA’s specifications for OTA protocols describe how existing protocols 
can be used to push content from the PPG to mobile devices. The PAP protocol 
partially addresses heterogeneity by standardizing the PAP interface, thereby 
supporting interoperability between heterogeneous PIs and PPGs. 

Support for push notification is currently embedded in smartphone operating 
systems, for example Android, Blackberry, iOS and Windows Phone. Each offers 
a proprietary solution and an associated programming model that governs per-
mitted content types and size of push data, client capabilities for handling in-
coming notifications, and QoS behavior. 

To illustrate some of the differences in vendors’ offerings, iOS imposes a 
maximum payload size of 256 bytes for a push message. Since, in general, this is 
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insufficient to carry application data; an iOS push notification serves as a poke 
message to a mobile device. The message carries enough data to identify a con-
tent change within the PI. In response to a poke notification, an iOS mobile ap-
plication is expected to make a pull request of the PI to retrieve updated data. 
The motivation for this behaviour is that the PPG requires less storage given that 
messages are limited in size and that newer messages overwrite any stored mes-
sages for a given recipient. Other providers are more generous in their allow-
ances for payload data, and consequently offer more freedom to application de-
velopers as to the content of push messages. Where push messages store applica-
tion data, the PPG can directly push updated content to devices, without them 
needing to make an additional call to their PI. However, having PPGs store ap-
plication data places greater demands on PPGs for storage. Moreover, PPGs 
need to be trusted if they are storing and forwarding sensitive data. 

Unlike iOS and Windows Phone, Android imposes few restrictions on the 
type of data that can be transported in push messages. With iOS and Windows 
Phone, push content is associated with a semantic type that governs how the 
content is processed when it reaches a device. Raw-typed content in Windows 
Phone, for example, is only processed by the device if the corresponding device 
application is running at the time the notification is received. With Android, all 
incoming notifications are processed by the operating system—launching, if ne-
cessary, an application component to perform the processing. 

The leading mobile operating systems and their associated PPG infrastructure 
also differ with respect to delivery guarantees offered, OTA protocol design that 
affects efficiency, and security provisioning. We direct the reader to [6] for a 
more thorough description of the key industry mobile platforms that offer push 
notification functionality. 

Suffice for this paper; the heterogeneity in each of the vendor’s programming 
models places the burden of developing a push-enabled application for multiple 
smartphone platforms with the application developer. Furthermore, developing 
an application with common push-processing behavior across multiple plat-
forms is difficult. Moreover, since each vendor does not conform to the OMA’s 
PAP standard, offering instead a proprietary PAP interface to their PPG, PI ap-
plications have to be implemented to use vendor-specific interfaces. 

4. The Odin Middleware 

An Odin application is based on the Surrogate model illustrated in Figure 5, 
where an application’s software components are partitioned across a surrogate 
host, typically an Internet host on a fixed network, and a mobile device. 

The surrogate host runs a surrogate component that acts on behalf of the de-
vice component, which is the part of the mobile application/service hosted by 
the device. The application’s surrogate typically performs computationally ex-
pensive processing, caching and provides access to resources that are otherwise 
unavailable to the mobile device. Device application software is responsible for 
reading and controlling device sensors, performing local processing and updat- 
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Figure 5. Odin application structure. 

 

 
Figure 6. Odin architecture. 

 
ing the user interface. 

The middleware itself is based on a layered component model, as shown in 
Figure 6. The interconnect layer is responsible for providing a basic messaging 
service between mobile devices and surrogate hosts. Different interconnect im-
plementations can be employed, depending on the types of network to be used 
and application requirements. For example, a Bluetooth interconnect provides a 
low-power communication channel for use when a device is in close physical 
proximity to a surrogate host. For mobile services connected using mobile net-
works, an interconnect that solves the reachability problem is required; when 
connected using a WiFi link, a simpler interconnect is sufficient since it needs 
not be concerned with barriers associated with mobile network operators. With 
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the remote operative monitoring service, an interconnect that uses a satellite link 
facilitates remote monitoring in areas not covered by mobile networks. 

The communication layer is concerned with QoS and communication primi-
tives. Similarly to the interconnect layer, this layer is configurable using different 
component implementations. The service layer provides functionality that is 
useful to mobile service applications, including caching and reconfiguration. 
Different caching policies are implemented by cache components. Surrogate 
components can be associated with caching metadata to identify methods that 
return cacheable content along with expiry times. 

The middleware is reconfigurable with respect to the type of interconnect be-
ing used and the location of a surrogate component. Depending on the operating 
environment of a mobile device, its interconnect can be substituted at run-time 
for another. For example, a device might initially use an interconnect for con-
nectivity to a 3G-based network. When the device enters an environment in 
which a surrogate host is nearby, the device’s surrogate component can be mi-
grated to the nearby host and the interconnect substituted for a low-power Blu-
etooth interconnect. Similarly, for the remote operative service, the satel-
lite-based interconnect can be swapped for a cheaper mobile network intercon-
nect depending on cell coverage. Surrogate migration is managed by the mid-
dleware to preserve surrogate state and to leave a forwarding address to clients. 
For interconnect replacement, the communication layer ensures that there is no 
loss of data when switching the interconnect. Odin thus allows for switching 
between heterogeneous underlying networks without compromising communi-
cation reliability. 

Odin addresses the challenges identified in Section 1, as summarized in Table 
2. The Surrogate model contributes to scalability, availability and reachability. 
For scalability, the surrogate offers a way of off-loading processing from re-
source-constrained mobile devices. All client requests pass through an applica-
tion’s surrogate component—and in many cases the surrogate can fully process 
the request without needing to relay it to the device component. With the mo- 

 
Table 2. Summary of how Odin addresses identified challenges. 

Challenge Solution 

Heterogeneity 

Cross-platform API 

Adherence to OMA’s PAP standard 

Substitutable interconnect 

Reachability 
Interconnect protocol that masks mobile network idiosyncrasies and device 
mobility 

Reliability 
Middleware protocol that is tolerant of network disconnection and which 
ensures eventual delivery of messages 

Efficiency Interconnect protocol that has a low bandwidth overhead 

Availability Surrogate model that maximises service availability despite device unavailability 

Scalability 
Surrogate architecture, allowing devices to offload computationally intensive 
tasks and surrogate components to cache data 
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bile media service for example, the surrogate component is implemented to use 
caching to serve as many requests for content as possible without involving the 
mobile device. Expensive image processing tasks are also performed by the sur-
rogate component. The effect of the surrogate component being responsible for 
these tasks means that the mobile device is more able to process other types of 
requests that necessitate action by the device, such as taking images and footage. 

The Surrogate architecture promotes availability by being able to mask pe-
riods when the mobile device itself is unavailable to provide client processing. 
The transient network connectivity of mobile devices and their limited power 
supplies is mitigated by employing a surrogate component. As discussed above, 
using the surrogate, clients can often receive processing from a mobile service 
without involvement from the mobile device. The Surrogate architecture can 
thus provide the illusion of device availability for many types of requests, when 
in reality it is the surrogate component of the service that is actually providing 
service. 

With Odin’s Surrogate model, reachability is the concern of the middleware 
implementation rather than the developer’s application. Essentially, the de-
vice-side middleware is responsible for establishing a network connection with 
the surrogate. Since mobile network operators allow connection-requests origi-
nating within the mobile network to hosts on the fixed Internet, the requests are 
permitted to be made by mobile devices. The interconnect maintains the con-
nection, restoring it as and when necessary, such as when the network address of 
the device changes due to its mobility. In cases where reliability is required, the 
communication layer operates a middleware-level protocol that tracks transmit-
ted data and, in the event of a broken connection, ensures that data is resent over 
a restored link. Similarly, for the efficiency challenge, the middleware protocols 
have been designed to minimise overhead while providing QoS guarantees. 

For the remaining challenge, heterogeneity, the middleware is ported to dif-
ferent mobile device types. On each mobile platform, the middleware provides a 
uniform interface and set of APIs that allow applications to be developed rela-
tively quickly. Through offering the same capabilities, mobile applications and 
services can be developed with consistent behaviour across different devices. For 
push notification, mobile applications can be developed to process incoming no-
tifications as appropriate, without being constrained by the underlying operating 
system support for push notification. In addition, and as discussed earlier, sur-
rogates expose the standard PAP interface allowing PIs to make push requests 
without knowledge of the types of devices used to run the mobile application 
software. 

4.1. An Interconnec for Mobile Networks 

Three designs for an interconnection that is suitable for mobile services and 
push notification over mobile networks were considered. Messages sent from the 
device to the surrogate are easy to manage—since mobile networks allow devices 
to initiate communication with hosts located outside of the mobile networks. 
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Sending messages from surrogates to devices is more difficult, because of the 
reachability problem. We focus on the latter in describing the interconnect de-
signs. Beyond the reliability concerns, the interconnect should use no more 
processing and bandwidth than necessary to conserve device resources. 

1) OMA’s client-initiated scheme. Use of SMS is to prompt the device-side 
middleware to initiate a HTTP connection with the surrogate. Once established, 
the device makes a HTTP request to which the surrogate responds by including 
the application message, destined for the device, in the corresponding HTTP re-
sponse.  

2) Polling. Periodically have the device-side middleware open a HTTP con-
nection to its surrogate, requesting any pending messages. Any messages queued 
by the surrogate can then be transported over the connection in the HTTP re-
sponse.  

3) Persistent connection. Have the device-side middleware initiate and main-
tain a long-lived TCP connection with the surrogate, over which the surrogate 
can relay messages as and when they need to be sent.  

All three designs solve the reachability problem as they involve the mobile de-
vice establishing a connection to the surrogate on the fixed network. Options 2 
and 3 do not rely on additional infrastructure, such as Option 1’s use of SMS. 
Options 1 and 2 have the advantage over design 3 that the connection is set up 
and quickly torn down. Obviating the need to maintain a persistent connection 
would lead to a slight reduction in power consumption. Option 2, however, is 
associated with fundamental problems since polling involves a trade-off between 
data freshness and efficiency. With a polling rate that is too frequent, power and 
bandwidth is used unnecessarily because there are no messages to transmit since 
the last poll. Conversely, messages may be stale when delivered using a long pol-
ling interval, resulting in an unresponsive messaging mechanism. Furthermore, 
excessive polling leads to scalability issues for the surrogate as many devices can 
be simultaneously over polling. 

Our interconnect takes the form of a persistent connection. Once established, 
the surrogate can relay messages on demand and instantly, with no additional 
connection establishment overhead. In the absence of messages, the connection 
would be idle, and vulnerable to closure by the networking infrastructure of mo-
bile network operators. To address this potential threat to operation, the inter-
connect regularly transmits a heartbeat, a small piece of data, which prevents the 
connection from being detected as quiescent. To minimize bandwidth consump-
tion resulting from heartbeat transmission, the interconnect finds the minimum 
frequency required to maintain the connection and is further optimized to send 
heartbeats only when the connection is not being used to transmit message (as 
the channel is deemed active at such times). 

The choice of TCP as the protocol to underly the interconnect offers more 
flexibility than HTTP. Once established by the device, the TCP connection sup-
ports full duplex capabilities. This is useful for devices to not only receive mes-
sages, but to send heartbeat messages and application messages, and to ac-
knowledge message delivery. The interconnect protocol transmits heartbeats 
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using request reply semantics—allowing the heartbeat to double up as a me-
chanism to indicate a failure connection. Where the device-side middleware fails 
to receive a response to its heartbeat message, it can attempt to re-establish a 
functioning connection. In all cases of reconnection, whether due to a device’s 
IP address being reassigned by the mobile network, the original connection be-
ing forcibly terminated, or because of arbitrary failure, the interconnect is re-
sponsible for recovery. 

4.2. Communication Layer 

Communication is subject to a number of QoS requirements. Messages generally 
need to be delivered with low latency, and eventual delivery should be guaran-
teed despite transient device connectivity. Furthermore, for many applications, 
message ordering is important—with messages being delivered in the order in 
which they were sent. 

Figure 7 shows the states of a message, beginning with the surrogate’s request 
to send the message. The surrogate invokes the sendAsyncMessage method, 
sending a JSON message consisting of the ID of the device along with any num-
ber of key-value pairs comprising the message body. sendAsyncMessage returns 
immediately with a MessageHandle object that may be used to query the status 
of the message, wait for a certain lifecycle state, or wait for a response if that 
message was a request message in a request/response exchange. 

In the PendingSend state, the message is stored by the surrogate and sche-
duled for delivery. Once scheduled, the message will be sent if the interconnect 
provides a functioning connection to the associated device. Given a connection, 
the message’s state is changed to Sending and an attempt is made to transmit the  

 

 
Figure 7. Message lifecycle states. 
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message. If the request times out or another communication error occurs, the 
connection is marked as broken. The message remains in the surrogate’s storage; 
if the message was sent successfully it is stored until acknowledged, and in other 
cases it is stored while waiting for a connection to be resumed. Unacknowledged 
messages are eligible for retransmission after a specified expiry time. 

Assuming the message is received by the device, its state is changed to Re-
ceived, with this being communicated back to the surrogate. The device-side 
middleware discards any duplicate messages it receives—following retransmis-
sion by the surrogate prior to the acknowledgement being received by the sur-
rogate. In cases where the device-side middleware cannot transmit the Received 
state of the message, the device will attempt to re-establish connectivity. When a 
surrogate receives a state update for a message of Received status or greater, it 
removes the message from its store. 

Following receipt of a message at the device, if its sequence number is correct, 
it is immediately delivered to the application and its Delivered status is trans-
mitted back to the surrogate. Out of order messages are buffered until all mes-
sages with prior sequence numbers have been received. Similarly, for multicast 
messages, they are buffered until all devices have received the message. 

In addition to point-to-point communication, Odin supports multicast mes-
saging. Surrogates can send messages to multiple specified devices. The messages 
are sent over a dedicated interconnect, one for each device. Like the unicast send 
operation, the multicast send is reliable. The middleware protocol ensures that 
multicast messages have been received by all devices prior to the devices releas-
ing the messages to the application layer. In support of the OMA PAP standard, 
multicast messages can be replaced and cancelled atomically (i.e. messages are 
replaced/cancelled for all destined devices meaning that all of the devices process 
the same messages). 

4.3. Multi-Platform API Support 

To facilitate the development of cross-platform mobile applications, we have 
implemented a common API for both the Android and Windows Phone plat-
forms. The API implementations differ based on the characteristics of the dif-
ferent device operating systems, but provide similar capabilities. A high-level 
view of part of the API, which focusing on basic messaging, for Android is 
shown in Figure 8. 

When writing Odin applications for Android, developers access Odin’s func-
tionality using the OdinService class, which is implemented as an Android ser-
vice [7]. This class exposes the interface necessary to send messages to devices 
and the surrogate. Hence, the surrogate- and device-side components use Odin-
Service to initiate communication. ServiceComponent also accepts an OdinSer-
viceCallback object, which is used to deliver messages once they have been re-
ceived. 

In Windows Phone, there is no equivalent to an Android service. As such, the 
OdinService class is implemented to use native Windows Phone threads in this  
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Figure 8. Overview of part of the Odin API for Android. 

 
case. Its interface to developers is similar to Android, except that the callback for 
message delivery is implemented using a delegates as opposed to an interface 
implementation. 

Lacking Android’s service component, Windows Phone’s support for back-
ground processing is limited. When deployed on any Windows Phone device, a 
background task may be permitted to run periodically, but it cannot perform 
resource-intensive processing since this could detract from the user’s experience 
with the current foreground application. The background task can process in-
coming messages, but given limitations of the frequency at which the task can 
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run it cannot guarantee their timely processing. Nevertheless, the Windows 
Phone middleware port addresses the other QoS issues in providing for remote 
communication service. 

In addition to message handling, Odin’s surrogate-side API provides another 
extensibility point. By default, surrogates simply relay client requests through to 
the intended mobile device. However, as discussed earlier, the surrogate can add 
value by processing requests, where possible, without involving the mobile de-
vice, perhaps using Odin’s caching APIs. In other cases, the surrogate can per-
form either pre-processing or post-processing logic around requests that are 
partially executed by the mobile device. Since surrogate components are imple-
mented using the middleware’s APIs, they can be used with any devices sup-
ported by Odin, regardless of their particular mobile device platform. 

4.4. Push Notification Using Odin 

With the messaging interconnect described in Section 4.1 and the publish/ sub-
scribe primitives of the communication layer, Odin offers the means for devel-
opers to build mobile applications, regardless of their underlying mobile plat-
form, to consume push notifications in a consistent way. Coupled with PAP- 
compliant surrogates, Odin offers a technology-agnostic alternative to proprie-
tary push service providers. 

When building Odin applications that use push notification, application re-
quirements can be used to drive the behaviour of the push notification facility. 
This is in contrast to the industry solutions that tend to implement fixed and ri-
gid behaviour, concerning, for example, message size constraints, limited se-
mantic types that determine how notifications are processed, delivery guarantees 
and architectural model constraints—such as the poke-and-pull model described 
in Section 3. Rather than impose particular push notification behaviour on the 
application, Odin allows the behaviour to be configured to suit application 
needs. Table 3 identifies key attributes that developers have control over when 
using Odin for push notification. 

As mentioned in Section 3, notification handling in Windows Phone (and 
iOS) is based on a type that is associated with the push message. The raw notifi-
cations for Windows Phone are processed by the device only if the user is en-
gaged with the corresponding application at the time that the incoming notifica-
tion arrives. Windows Phone also supports toast notifications, which always in-
volve prompting the user but are processed only if the user chooses to do so. The  

 
Table 3. Configurability for application-driven development. 

Attribute Description 

Handling How an incoming notification is processed 

Type Permitted data types for push payload 

Size Maximum size of push payload 

Reliability Reliability of device-to-PPG communication 
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implicit assumption with Windows Phone is that raw notifications are never of 
interest to applications when they are inactive, and that toast notifications are 
not to be processed automatically. This leaves a void in that a Windows Phone 
application is not guaranteed to process push notifications. With Odin, develop-
ers have the freedom to specify the way in which particular notifications are to 
be processed. 

Whereas APNS and IBM’s Message Queue Telemetry Transport (MQTT) ser-
vice mandate small push payloads (256 bytes), and so force applications to con-
form to the poke-and-pull model, using Odin developers can work with messag-
es of arbitrary size. This allows applications to include content in push messages, 
if appropriate, and to have freedom of choice over architectural models. 

In addition, the extent of reliability guarantees can also be varied with Odin. 
For many applications, the fire-and-forget (best effort) semantics provided by 
APNS, MPNS and GCM is sufficient, but for others exactly once semantics is 
demanded. Configurability allows developers to make tradeoffs between reliabil-
ity and cost. As higher levels of reliability are sought, protocol overhead tends to 
increase [6]. 

Through the PAP interface exposed by the surrogate (PPG), clients (PIs) are 
provided with a comprehensive set of operations for submitting, manipulating 
and tracking push requests. Furthermore, the PPG functionality is exposed in a 
manner that is independent of any service implementation, including heteroge-
neous mobile devices and communication networks.  

5. Quantitative Evaluation 

We conducted an evaluation to measure the performance of Odin’s messaging 
capability over mobile networks, focusing on reliability and efficiency. For relia-
bility, we measured the following under both normal and stressed operating 
conditions: 
• Message loss rate. The proportion of messages that are not delivered in re-

sponse to send requests.  
• Message ordering. The order in which messages are delivered following send 

requests.  
• Duplicate messages. Messages that are delivered more than once.  

For efficiency, we measured:  
• Responsiveness. The latency between a PI making a send request and the 

corresponding message being delivered to the client.  
• Bandwidth use. The amount of data transmitted for each successfully deli-

vered message.  
• Energy consumption. The power required by the client device to operate the 

middleware.  
To provide a meaningful context, we benchmarked the results against 4 push 

services that are available for prevalent smartphone platforms: APNS (Apple 
Push Notification Service), BBPS (Blackberry Push Service), GCM (Google 
Cloud Messaging), and MPNS (Microsoft Push Notification Service). An over-



I. Warren, A. Meads 
 

517 

view of these of services is presented in [6]. 

5.1. Experiment Setup 

To gather the measurements, three types of experiments were conducted. First, a 
series of 2 hour experiments were conducted for each service, involving a PI 
making a push submission with a 256 byte payload at a rate of 3 per minute. Va-
riables comprised network type and connectivity for the OTA link. For each ser-
vice, separate experiments were run over WiFi and 3G networks. In addition, a 
subset of the experiments assumed a fully connected OTA link for the duration, 
while others involved deliberate periods of disconnection up to 30 minutes. To 
load test the services, a different experiment was conducted to determine the rate 
at which the solutions could sustain push submissions with consequent notifica-
tions being delivered to the client. Finally, 24-hour experiments were run for 
each service, assuming the same payload and submission frequency of the 
2-hour tests, to determine energy consumption. Similarly to the 2-hour experi-
ments, variables included the use of WiFi and 3G for the OTA connection. In 
cases where the client device operated for the full 24 hours the remaining battery 
charge was recorded; in other cases the services’ operational time was logged. 

Equipment used to run the experiments included four contemporary smart-
phones. For Odin, a Samsung Galaxy II running Android 4.0.3 and a Nokia Lu-
mia device with Windows Phone 7.1 was used. The Samsung device was also 
used for GCM, and the Nokia for the native MPNS service. For APNS and BBPS, 
a Blackberry Torch 9860 smartphone running Blackberry 7.1 and an Apple 
iPhone 4S hosting iOS 6 were used respectively. Bandwidth over WiFi connec-
tions was measured using Riverbed’s AirPcap wireless packet capture device in 
conjunction with the Wireshark protocol analyzer. For hosting the Odin surro-
gate (PPG), Microsoft’s Cloud-based Azure service was used. The Odin middle-
ware was configured with the interconnect described in Section 4.1 and a com-
munication layer guaranteeing exactly-once delivery semantics. 

5.2. Results 

In the remainder of this section, we report on the results from running the expe-
riments. We begin with the reliability measures and then discuss the findings for 
the efficiency aspects. 

5.2.1. Reliability 
As expected, Odin provided reliable communication. Across all reliability expe-
riments, the message loss rate was zero; notifications were delivered in the order 
in which corresponding submissions were sent and without duplication. In the 
absence of forceful OTA disconnections, the push services also exhibited reliable 
communication. Of these, the BBPS and MQTT variants used in the study pro-
vide delivery guarantees while APNS, GCM and MPNS are best-effort services. 
During the experiments that involved deliberate OTA disconnection, all services 
with the exception of APNS and MPNS eventually delivered queued notifica-
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tions. To reduce storage space requirements, APNS’ PPG implements an aggres-
sive overwriting policy; where a push submission is made targeting a particular 
client, any queued notification for the client is overwritten with that of the new 
push request. MPNS buffers only a limited number (32 in the study) of notifica-
tions for any given client device. 

Figure 9 shows the results of service load testing. The throughput results for 
Odin (64 req./sec. for Android and 20 req./sec. for Windows) represent the limit 
at which incoming requests can be processed. Beyond this, Odin buffers notifi-
cations ensuring no loss. Odin is able to maintain relatively high throughput be-
cause, unlike the commercial service providers, its PPG does not throttle request 
processing. 

The Android-based service was able to sustain a higher throughput because 
the Samsung device has a dual-core processor whereas the Nokia phone has only 
a single-core. The industry services are Cloud-based with provisioning responsi-
bilities lying with the service vendors; their behavior under load differs. For 
APNS, making push submissions at a rate greater than the consequent notifica-
tion can be dispatched results in notification loss because of APNS’ overwriting 
policy. With throughput over 4 req./sec. BBPS experienced notification loss. 
GCM attempts to manage notification loss by a combination of buffering and 
throttling the rate at which notifications are dispatched to the target device, 
maintaining the rate under 10 req./sec. Buffer space became exhausted when 
push submission were made at a rate of 35 req./sec. Finally, MPNS employs a 
different tactic by blocking the PI when it sends push submission requests at a 
rate greater than 4 - 5 req./sec., reducing the need for large buffer space. 

5.2.2. Responsiveness 
Figure 10 shows the median latencies for push notification delivery. For each 
service, the top of the vertical line represents the 3G latency and the bottom that 
for WiFi. The Odin push interconnect shares the dynamic heartbeat mechanism 
with GCM, providing comparable responsiveness. Being proprietary, the imple-
mentation details of APNS, BBPS and MPNS are unknown, but, again, latency 
across all surveyed services is broadly comparable. 

5.2.3. Bandwidth Use 
Bandwidth used per notification received is shown in Figure 11, with data in 
excess of 0.25 KB being push-protocol overhead. The Odin mobile-network in-
terconnect performs relatively well since its protocol feature-set is minimal yet 
sufficient to meets its quality of service guarantees. Notification channels for 
other services are typically used to also ship other operating system management 
data. With the exception of BBPS, bandwidth consumption over 3G is greater 
than that for WiFi. This is because over the 3G networks, connections are fre-
quently broken and require re-establishing, incurring additional overhead. GCM 
operates notably less efficiently in combating the fragility of 3G connections. 
Unlike the other services’ PPGs, the PPG for BBPS compresses push content 
when communicating with devices over a 3G bearer and yields a 23% reduction.  
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Figure 9. Load testing. 

 

 
Figure 10. Median latencies. 

 

 

Figure 11. Bandwidth consumption. 
 

Figure 11 omits bandwidth consumption values over 3G for APNS and MPNS 
because the iOS and Windows Phone operating systems lack API support for 
measuring data use over 3G. 

5.2.4. Energy Consumption 
Concerning power consumption, Figure 12 shows how much battery charge 
remained after 24 hours when the devices are idle. The figure also shows the re-
maining charge after 24 hours’ operation over WiFi, processing incoming noti-
fications with a payload of 256 bytes at a rate of 3/min. The devices used for 
APNS and MPNS exhausted their power supplies prior to the 24-hour period 
expiring—hence the zero values for Odin (Windows), APNS and MPNS. None 
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of the devices were able to provide 24 hours’ service over 3G bearers. Figure 13 
shows the operational times for all services over 3G, and, additionally, the opera-
tional times for the services that failed to operate for 24 hours over WiFi (i.e. the 
services with zero battery levels in Figure 12). 

The programming models for iOS and Windows Phone are responsible for 
the relatively high energy consumption when using APNS and MPNS. With iOS, 
each incoming notification involves a brief activation of the device’s screen to 
alert the user. Windows Phone requires that for a notification to be processed, 
the associated application must be running and that the user must be interacting 
with it—necessitating an activated screen. Activating a smartphone's screen 
draws significant power, hence the relatively rapid depletion of power. 

 

 
Figure 12. Percentage of battery remaining after 24 hours operation. 

 

 
Figure 13. Operational time. 

 

 
Figure 14. Energy efficiency index. 
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The Odin implementations for Android and Windows Phone manage power 
similarly to the other services that run on the Android and Windows Phone de-
vices. Over 3G, Odin for Android performs better than Android’s native GCM 
since the latter generates extra traffic when maintaining connectivity over 3G. 
Odin for Windows Phone performs comparably to MPNS. In drawing compari-
sons relating to the energy efficiency of the surveyed services more generally, 
bearing in mind device heterogeneity, we have devised an energy efficiency in-
dex, as shown in 3, which measures the relative efficiency of each service’s mes-
saging protocol. Intuitively, smaller differences between a solution’s operational 
time and the hosting device’s operational time at idle indicate greater power effi-
ciency of the protocol. The efficiency index quantifies this, as a value between 0 
and 1 for each solution, and assuming 3G operation, as follows:  

/operational maxOperationalT T                       (1) 

/deviceIdle maxDeviceIdleT T                        (2) 

( ) ( )1 2 maxOperationalT                       (3) 

6. Related Work 

Approaches to supporting remote communication involving mobile devices can 
be classified as follows:  
• Embedded middleware.  
• Intermediary-based middleware  
• Network-based solutions.  

Table 4 summarizes the allocation of notable work by others to the three 
classes, and highlights which challenges from Section 1 they address. 

Embedded middleware is deployed directly on host devices. Generally, em-
bedded middleware is a lightweight version of regular middleware that is used by 
machines on the fixed network. Intermediary-based middleware consists of 
some components deployed on mobile devices, with others (the intermediaries) 
being deployed on machines within the fixed network. Odin, with its Surro-
gate-based model, is an instance of intermediary-based middleware. Net-
work-based solutions work at a lower level, taking the form of network-layer 
protocols. 

Figure 15 illustrates the general form of embedded middleware. Rover [8], 
ICE-E [9] [10], and SoapME [11] have been developed with the intention of al-
lowing mobile devices to host mobile services. Host addresses are expected to be 
published via some sort of service registry, and once obtained clients can make 
requests of the mobile services. The communication protocols of the lightweight  

 
Table 4. Related work by category and challenges addressed. 

Class Instance Challenges addressed 

Embedded Rover, SoapME Reachability, efficiency, reliability 

Intermediary MobileHost MSP CloneCloud Reachability, efficiency, reliability, scalability 

Network-based Mobile IP, GTP Reachability, efficiency 
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Figure 15. Embedded middleware. 

 

 
Figure 16. Intermediary-based middleware. 

 
middleware implementations are optimised so as to reduce network bandwidth 
consumption and to mask the unreliability of mobile networks. However, use of 
mobile devices exclusively in hosting mobile services limits service scalability 
and availability—since there are no additional resources on the fixed network to 
draw on. Furthermore, the embedded middleware approaches do not solve the 
reachability problem; instead they rely on network-based solutions (discussed 
shortly). This limits their ability to host mobile services in practice and to sup-
port push notification. 

With intermediary-based middleware (Figure 16), clients simply direct their 
service requests to the intermediary machines on the fixed network, using their 
well-known and static addresses. The middleware that is distributed across the 
intermediary and device offers the potential to provide a solution to the reacha-
bility problem. MobileHost [12] [13] [14], Nokia Mobile Web Server [5] and 
MSP (Mobile Service Platform) [15] [16] [17] take the intermediary approach. 

Nokia Web Server adopts the intermediary architecture purely to address 
reachability for mobile services. It uses a HTTP-based protocol, where mobile 
devices periodically send GET requests to the intermediary. The intermediary 
queues service requests from clients and relays them to the device in the re-
sponse message corresponding to the HTTP GET call. Mobile devices return 
responses to their service invocations as payload data of subsequent HTTP GET 
requests made of the intermediary. With MSP, the communication protocol to 
be used between mobile devices and the intermediary is undefined, and must be 
designed and implemented by application developers. Given that the communi-
cation issues are quite complex, implementing the equivalent of an Odin inter-
connect and communication layer is a non-trivial task that is better handled by 
middleware. 

Intermediary-based approaches have the potential to address more than rea-
chability. MSP, like Odin, allows for application components to be deployed on  
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Figure 17. Network-based solution overview. 

 
the intermediary to enhance the mobile application’s scalability and availability. 
Odin further leverages the intermediary through its support for reconfiguration 
—surrogate migration and interconnect switching—and other services. 

Other intermediary-based approaches such as MAUI [18] and CloneCloud 
[19] extend support for application partitioning, providing support for run-time 
decision making concerning whether a task should be executed by the device or 
on a machine on the fixed network. The middleware takes into account antic-
ipated computation time and use of network resources in determining where a 
task should execute. However, MAUI and Clonecloud have not been designed 
with mobile services in mind, and so lack a solution to the reachability problem. 

Network layer solutions (Figure 17) use the network infrastructure itself to 
address the reachability challenge. Examples include Mobile IP [20] and the 
GPRS tunneling protocol (GTP) [21] [22]. These solutions allocate devices with 
a static IP address that can be published to clients. Clients use this well known 
address to make service requests, and when the device’s point of network at-
tachment changes, the networking infrastructure is responsible for routing the 
request through to the new point of attachment. However, there is a lack of a 
single, widely-adopted mobile IP protocol at present, limiting developers’ ability 
to rely on these solutions when developing mobile services in practice.  

7. Conclusions and Future Work 

In this paper, we have presented an overview of the Odin middleware that has 
been developed to facilitate development of networked mobile applications and 
services. The middleware addresses several challenges inherent in the mobile 
service domain through, fundamentally, a surrogate architecture. With the sur-
rogate model, much service processing can be offloaded from the mobile device 
to a surrogate on the fixed network—enhancing a mobile application’s scalability 
and effective availability. Furthermore, the surrogate architecture enables a solu-
tion to the reachability problem, allowing clients, via the surrogate, to initiate 
communication with mobile devices. Odin’s interconnect for mobile networks 
solves the reachability problem that is generally presented when using mobile 
networks. 

Odin is based on a component model. The middleware can be configured to 
use particular component implementations—notably interconnects—depending 
on application needs and operating environments. Furthermore, Odin can be 
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dynamically reconfigured, for example, to switch between different intercon-
nects. The middleware ensures communication reliability during any intercon-
nect reconfiguration. In addition, surrogate components can be migrated be-
tween surrogate hosts, again, without compromising application integrity. Other 
core components, including the communication layer and caching services, are 
substitutable and can be switched to suit particular application requirements. 

Odin offers a technology agnostic approach to communication. Given that it 
supports the development of non-trivial networked mobile applications, Odin 
offers a rich set of communication primitives. This includes push notification, 
which is embedded in mainstream mobile operating systems. For push notifica-
tion, Odin affords developers much freedom in the push behaviour of their ap-
plications. This is in contrast to use of native push notification APIs that impose 
restrictions on the way that they are used. Odin also offers a standards-com- 
pliant interface for clients to make push requests. As a result of Odin’s design for 
remote communication, mobile applications can be developed with common 
communication behaviour over heterogeneous devices and communication 
links. Based on a comparative performance evaluation, Odin’s messaging capa-
bilities have been demonstrated to perform well with respect to industry push 
solutions. 

Our ongoing work is aimed at increasing Odin’s support for platform hetero-
geneity using model-driven engineering (MDE) techniques. We are developing a 
domain-specific modeling language for mobile-service applications whereby 
models are automatically transformed into platform-specific implementations. 
Initial results demonstrate feasibility of the approach and indicate that the tools 
can enhance productivity when developing networked mobile applications and 
services. We also intend to integrate cross-platform mobile development tech-
nologies, such as PhoneGap [23], since these industry tools have proven effective 
in developing cross-platform mobile user interfaces.  
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Appendix  
1.1. Push Notification OTA Protocol  

HTTP is often used to realize the OTA link. Push content is delivered using the 
HTTP POST method, implying that the mobile device plays the server role. In 
addressing the reachability problem, the specification includes device-initiated 
connection, which relies on the PPG prompting the device to establish the con-
nection with the PPG. This involves a session initiation request (SIR), that can 
be sent in a SMS message from the PPG to the device. The device then responds 
by initiating a connection with the PPG that the PPG uses to transmit push 
message(s). Since support for SMS is ubiquitous in mobile networks, with clients 
having well-known and accessible addresses (MSISDNs), the reachability prob-
lem is solved. 

Other than HTTP, the OMA specification also recognizes that the OTA pro-
tocol can be layered on WSP and SIP. WSP (Wireless Session Protocol) is part of 
the WAP (Wireless Application Protocol) suite and essentially provides func-
tionality similar to HTTP, but over lower layer WAP protocols that are opti-
mized for use over wireless networks with relatively high data loss rates. WSP 
can be layered ultimately over a range of bearers that are commonly used by 
mobile network operators. These include IP-based protocols (GPRS and UMTS) 
and others (SMS and USSD). The specification also allows for connec-
tion-oriented and connectionless OTA variants, depending on the transport 
used. With a connection-oriented protocol, a logical connection is first set up 
between the PPG and device prior to exchanging push content. Following this 
the client can confirm receipt of the push notification using the connection. 
HTTP provides only connection-oriented push, while WSP and SIP support 
both connection and connectionless modes. The choice of mode should be in-
formed by application requirements; connection-oriented protocols allow for 
delivery confirmation but at the additional overhead of setting up a connection. 

The OTA protocol may alternatively be realized using a point-to-multipoint 
bearer. Such bearers include MBMS (Multimedia Broadcast/Multicast Service) 
and CBS (Cell Broadcast Service) and offer the ability to multicast or broadcast 
push content to groups. CBS, for example, allows the actual recipients of a push 
notification to be identified at run-time based on their geographical area. When 
using a point-to-multipoint bearer, a PI typically supplies a group name, as op-
posed to explicit device identities, and the group name is resolved to many de-
vices by the bearer. 

1.2. Push Notification PAP Protocol 

The PAP governs interaction between the PPG and PI. HTTP is used as the un-
derlying transport, with request messages taking the form of a HTTP POST. The 
PAP supports the following operations that are offered by the PPG: submission, 
cancellation, replacement, and query. 

A push submission contains 3 elements: control, push content and device ca-
pability. The control part includes addressing data, comprising device address 
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(es) or a group identifier plus a URI to identify the device-hosted 
agent/application that should process the notification, any expiration time con-
cerning delivery of the notification, and any QoS requirements. Capability data 
defines any assumptions that the PI makes of targeted device(s), such as their 
ability to process a given type of content. 

In cases where a PPG stores a push message for later delivery, the PI can make 
a cancellation request. The PPG responds by removing the push message from 
its store and makes no further attempt to deliver it. 

The PI can request that an earlier push request be replaced with a new one. 
For an earlier message with a single destination, assuming it has not already 
been delivered it will be canceled. Where the earlier message is associated with 
multiple destinations, the push replacement message can specify whether the re-
placement message should be sent to all recipients or only those that have not 
received the original message. 

A PI can inquire as to the delivery status of a particular push request. The 
PPG responds with an indicator, such as the message is queued, has been deli-
vered, or that delivery has failed. A PI can also query the PPG regarding capabil-
ities of a particular device using this operation. 

In addition, the PAP includes a result notification operation, directed towards 
the PI. This is an asynchronous operation that is invoked by the PPG to inform 
the PI about the delivery status of a particular push message. To register for the 
asynchronous update, PIs include an extra piece of control data—a notification 
URI—in a submission message. Once the outcome of handling the push submis-
sion is known, the PPG directs the result notification to the given URI. 
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